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ABSTRACT

We study the existence of multiple nontrivial solutions for two nonlinear fourth order

discrete boundary value problems. We first establish criteria for the existence of at least two

nontrivial solutions of the problems and obtain conditions to guarantee that the two solutions are

sign-changing. Under some appropriate assumptions, we further prove that the problems have

at least three nontrivial solutions, which are respectively positive, negative, and sign-changing.

We include two examples to illustrate the applicability of our results. Our theorems are proved

by employing variational approaches, combined with the classic mountain pass lemma and a

result from the theory of invariant sets of descending flow.
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CHAPTER 1

INTRODUCTION

It is well known that nonlinear difference equations of higher order appear naturally

as discrete analogue and as numerical solutions of differential equations. The applications

of such equations have been well documented in [16, 17]. In recent years, the existence of

solutions of boundary value problems (BVPs) of difference equations, with various boundary

conditions (BCs), has received increasing attention from many researchers. In this thesis, let

[c,d]Z = {z ∈ Z | c≤ z≤ d}, where c,d ∈ Z with c≤ d. We are concerned with the existence

of multiple nontrivial solutions of the BVP for the discrete beam equation


∆4u(k−2)−α∆2u(k−1)+βu(k) = f (k,u(k)), k ∈ [a+1,b+1]Z,

u(a) = ∆2u(a−1) = 0, u(b+2) = ∆2u(b+1) = 0,
(1.1)

where α,β ∈ [0,∞), a,b ∈ Z with b ≥ a, f : [a+ 1,b+ 1]Z×R→ R is continuous, and ∆ is

the forward difference operator defined by ∆u(k) = u(k+1)−u(k) and ∆nu(k) = ∆(∆n−1u(k)).

By a solution of BVP (1.1), we mean a function u : [a− 1,b+ 3]Z → R such that u satisfies

both the equation and the BCs in (1.1). If u(k)> 0 for all k ∈ [a+1,b+1]Z, then u is called a

positive solution; if u(k)< 0 for all k ∈ [a+1,b+1]Z, then u is said to be a negative solution;

and if u(k) changes signs on [a+1,b+1]Z, then u is called a sign-changing solution. We also

obtain existence criteria for the BVP
∆4u(k−2)−α∆2u(k−1)+βu(k) = λ f (k,u(k)), k ∈ [a+1,b+1]Z,

u(a) = ∆2u(a−1) = 0, u(b+2) = ∆2u(b+1) = 0,
(1.2)

where λ is a positive parameter.
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BVP (1.1) can be regarded as a discrete analogue of the beam problem


u(4)(t)−αu′′(t)+βu(t) = f (t,u(t)), t ∈ (0,1),

u(0) = u′′(0) = 0, u(1) = u′′(1) = 0,
(1.3)

where the BCs correspond to both ends of the beam being hinged when there is no bending

moment. The equation in BVP (1.3) is often referred to as the beam equation since it describes

the deflection of a beam under a certain force. BVP (1.3) and a number of its variations have

been investigated by many authors. A small sample of the work can be found in, for example,

[2, 5, 27, 28] and the included references.

The existence of solutions of discrete BVPs, with various BCs, of the fourth order has

been extensively studied in the literature. The reader is refered to [1, 3, 4, 6, 7, 8, 9, 10, 11, 12,

13, 14, 18, 24, 25, 26, 29, 31] for some work on this subject. In particular, paper [8] studied the

existence of three solutions of the BVP
∆4u(k−2)−α∆2u(k−1)+βu(k) = λ f (k,u(k)), k ∈ [1,T ]Z,

u(0) = ∆u(−1) = ∆2u(T ) = 0, ∆3u(T −1)−α∆u(T ) = µg(u(T +1)),
(1.4)

where T ≥ 2 is an integer, α,β ,λ ,µ ∈ R are parameters, f ∈ C([1,T ]Z ×R,R), and g ∈

C(R,R); while the existence of infinitely many solutions of BVP (1.4) was considered in [7].

The existence theorems in [7, 8] give the existence of solutions for the parameters λ and µ in

different intervals. Paper [6] investigated the existence of two solutions of the BVP


∆4u(k−2)−α∆2u(k−1)+βu(k) = f (k,u(k)), k ∈ [1,T ]Z,

u(−1) = ∆u(−1) = 0, u(T +1) = ∆2u(T ) = 0.

Variational methods and critical point theory were used in [6, 7, 8] to prove the existence results.

By using fixed point theory, paper [1] obtained a number of criteria for the existence of positive
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solutions of BVP (1.2) with β = 0, i.e., the problem


∆4u(k−2)−α∆2u(k−1) = λ f (k,u(k)), k ∈ [a+1,b+1]Z,

u(a) = ∆2u(a−1) = 0, u(b+2) = ∆2u(b+1) = 0.
(1.5)

Later, paper [9] studied the following slightly more general version of BVP (1.5)


∆4u(t−2)−β∆2u(t−1) = λ [ f (t,u(t),u(t))+ r(t,u(t))] , t ∈ [a+1,b−1]Z,

u(a) = ∆2u(a−1) = 0, u(b) = ∆2u(b−1) = 0,
(1.6)

where f : [a+ 1,b− 1]Z× [0,∞)× (0,∞)→ [0,∞) and r : [a+ 1,b− 1]Z× [0,∞)→ [0,∞) are

continuous. By applying some results from mixed monotone operator theory, not only was

the existence and uniqueness of positive solutions of BVP (1.6) obtained , but also the depen-

dence of positive solutions on the parameter λ was discussed. Moreover, two sequences are

constructed in such a way so that they converge uniformly to the unique positive solution of

the problem. See [9, Theorems 3.1 and 3.2] for details. Paper [10] studied the existence of

solutions of BVP (1.2) by using the critical point theory and monotone operator theory. We

comment that none of these papers studied the existence of sign-changing solutions. One of the

goals of this work is to study sign-changing solutions of BVPs (1.1) and (1.2).

In this thesis, we prove some new existence criteria for multiple nontrivial solutions

of BVPs (1.1) and (1.2). We first establish an equivalent variational structure for BVP (1.1).

