14,628 research outputs found

    A roadside units positioning framework in the context of vehicle-to-infrastructure based on integrated AHP-entropy and group-VIKOR

    Get PDF
    The positioning of roadside units (RSUs) in a vehicle-to-infrastructure (V2I) communication system may have an impact on network performance. Optimal RSU positioning is required to reduce cost and maintain the quality of service. However, RSU positioning is considered a difficult task due to numerous criteria, such as the cost of RSUs, the intersection area and communication strength, which affect the positioning process and must be considered. Furthermore, the conflict and trade-off amongst these criteria and the significance of each criterion are reflected on the RSU positioning process. Towards this end, a four-stage methodology for a new RSU positioning framework using multi-criteria decision-making (MCDM) in V2I communication system context has been designed. Real time V2I hardware for data collection purpose was developed. This hardware device consisted of multi mobile-nodes (in the car) and RSUs and connected via an nRF24L01+ PA/LNA transceiver module with a microcontroller. In the second phase, different testing scenarios were identified to acquire the required data from the V2I devices. These scenarios were evaluated based on three evaluation attributes. A decision matrix consisted of the scenarios as alternatives and its assessment per criterion was constructed. In the third phase, the alternatives were ranked using hybrid of MCDM techniques, specifically the Analytic Hierarchy Process (AHP), Entropy and Vlsekriterijumska Optimizacija I Kompromisno Resenje (VIKOR). The result of each decision ranking was aggregated using Borda voting approach towards a final group ranking. Finally, the validation process was made to ensure the ranking result undergoes a systematic and valid rank. The results indicate the following: (1) The rank of scenarios obtained from group VIKOR suggested the second scenario with, four RSUs, a maximum distance of 200 meters between RSUs and the antennas height of two-meter, is the best positioning scenarios; and (2) in the objective validation. The study also reported significant differences between the scores of the groups, indicating that the ranking results are valid. Finally, the integration of AHP, Entropy and VIKOR has effectively solved the RSUs positioning problems

    Reversible difference expansion multi-layer data hiding technique for medical images

    Get PDF
    Maintaining the privacy and security of confidential information in data communication has always been a major concern. It is because the advancement of information technology is likely to be followed by an increase in cybercrime, such as illegal access to sensitive data. Several techniques were proposed to overcome that issue, for example, by hiding data in digital images. Reversible data hiding is an excellent approach for concealing private data due to its ability to be applied in various fields. However, it yields a limited payload and the quality of the image holding data (Stego image), and consequently, these two factors may not be addressed simultaneously. This paper addresses this problem by introducing a new non-complexity difference expansion (DE) and block-based reversible multi-layer data hiding technique constructed by exploring DE. Sensitive data are embedded into the difference values calculated between the original pixels in each block with relatively low complexity. To improve the payload capacity, confidential data are embedded in multiple layers of grayscale medical images while preserving their quality. The experiment results prove that the proposed technique has increased the payload with an average of 369999 bits and kept the peak signal to noise ratio (PSNR) to the average of 36.506 dB using medical images' adequate security the embedded private data. This proposed method has improved the performance, especially the secret size, without reducing much the quality. Therefore, it is suitable to use for relatively big payloads

    Transparent authentication methodology in electronic education

    No full text
    In the context of on-line assessment in e-learning, a problem arises when a student taking an exam may wish to cheat by handing over personal credentials to someone else to take their place in an exam, Another problem is that there is no method for signing digital content as it is being produced in a computerized environment. Our proposed solution is to digitally sign the participant’s work by embedding voice samples in the transcript paper at regular intervals. In this investigation, we have demonstrated that a transparent stenographic methodology will provide an innovative and practical solution for achieving continuous authentication in an online educational environment by successful insertion and extraction of audio digital signatures
    corecore