During the process, we derive a symmetric positive definite matrix M, defined by (2.19) below,

whose eigenvalues are exactly eigenvalues of a linear BVP. See Remark 2.0.3 in Chapter 2 for

details. The smallest and largest eigenvalues of the matrix M are used in the statements and

proofs of our theorems. Spectral properties of several BVPs for the linear discrete beam equa-

tion have been studied by Ji and Yang in [12, 13, 14]. In our first existence result (Theorem

3.1.1) for BVP (1.1), we utilize variational approaches, combined with the classic mountain

pass lemma, to show that BVP (1.1) has at least two nontrivial solutions. Then, by the pos-

itivity of the associated Green’s function (see Remark 2.0.5), we further establish sufficient

conditions to guarantee that the two nontrivial solutions are sign-changing. In our second exis-

tence result (Theorem 4.1.1) for BVP (1.1), we combine variational methods with the theory of
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invariant sets of descending flow to show that, under some suitable conditions, BVP (1.1) has at

least three nontrivial solutions consisting of one positive, one negative, and one sign-changing

solutions. The theory of invariant sets of descending flow was introduced by Liu and Sun in

[22] in 2001 and has now become a useful tool in the study of existence theory for nonlinear

problems. We refer the reader to [19, 20, 21, 23] for some recent applications of this theory.

As applications of Theorems 3.1.1 and 4.1.1, we also obtain several criteria for the existence of

multiple nontrivial solutions of BVP (1.2).

The rest of this thesis is organized as follows. Chapter 2 contains some preliminaries.

Chapter 3 studies the existence of at least two nontrivial solutions of BVPs (1.1) and (1.2) and

the existence of at least three nontrivial solutions of the problems are investigated in Chapter 4.
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CHAPTER 2

PRELIMINARY RESULTS

In this chapter, we first obtain the equivalent variational structure for BVP (1.1). Define

a set X of functions by

X =
{

u : [a−1,b+3]Z→ R | u(a) = ∆
2u(a−1) = 0, u(b+2) = ∆

2u(b+1) = 0
}
. (2.1)

Then, X is a vector space with au+bv = {au(k)+bv(k)} for any u,v ∈ X and a,b ∈ R. More-

over, X is a b−a+1 dimensional Banach space equipped with the norm

‖u‖=

(
b+1

∑
k=a+1

(u(k))2

)1/2

for any u ∈ X .

Define the functionals Φ,Ψ, I : X → R by

Φ(u) =
1
2

b+2

∑
k=a+2

(∆2u(k−2))2 +
1
2

α

b+2

∑
k=a+1

(∆u(k−1))2 +
1
2

β

b+1

∑
k=a+1

u2(k), (2.2)

Ψ(u) =
b+1

∑
k=a+1

F(k,u(k)),

and

I(u) = Φ(u)−Ψ(u), (2.3)

where u ∈ X and

F(t,x) =
∫ x

0
f (k,s)ds. (2.4)
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Then, Φ,Ψ, I are well defined and continuously differentiable whose derivatives are the linear

functionals Φ′(u), Ψ′(u), and I′(u) given by

Φ
′(u)(v) =

b+2

∑
k=a+2

∆
2u(k−2)∆2v(k−2)+α

b+2

∑
k=a+1

∆u(k−1)∆v(k−1)+β

b+1

∑
k=a+1

u(k)v(k),

Ψ
′(u)(v) =

b+1

∑
k=a+1

f (k,u(k))v(k),

and

I′(u)(v) =
b+2

∑
k=a+2

∆
2u(k−2)∆2v(k−2)+α

b+2

∑
k=a+1

∆u(k−1)∆v(k−1)

+β

b+1

∑
k=a+1

u(k)v(k)−
b+1

∑
k=a+1

f (k,u(k))v(k) (2.5)

for any u,v ∈ X .

Using the summation by parts formula

n

∑
k=m

fk∆gk = fn+1gn+1− fmgm−
n

∑
k=m

gk+1∆ fk, (2.6)

we can prove the following lemma.

Lemma 2.0.1For any u,v ∈ X , we have

b+2

∑
k=a+2

∆
2u(k−2)∆2v(k−2) =

b+1

∑
k=a+1

∆
4u(k−2)v(k) (2.7)

and
b+2

∑
k=a+1

∆u(k−1)∆v(k−1) =−
b+1

∑
k=a+1

∆
2u(k−1)v(k). (2.8)

Proof. For any u,v ∈ X , we have

∆
2u(a−1) = ∆

2u(b+1) = v(a) = v(b+2) = 0. (2.9)
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We now prove (2.7). Using (2.6) and (2.9), we obtain that

b+2

∑
k=a+2

∆
2u(k−2)∆2v(k−2)

= ∆
2u(b+1)∆v(b+1)−∆

2u(a)∆v(a)−
b+2

∑
k=a+2

∆
3u(k−2)∆v(k−1)

= −∆
2u(a)v(a+1)−

b+2

∑
k=a+2

∆
3u(k−2)∆v(k−1)

= −∆
2u(a)v(a+1)−∆

3u(b+1)v(b+2)+∆
3u(a)v(a+1)+

b+2

∑
k=a+2

∆
4u(k−2)v(k)

=
(
−∆

2u(a)+∆
3u(a)

)
v(a+1)+

b+2

∑
k=a+2

∆
4u(k−2)v(k)

= ∆
4u(a−1)v(a+1)+

b+2

∑
k=a+2

∆
4u(k−2)v(k)

=
b+1

∑
k=a+1

∆
4u(k−2)v(k). (2.10)

Thus, (2.7) holds. Similarly, we can show (2.8). This completes the proof of the lemma.

Lemma 2.0.2A function u ∈ X is a critical point of the functional I if and only u is a solution

of BVP (1.1).

Proof. In view of (2.5) and Lemma 2.0.1, we have the following equivalence

u ∈ X is a critical point of I

⇐⇒ I′(u)(v) = 0 for any v ∈ X

⇐⇒
b+1

∑
k=a+1

[
∆

4u(k−2)−α∆
2u(k−1)+βu(k)− f (k,u(k))

]
v(k) = 0 for any v ∈ X

⇐⇒ ∆
4u(k−2)−α∆

2u(k−1)+βu(k) = f (k,u(k)) for all k ∈ [a+1,b+1]Z.

Note that the BCs in (1.1) are obviously satisfied since u ∈ X . Then, the conclusion of the

lemma is true. This completes the proof of the lemma.

Below, we present an equivalent form of the functional Φ(u). Let

u = (u(a−1),u(a),u(a+1), · · · ,u(b+1),u(b+2),u(b+3)) ∈ X .
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Since X is isomorphic to Rb−a+1 and u satisfies the BCs in (1.1), in the sequel, we always

identify u with the vector

u = (u(a+1), · · · ,u(b+1)) ∈ Rb−a+1.

For the first term in Φ(u), we have

1
2

b+2

∑
k=a+2

(∆2u(k−2))2 =
1
2

b+2

∑
k=a+2

[
u2(k)+4u2(k−1)+u2(k−2)+2u(k)u(k−2)

−4u(k)u(k−1)−4u(k−1)u(k−2)
]
. (2.11)

By simple calculations, we see that

b+2

∑
k=a+2

[
u2(k)+4u2(k−1)+u2(k−2)+2u(k)u(k−2)

]
= uAuT

and

b+2

∑
k=a+2

[
−4u(k)u(k−1)−4u(k−1)u(k−2)

]
= uBuT ,
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where A and B are two (b−a+1)× (b−a+1) matrices given by

A =



(
4

)
if b = a,5 0

0 5

 if b = a+1,


5 0 1

0 6 0

1 0 5

 if b = a+2,



5 0 1 0 0 · · · 0 0 0 0

0 6 0 1 0 · · · 0 0 0 0

1 0 6 0 1 · · · 0 0 0 0

0 1 0 6 0 · · · 0 0 0 0

0 0 1 0 6 · · · 0 0 0 0
...

...
...

...
... . . . ...

...
...

...

0 0 0 0 0 · · · 6 0 1 0

0 0 0 0 0 · · · 0 6 0 1

0 0 0 0 0 · · · 1 0 6 0

0 0 0 6 0 · · · 0 1 0 5



if b≥ a+3,
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and

B =



(
0

)
if b = a, 0 −4

−4 0

 if b = a+1,



0 −4 0 0 0 · · · 0 0 0 0

−4 0 −4 0 0 · · · 0 0 0 0

0 −4 0 −4 0 · · · 0 0 0 0

0 0 −4 0 −4 · · · 0 0 0 0

0 0 0 −4 0 · · · 0 0 0 0
...

...
...

...
... . . . ...

...
...

...

0 0 0 0 0 · · · 0 −4 1 0

0 0 0 0 0 · · · −4 0 −4 0

0 0 0 0 0 · · · 0 −4 0 −4

0 0 0 6 0 · · · 0 0 −4 0



if b≥ a+2.

Thus, from (2.11), it follows that

1
2

b+2

∑
k=a+1

(∆2u(k−2))2 =
1
2

uCuT , (2.12)
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where C = A+B is the (b−a+1)× (b−a+1) matrix given by

C =



(
4

)
if b = a, 5 −4

−4 5

 if b = a+1,


5 −4 1

−4 6 −4

1 −4 5

 if b = a+2,



5 −4 1 0 0 · · · 0 0 0 0

−4 6 −4 1 0 · · · 0 0 0 0

1 −4 6 −4 1 · · · 0 0 0 0

0 1 −4 6 −4 · · · 0 0 0 0

0 0 1 −4 6 · · · 0 0 0 0
...

...
...

...
... . . . ...

...
...

...

0 0 0 0 0 · · · 6 −4 1 0

0 0 0 0 0 · · · −4 6 −4 1

0 0 0 0 0 · · · 1 −4 6 −4

0 0 0 6 0 · · · 0 1 −4 5



if b≥ a+3.

(2.13)

For the second term in Φ(u), we have

1
2

α

b+2

∑
k=a+1

(∆u(k−1))2 =
1
2

α

b+2

∑
k=a+1

[
u2(k)+u2(k−1)−2u(k)u(k−1)

]
=

1
2

α

b+1

∑
k=a+1

2u2(k)− 1
2

α

b+1

∑
k=a+2

2u(k)u(k−1)

=
1
2

uDuT , (2.14)
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where D is a (b−a+1)× (b−a+1) matrix defined by

D =



(
2α

)
if b = a,2α −α

−α 2α

 if b = a+1,



2α −α 0 · · · 0 0

−α 2α −α · · · 0 0

0 −α 2α · · · 0 0
...

...
... . . . ...

...

0 0 0 · · · 2α −α

0 0 0 · · · −α 2α


if b≥ a+2.

(2.15)

For the last term in Φ(u), we have

1
2

β

b+1

∑
k=a+1

u2(k) =
1
2

uEuT , (2.16)

where E is a (b−a+1)× (b−a+1) matrix given by

E =



β 0 0 · · · 0 0

0 β 0 · · · 0 0

0 0 β · · · 0 0
...

...
... . . . ...

...

0 0 0 · · · β 0

0 0 0 · · · 0 β


. (2.17)

Now, from (2.2), (2.12), (2.14), (2.16), it follows that

Φ(u) =
1
2

uMuT for all u ∈ X , (2.18)

where

M =C+D+E. (2.19)
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It is obvious that M is a symmetric positive definite matrix. Let λi, i = 1, . . . ,b−a+1, be the

eigenvalues of M ordered as follows

0 < λ1 ≤ λ2 ≤ . . .≤ λb−a+1 < ∞,

and let ξi be a normalized eigenvector of M associated with λi such that

(ξi,ξ j) =


0, i 6= j,

1, i = j.

Then, it is easy to verify that

1
2

λ1‖u‖2 ≤Φ(u)≤ 1
2

λb−a+1‖u‖2 for all u ∈ X . (2.20)

Remark 2.0.3Consider the following associated linear version of BVP (1.2)


∆4u(k−2)−α∆2u(k−1)+βu(k) = λu(k), k ∈ [a+1,b+1]Z,

u(a) = ∆2u(a−1) = 0, u(b+2) = ∆2u(b+1) = 0.
(2.21)

For a fixed λ ∈C, if BVP (2.21) has a nontrivial solution u ∈ X , then λ is called an eigenvalue

of BVP (2.21) and the corresponding nontrivial solution u is said to be an eigenfunction of

BVP (2.21) corresponding to λ . It is easy to verify that λ is an eigenvalue of problem (2.21)

if and only if λ is an eigenvalue of the matrix M defined by (2.19). Thus, all the eigenvalues

of BVP (2.21) are positive and are given by λ1, . . . ,λb−a+1. As mentioned in Chapter 1, the

properties of eigenvalues for several BVPs, consisting of linear discrete beam equations and

different BCs, have been investigated by Ji and Yang in [12, 13, 14].

Next, we recall how to rewrite the solution of BVP (1.1) as a fixed point of some appro-

priate operator. To this end, we assume that α and β satisfy α2 ≥ 4β and let r1 and r2 be the

roots of the polynomial P(r) = r2−αr+β , i.e.,

r1 =
α +

√
α2−4β

2
and r2 =

α−
√

α2−4β

2
.
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Then, r1 ≥ r2 ≥ 0. For i = 1,2, let

Gi(t,k) =
1

ρi(1,0)ρi(b+2,a)


ρi(t,a)ρi(b+2,k), a≤ t ≤ k ≤ b+1,

ρi(k,a)ρi(b+2, t), a+1≤ k ≤ t ≤ b+2,

where

ρi(t,k) =


t− k if ri = 0,

γ
t−k
i − γ

k−t
i if ri > 0,

with

γi =
ri +2+

√
ri(ri +4)

2
.

The following lemma follows from [10, Lemma 2.2].

Lemma 2.0.4Assume that α2 ≥ 4β . Then, a function u ∈ X is a solution of BVP (1.1) if and

only if u is a fixed point of the completely continuous operator T : X → X defined by

T (u(k)) =
b+1

∑
l=a+1

G(k, l) f (l,u(l)), k ∈ [a+1,b+1]Z, (2.22)

where

G(k, l) =
b+1

∑
s=a+1

G2(k,s)G1(s, l). (2.23)

Remark 2.0.5From (2.23), we see that G(k, l)> 0 for all k, l ∈ [a+1,b+1]Z.

Finally in this chapter, we introduce the following notations that will used in the re-

mainder of this thesis:



F∞ = limsup|x|→∞

maxk∈[a+1,b+1]Z F(k,x)
|x|2

,

F0 = limsup|x|→0
maxk∈[a+1,b+1]Z F(k,x)

|x|2
,

F∞ = liminf|x|→∞

mink∈[a+1,b+1]Z F(k,x)
|x|2

,

f 0 = limsup|x|→0
maxk∈[a+1,b+1]Z | f (k,x)|

|x|
,

f ∞
ϑ
= limsup|x|→∞

maxk∈[a+1,b+1]Z | f (k,x)|
|x|ϑ

, ϑ > 1,

(2.24)
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where f is the nonlinear function given in problem (1.1) and F is defined by (2.4).
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CHAPTER 3

EXISTENCE OF TWO NONTRIVIAL SOLUTIONS

3.1 MAIN RESULTS

In this chapter, we study the existence of at least two nontrivial solutions of BVPs (1.1)

and (1.2). Below, we first state our existence criteria and then provide one example to illustrate

the results. Recall that λ1 and λb−a+1 are the smallest and largest eigenvalues of the matrix M

defined by (2.19).

Theorem 3.1.1Assume that

(H1) F∞ < 1
2λ1 and F0 < 1

2λ1;

(H2) there exists w ∈ X such that ∑
b+1
k=a+1 F(k,w(k))> 1

2λb−a+1‖w‖2.

Then, BVP (1.1) has at least two nontrivial solutions.

If, in addition to (H1) and (H2), we further assume that

(H3) α2 ≥ 4β and x f (k,x)< 0 for all k ∈ [a+1,b+1]Z and x 6= 0,

then the two nontrivial solutions are sign-changing solutions.

The following corollaries are direct consequences of Theorem 3.1.1.

Corollary 3.1.2Assume that there exists w ∈ X such that

λb−a+1‖w‖2

∑
b+1
k=a+1 F(k,w(k))

< min
{

λ1

F∞
,

λ1

F0

}
, (3.1)

Then, for each

λ ∈

(
λb−a+1‖w‖2

2∑
b+1
k=a+1 F(k,w(k))

, min
{

λ1

2F∞
,

λ1

2F0

})
, (3.2)

BVP (1.2) has at least two nontrivial solutions. Moreover, if (H3) holds, the two nontrivial

solutions are sign-changing solutions.
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Corollary 3.1.3Assume that F∞ =F0 = 0 and there exists w∈X such that ∑
b+1
k=a+1 F(k,w(k))>

0, Then, for each

λ ∈

(
λb−a+1‖w‖2

2∑
b+1
k=a+1 F(k,w(k))

, ∞

)
,

BVP (1.2) has at least two nontrivial solutions. Moreover, if (H3) holds, the two nontrivial

solutions are sign-changing solutions.

Example 3.1.4Consider the BVP


∆4u(k−2)−3∆2u(t−1)+2u(t) = λ f (k,u(k)), k ∈ [1,5]Z,

u(0) = ∆2u(−1) = 0, u(6) = ∆2u(5) = 0,
(3.3)

where λ > 0 is a parameter and

f (k,x) =


−4k if x > 1,

−4kx3 if |x| ≤ 1,

4k if x <−1,

for all (k,x) ∈ [1,5]Z×R. (3.4)

We claim that, for each λ ∈ (4.5207, ∞), BVP (3.3) has at least two nontrivial sign-

changing solutions.

In fact, first note that BVP (3.3) is of the form of BVP (1.1) with a = 0, b = 4, α = 3,

and β = 2. Obviously, α2 > 4β . From (3.4), we obtain that x f (k,x)< 0 for all k ∈ [1,5]Z and

x 6= 0, and

F(k,x) =


−k(4x−3) if x > 1,

−kx4 if |x| ≤ 1,

k(4x+3) if x <−1,

for all (k,x) ∈ [1,5]Z×R.
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Then, in view of (2.24), we have F∞ = F0 = 0. From (2.13), (2.15), and (2.17), we see that the

matrix M, defined by (2.19), is given by

M =



13 −7 1 0 0

−7 14 −7 1 0

1 −7 14 −7 1

0 1 −7 14 −7

0 0 1 −7 13


.

Using MATLAB, we find that the smallest and largest eigenvalues λ1 and λ5 of M are given by

λ1 ≈ 2.8756 and λ5 ≈ 27.1244. Choose w ∈ X so that w(k) =−1 for all k ∈ [1,5]Z. Then, we

have ∑
5
k=1 F(k,w(k)) = 15 > 0. Thus, all the conditions of Corollary 3.1.3 are satisfied. Note

that
λ5‖w‖2

2∑
5
k=1 F(k,w(k))

≈ 4.5207.

The claim then follows from Corollary 3.1.3.

3.2 PROOFS

We now prove our results. Recall that the functional I is said to satisfy the Palais–

Smale (PS) condition if every sequence {un} ⊂ Hµ , such that I(un) is bounded and I′(un)→ 0

as n→∞, has a convergent subsequence. Here, the sequence {un} is called a PS sequence of I.

Lemma 3.2.1Assume that F∞ < 1
2λ1. Then, the functional I, defined by (2.3), is coercive and

satisfies the PS condition.

Proof. We first show that I is coercive, i.e.,

lim
‖u‖→∞

I(u) = ∞ for all u ∈ X . (3.5)

Since F∞ < 1
2λ1, for a fixed c1 ∈ (F∞, 1

2λ1), there exists a constant c2 > 0 such that

F(k,x)≤ c1|x|2 + c2 for all (k,x) ∈ [a+1,b+1]Z×R. (3.6)
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Then, from (2.3), (2.20), and (3.6), we have

I(u) ≥ 1
2

λ1‖u‖2−
b+1

∑
k=a+1

(
c1|u(k)|2 + c2

)
=

(
1
2

λ1− c1

)
‖u‖2− c2(b−a+1).

Note that c1 <
1
2λ1. Then, (3.5) holds, i.e., I is coercive. Now, from the fact that X is a finite

dimensional Banach space, we see that I satisfies the PS condition. This completes the proof

of the lemma.

Next, we recall the following classic mountain pass lemma of Ambrosetti and Rabi-

nowitz (see, for example, [15, Theorem 7.1]). Below, we denote by Br(u) the open ball centered

at u ∈ X with radius r > 0, Br(u) its closure, and ∂Br(u) its boundary.

Lemma 3.2.2Let (X ,‖ · ‖) be a real Banach space and I ∈C1(X ,R). Assume that I satisfies

the PS condition and there exist u0,u1 ∈ X and ρ > 0 such that

(A1) u1 6∈ Bρ(u0);

(A2) max{I(u0), I(u1)}< infu∈∂Bρ (u0) I(u).

Then, I possesses a critical value which can be characterized as

c = inf
γ∈Γ

max
s∈[0,1]

I(γ(s))≥ inf
u∈∂Bρ (u0)

I(u),

where

Γ = {γ ∈C([0,1],X) : γ(0) = u0, γ(1) = u1} .

We now prove Theorem 3.1.1.

Proof of Theorem 3.1.1. We first show that 0 is a strict local minimizer of I. First, we have

I(0) = Φ(0)−Ψ(0) = 0. (3.7)
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Since F0 < 1
2λ1, for a fixed c3 ∈

(
F∞, 1

2λ1
)
, there exists ρ > 0 such that

F(t,x)≤ c3|x|2 for all (t,x) ∈ [a+1,b+1]Z×R with |x| ≤ ρ. (3.8)

Let u ∈ Bρ(0)\{0}. Then, u(k)< ρ on [a+1,b+1]Z. From (2.3), (2.20), and (3.8),

I(u) ≥ 1
2

λ1‖u‖2− c3

b+1

∑
k=a+1

|u(k)|2

=

(
1
2

λ1− c3

)
‖u‖2 > 0.

This shows that 0 is a strict local minimizer of I.

Let w be given in (H2). From (2.3), (2.20), and (H2), it follows that

I(w)≤ 1
2

λb−a+1‖w‖2−
b+1

∑
k=a+1

F(k,w(k))< 0.

Then, 0 is not a global minimizer of I.

Next, we show that I has a global minimizer. Choose a constant I0 ∈ (I(w),0). Define

a set S by

S = {u ∈ X | I(u)≤ I0}.

Then, S 6= /0 since w ∈ S. In view of Lemma 3.2.1, I is coervive, which in turn implies that

S is bounded. Hence, by [30, Corollary 38.10], I has a minimum I1 on S, which is also the

minimum of I on X . Thus,

0 > I1 = min
u∈S

I(u) = min
u∈Hµ

I(u)>−∞,

and there exists u1 ∈ X such that

I(u1) = I1 < 0. (3.9)

Thus, u1 is a critical point of I and u1 6≡ 0. From Lemma 2.0.2, it follows that u1 is a nontrivial

solution of BVP (1.1).
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Below, we show the existence of a second critical point of I. By Lemma 3.2.1, I satisfies

the PS condition. We have shown that u0 := 0 is a strict local minimizer of I. Then, there exists

0 < ρ < ‖u1‖ such that r := infu∈∂Bρ (u0) I(u)> 0. In view of (3.7) and (3.9), we see that all the

conditions of Lemma 3.2.2 are satisfied. Then, from Lemma 3.2.2, there exists a critical point

u2 of I such that

I(u2)≥ r > 0. (3.10)

From(3.9) and (3.10), we have u1 6= u2 and u2 6≡ 0. Thus, Lemma 2.0.1 implies that u2 is a

second nontrivial solution of BVP (1.1).

Finally, we show that if (H3) holds, then u1 and u2 are sign-changing solutions. Suppose

by the contradiction that u1 is not sign-changing. Then, we have either u1(k) ≥ 0 or u1(k) ≤

0 for all k ∈ [a+ 1,b+ 1]Z. Without loss of generality, we may assume that u1(k) ≥ 0 on

[a+ 1,b+ 1]Z. Then, in view of (H3), f (k,u1(k)) ≤ 0 for all k ∈ [a+ 1,b+ 1]Z. By Lemma

2.0.4, we obtain that

u1(k) =
b+1

∑
l=a+1

G(k, l) f (l,u1(l)), k ∈ [a+1,b+1]Z.

Then, from Remark 2.0.5, u1(k) ≤ 0 on [a+ 1,b+ 1]Z. Hence, u1(k) ≡ 0 on [a+ 1,b+ 1]Z.

This contradicts with the fact that u1(t) is nontrivial. Hence, u1 is a sign-changing solution. By

a similar argument, we can show that u2 is also a sign-changing solution. This completes the

proof of the theorem.

Proof of Corollary 3.1.2. For any λ satisfying (3.2), we have

λF∞ <
1
2

λ1, λF0 <
1
2

λ1,

and
b+1

∑
k=a+1

λF(k,w(k))>
1
2

λb−a+1‖w‖2.

Thus, with F replaced by λF and f replaced by λ f , the assumptions (H1), (H2), and (H3) of

Theorem 3.1.1 are satisfied. The conclusion then follows directly from Theorem 3.1.1.
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Proof of Corollary 3.1.3. Under the assumptions of the corollary, we see that

λb−a+1‖w‖2

∑
b+1
k=a+1 F(k,w(k))

< ∞ and min
{

λ1

F∞
,

λ1

F0

}
= ∞.

Then, (3.1) holds. Hence, the conclusion follows directly from Corollary 3.1.2.
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CHAPTER 4

EXISTENCE OF THREE NONTRIVIAL SOLUTIONS

4.1 MAIN RESULTS

In this chapter, we study the existence of at least three nontrivial solutions of BVPs (1.1)

and (1.2). As in Chapter 3, we first state the existence results and then present one example to

illustrate the applicability of the results.

Theorem 4.1.1Assume that

(A1) F∞ > 1
2λb−a+1;

(A2) f 0 = 0;

(A3) there exist ϑ > 1 and K > 0 such that | f (k,x)| ≤ K(1+ |x|ϑ ) for all (k,x) ∈ [a+ 1,b+

1]Z×R;

(A4) α2 ≥ 4β and x f (k,x)> 0 for all k ∈ [a+1,b+1]Z and x 6= 0.

Then, BVP (1.1) has at least three nontrivial solutions, one of which is positive, one is negative,

and one is sign-changing.

Corollaries 4.1.2 and 4.1.3 below follow directly from Theorem 4.1.1.

Corollary 4.1.2Assume that (A2) and (A4) hold and there exist ϑ > 1 and L > 0 such that

λb−a+1

2F∞

<
L
f ∞
ϑ

. (4.1)

Then, for each

λ ∈
(

λb−a+1

2F∞

,
L
f ∞
ϑ

)
, (4.2)

BVP (1.2) has at least three nontrivial solutions, one of which is positive, one is negative, and

one is sign-changing.
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Corollary 4.1.3Assume that (A2) and (A4) hold, F∞ > 0, and f ∞
ϑ
= 0, where ϑ > 1. Then,

for each

λ ∈
(

λb−a+1

2F∞

, ∞

)
,

BVP (1.2) has at least three nontrivial solutions, one of which is positive, one is negative, and

one is sign-changing.

Example 4.1.4Consider the BVP


∆4u(k−2)−4∆2u(t−1)+3u(t) = λ f (k,u(k)), k ∈ [1,6]Z,

u(0) = ∆2u(−1) = 0, u(7) = ∆2u(6) = 0,
(4.3)

where λ > 0 is a parameter and

f (k,x) =


4kx3 if |x| ≤ 1,

4kx if |x|> 1,
for all (k,x) ∈ [1,6]Z×R. (4.4)

We claim that, for each λ ∈ (8.1656, ∞), BVP (4.3) has at least three nontrivial solu-

tions, one of which is positive, one is negative, and one is sign-changing.

In fact, first note that BVP (4.3) is of the form of BVP (1.1) with a = 0, b = 5, α = 4,

and β = 3. Obviously, α2 > 4β . From (4.3), it follows that x f (k,x)> 0 for all k ∈ [1,6]Z and

x 6= 0, and

F(k,x) =


kx4 if |x| ≤ 1,

2kx2− k if |x|> 1,
for all (k,x) ∈ [1,6]Z×R.

Then, in view of (2.24), we obtain that F∞ = 2 > 0 and f 0 = f ∞
ϑ
= 0 for any ϑ > 1. Hence, all

the conditions of Corollary 4.1.3 are satisfied. From (2.13), (2.15), and (2.17), we see that the
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matrix M, defined by (2.19), is given by

M =



16 −8 1 0 0 0

−8 17 −8 1 0 0

1 −8 17 −8 1 0

0 1 −8 17 −8 1

0 0 1 −8 17 −8

0 0 0 8 −8 16


.

Using MATLAB, we find that the smallest and largest eigenvalues λ1 and λ6 of M are given by

λ1 ≈ 3.8315 and λ6 ≈ 32.6625. Note that

λ6

2F∞

≈ 8.1656.

Then, the claim follows from Corollary 4.1.3.

4.2 PROOFS

We now prove our results. Let X be defined by (2.1). We equip X with the inner product

〈u,v〉=
b+2

∑
k=a+2

∆
2u(k−2)∆2v(k−2)+α

b+2

∑
k=a+1

∆u(k−1)∆v(k−1)+β

b+1

∑
k=a+1

u(k)v(k). (4.5)

The induced norm ‖ · ‖1 is given by

‖u‖1 =

(
b+2

∑
k=a+2

(∆2u(k−2))2 +α

b+2

∑
k=a+1

(∆u(k−1))2 +β

b+1

∑
k=a+1

u2(k),

)1/2

, u ∈ X . (4.6)

Then, X is an b−a+1 dimensional Hilbert space and the norms ‖ · ‖1 and ‖ · ‖ are equivalent.

Lemma 4.2.1Assume that α2 ≥ 4β . Then, for any u,v ∈ X . we have

〈Tu,v〉=
b+1

∑
k=a+1

f (k,u(k))v(k) (4.7)
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and

I′(u) = u−Tu, (4.8)

where I and T are defined by (2.3) and (2.22), respectively.

Proof. For any u,v ∈ X , from (2.5) and (4.5), it follows that

I′(u)(v) = 〈u,v〉−
b+1

∑
k=a+1

f (k,u(k))v(k) (4.9)

and

〈Tu,v〉 =
b+2

∑
k=a+2

∆
2(Tu)(k−2)∆2v(k−2)+α

b+2

∑
k=a+1

∆(Tu)(k−1)∆v(k−1)

+β

b+1

∑
k=a+1

(Tu)(k)v(k). (4.10)

Using the summation by parts formula, similar as in (2.10), we obtain that

b+2

∑
k=a+2

∆
2(Tu)(k−2)∆2v(k−2)

= ∆
2(Tu)(b+1)∆v(b+1)−∆

2(Tu)(a)∆v(a)−
b+2

∑
k=a+2

∆
3(Tu)(k−2)∆v(k−1)

= −∆
2(Tu)(a)v(a+1)−

b+2

∑
k=a+2

∆
3(Tu)(k−2)∆v(k−1)

= −∆
2(Tu)(a)v(a+1)−∆

3(Tu)(b+1)v(b+2)+∆
3(Tu)(a)v(a+1)

+
b+2

∑
k=a+2

∆
4(Tu)(k−2)v(k)

=
(
−∆

2(Tu)(a)+∆
3(Tu)(a)

)
v(a+1)+

b+2

∑
k=a+2

∆
4(Tu)(k−2)v(k)

= ∆
4(Tu)(a−1)v(a+1)+

b+2

∑
k=a+2

∆
4(Tu)(k−2)v(k)

=
b+1

∑
k=a+1

∆
4(Tu)(k−2)v(k).
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By a similar argument, we have

b+2

∑
k=a+1

∆(Tu)(k−1)∆v(k−1) =−
b+1

∑
k=a+1

∆
2(Tu)(k−1)v(k).

Then, from (4.10), we see that

〈Tu,v〉 =
b+1

∑
k=a+1

[
∆

4(Tu)(k−2)−α∆
2(Tu)(k−1)+β (Tu)(k)

]
v(k)

=
b+1

∑
k=a+1

f (k,u(k))v(k),

i.e., (4.7) holds. Now, (4.7) and (4.9) imply that

I′(u)(v) = 〈u,v〉−〈Tu,v〉.

Thus, (4.8) holds. This completes the proof of the lemma.

Lemma 4.2.2Assume that (A1) holds. Then, the functional I satisfies the PS condition.

Proof. From (A1), we see that, for a fixed c4 ∈
(1

2λb−a+1,F∞

)
, there exists a constant

c5 > 0 such that

F(k,x)≥ c4|x|2− c5 for all (k,x) ∈ [a+1,b+1]Z×R. (4.11)

Assume that {un} ⊂ X is a sequence such that |I(un)| ≤ N for some N > 0. From (2.3), (2.22),

and (4.11), it follows that

−N ≤ I(un) ≤
1
2

λb−a+1‖un‖2−
b+1

∑
k=a+1

(
c4|un(k)|2− c5

)
=

(
1
2

λb−a+1− c4

)
‖un‖2 + c5(b−a+1). (4.12)

Thus, (
c4−

1
2

λb−a+1

)
‖un‖2 ≤ c5(b−a+1)+N.
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Note that c4 >
1
2λb−a+1. Then, {un} is bounded in X . Since the dimension of X is finite, {un}

has a convergent subsequence. This completes the proof of the lemma.

We now introduce several sets. Let

Λ
+ = {u ∈ X | u(k)≥ 0 for all k ∈ [a+1,b+1]Z}

and

Λ
− = {u ∈ X | u(k)≤ 0 for all k ∈ [a+1,b+1]Z} .

For any ε > 0, let the open convex subsets D+
ε and D−ε be defined by

D+
ε =

{
u ∈ X | dist(u,Λ+)< ε

}
and D−ε =

{
u ∈ X | dist(u,Λ−)< ε

}
,

where dist(u,Λ±) = infv∈Λ± ‖u− v‖1. Then, D+
ε ∩D−ε 6= /0 and X \ (D+

ε ∪D−ε ) only contains

sign-changing functions.

Lemma 4.2.3Assume that (A2)–(A4) hold. Then, there exists ε̄ > 0 such that

T (∂D+
ε )⊂ D+

ε and T (∂D−ε )⊂ D−ε for any ε ∈ (0, ε̄].

Moreover, any nontrivial critical points of the functional I in D+
ε (D−ε ) are positive (negative)

solutions of BVP (1.1).

Proof. We first prove the conclusion involving D−ε . For any u∈ X , from (2.2) and (4.6),

we have ‖u‖2
1 = 2Φ(u). This, together with from (2.20), implies that

λ1‖u‖2 ≤ ‖u‖2
1 ≤ λb−a+1‖u‖2.

Then, √
λ1 ‖u‖ ≤ ‖u‖1 ≤

√
λb−a+1 ‖u‖. (4.13)

For any u∈X , define u+(k)=max{u(k),0} and u−(k)=min{u(k),0} for all k∈ [a+1,b+1]Z,

and let y = (Tu)(k) ∈ X . Here, it is understood that u+ and u− are extended to the interval
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[a−1,b+3]Z in the way so that they satisfy the BCs in (1.1). Then, u(k) = u+(k)+u−(k), and

in view of (4.13), we have

‖u+‖= inf
v∈Λ−
‖u− v‖ ≤ 1√

λ1
inf

v∈Λ−
‖u− v‖1 =

1√
λ1

dist(u,Λ−). (4.14)

We now show the claim:

Claim: There exists a constant c6 > 0 such that ‖u‖1 ≤ c6‖v‖1 for any u,v ∈ X with 0≤ u(k)≤

v(k) on [a+1,b+1]Z.

To prove the claim, suppose by the contradiction that the conclusion is not true. Then,

there exist un,vn ∈ X with 0 ≤ un(k) ≤ vn(k) on [a+1,b+1]Z such that ‖un‖1 > n2‖v‖1. Let

zn(k) =
un(k)

n‖vn‖1
. Then, ‖zn‖1 > n. This shows that zn(k) 6→ 0 for all k ∈ [a+1,b+1]Z. On the

other hand, we have

0≤ zn(k)≤ wn(k) :=
vn(k)
n‖v‖1

.

Note that ‖wn‖1 =
1
n → 0. Then, zn(k)→ 0 on [a+1,b+1]Z. We have reached a contradiction.

Thus, the claim is true.

From (2.22), Remark 2.0.5, and (A4), we see that 0 ≤ (Tu)+(k) ≤ T (u+)(k) for all

k ∈ [a+1,b+1]Z. Then, by the above claim, we have

‖y+‖1 = ‖(Tu)+‖ ≤ c6‖Tu+‖1.

Hence,

dist(y,Λ−) = inf
v∈Λ−
‖y− v‖1 ≤ ‖y− y−‖1 = ‖y+‖1 ≤ c6‖Tu+‖1,

which in turn implies that

dist(y,Λ−)‖Tu+‖1 ≤ c6‖Tu+‖2
1 = c6〈Tu+,Tu+〉. (4.15)

By (A2) and (A3), there exists c7 ∈
(

0, λ1
c6(b−a+1)

)
and c8 > 0 such that

| f (k,x)| ≤ c7|x|+ c8|x|ϑ for all (k,x) ∈ [a+1,b+1]Z×R. (4.16)
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Now, from (4.7) in Lemma 4.2.2 and (4.13)–(4.16), we obtain that

dist(y,Λ−)‖Tu+‖1 ≤ c6〈Tu+,Tu+〉

= c6

b+1

∑
k=a+1

f (k,u+(k))T (u+(k))

≤ c6

b+1

∑
k=a+1

(
c7|u+(k)|+ c8|u+(k)|ϑ

)
T (u+(k))

≤
(

c6c7(b−a+1)‖u+‖+ c6c8(b−a+1)‖u+‖ϑ

)
‖Tu+‖

≤
(

c9

λ1
dist(u,Λ−)+ c10(dist(u,Λ−))ϑ

)
‖Tu+‖1,

where c9 = c6c7(b−a+1) and c10 = c6c8(b−a+1)(λ1)
−ϑ+1

2 . Thus, we have

dist(y,Λ−)≤ c9

λ1
dist(u,Λ−)+ c10(dist(u,Λ−))ϑ .

Let ε̄ =
(

λ1−c9
2λ1c10

) 1
ϑ−1 . Then, from the fact that c9 = c6c7(b− a+ 1) < λ1, we know that ε̄ is

well defined and ε̄ > 0. Moreover, for any ε ∈ (0, ε̄], if dist(u,Λ−)≤ ε , we have

dist(y,Λ−) ≤ c9

λ1
dist(u,Λ−)+ c10(dist(u,Λ−))ϑ−1 dist(u,Λ−)

≤ c9

λ1
dist(u,Λ−)+

(
λ1− c9

2λ1

)
dist(u,Λ−)

=
λ1 + c9

2λ1
dist(u,Λ−)

< dist(u,Λ−)

≤ ε. (4.17)

Hence, T (∂D−ε )⊂ D−ε .

Now, let u ∈ D−ε be a nontrivial critical point of I. Then, in view of (4.8) in Lemma

4.2.1, we see that Tu(k) = u(k). By (4.17), we have dist(u,Λ−) = 0. Thus, u ∈ Λ− \ {0}.

From Remark 2.0.5 and (A4), it follows that u(k)< 0 for all k ∈ [a+1,b+1]Z. Thus, u(k) is a

negative solution of BVP (1.1). The proof for the conclusion involving D+
ε is similar and hence

is omitted. This completes the proof of the lemma.
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The following lemma is taken from [22, Theorem 3.2].

Lemma 4.2.4Let H be a Hilbert space. Assume that the functional I ∈C1(H,R) satisfies the

PS condition and I′(u) has the expression I′(u) = u−T (u) for all u ∈ H. Assume that there

exist two open convex subsets D1 and D2 of H satisfying D1 ∩D2 6= /0, T (∂D1) ⊂ D1, and

T (∂D2)⊂ D2. If there exists a path h : [0,1]→ H such that

h(0) ∈ D1 \D2, h(1) ∈ D2 \D1,

and

inf
u∈D1∩D2

I(u)> sup
t∈[0,1]

I(h(t)),

then I has at least four distinct critical point, one in D1 ∩D2, one in D1 \D2, one in D2 \D1,

and one in H \ (D1∪D2).

Now, we are in a position to prove Theorem 4.1.1

Proof of Theorem 4.1.1. By (A2), we see that there exist ν ∈
(
0, 1

2λ1
)

and δ > 0 such that

|F(k,x)| ≤ ν |x|2 for all (k, |x|) ∈ [a+1,b+1]Z× [0,δ ]. (4.18)

Fix ε ∈
(
0,min

{
ε̄,δ
√

λ1
})

, where ε̄ is given in Lemma 4.2.3. Then, for any u ∈ D+
ε ∩D−ε , as

in (4.14), we obtain that

‖u±‖= inf
v∈Λ∓
‖u− v‖ ≤ 1√

λ1
dist(u,Λ∓)≤ 1√

λ1
ε < δ .

Thus, |u(k)|< δ on [a+1,b+1]Z. Then, from (2.3), (2.20), and (4.18), it follows that

I(u)≥ 1
2

λ1‖u‖2−ν

b+1

∑
k=a+1

|u(k)|2 =
(

1
2

λ1−ν

)
‖u‖2.

In view of the fact that ν < 1
2λ1, there exists I∗ ≥ 0 such that inf

u∈D+
ε ∩D−ε

I(u) = I∗. Recall

that ξ1 is the positive normalized eigenvavector of the matrix M corresponding to λ1. Define
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Y = span{ξ1}. Then, for any u ∈ Y , as in deriving (4.12), we see that

I(u)≤
(

1
2

λb−a+1− c4

)
‖u‖2 + c5(b−a+1),

where c4 >
1
2λb−a+1 and c5 > 0. Thus, I(u)→−∞ as ‖u‖→∞. Hence, there exists sufficiently

large c11 > 0 such that I(u)< I∗−1 for all u ∈ Y with ‖u‖ = c11. Define a path h : [0,1]→ Y

by

h(t) = c11
[cos(πt)+ sin(πt)]ξ1

‖[cos(πt)+ sin(πt)]ξ1‖
.

Then, ‖h‖= c11 and h(t)∈Y for any t ∈ [0,1]. Thus, we obtain that I(h(t))< I∗−1. Moreover,

we have

h(0) = c11
ξ1

‖ξ1‖
∈ D+

ε \D−ε , h(1) =−c11
ξ1

‖ξ1‖
∈ D−ε \D+

ε ,

and

inf
u∈D+

ε ∩D−ε

I(u) = I∗ > I+−1≥ sup
t∈[0,1]

I(h(t)).

This, together with Lemmas 4.2.1–4.2.3, implies that all the conditions of Lemma 4.2.4, with

H = X , D1 = D+
ε , and D2 = D−ε , are satisfied. Therefore, from Lemma 4.2.4, I has four critical

points: u1 ∈D+
ε ∩D−ε , u2 ∈D+

ε \D−ε , u3 ∈D−ε \D+
ε , u4 ∈H \(D+

ε ∪D−ε ). By Lemma 2.0.2, these

four critical points correspond to a trivial solutions, a positive solution, a negative solution, and

a sign-changing solution of BVP (1.1). This completes the proof of the theorem.

Proof of Corollary 4.1.2. For any λ satisfying (4.2), we have

λF∞ >
1
2

λb−a+1 and λ f ∞
ϑ < L.

Thus, with F replaced by λF and f replaced by λ f , the conditions (A1)–(A4) of Theorem

4.1.1 are satisfied. The conclusion then follows directly from Theorem 4.1.1.

Proof of Corollary 4.1.3. Under the assumptions of the corollary, we see that

λb−a+1

2F∞

< ∞ and
L
f ∞
ϑ

= ∞.
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Then, (4.1) holds. Hence, the conclusion follows directly from Corollary 4.1.2.
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