2,435 research outputs found

    Matrix factorizations and link homology

    Full text link
    For each positive integer n the HOMFLY polynomial of links specializes to a one-variable polynomial that can be recovered from the representation theory of quantum sl(n). For each such n we build a doubly-graded homology theory of links with this polynomial as the Euler characteristic. The core of our construction utilizes the theory of matrix factorizations, which provide a linear algebra description of maximal Cohen-Macaulay modules on isolated hypersurface singularities.Comment: 108 pages, 61 figures, latex, ep

    Counting factorizations of Coxeter elements into products of reflections

    Full text link
    In this paper, we count factorizations of Coxeter elements in well-generated complex reflection groups into products of reflections. We obtain a simple product formula for the exponential generating function of such factorizations, which is expressed uniformly in terms of natural parameters of the group. In the case of factorizations of minimal length, we recover a formula due to P. Deligne, J. Tits and D. Zagier in the real case and to D. Bessis in the complex case. For the symmetric group, our formula specializes to a formula of D. M. Jackson.Comment: 38 pages, including 18 pages appendix. To appear in Journal of the London Mathematical Society. v3: minor changes and corrected references; v2: added extended discussion on the definition of Coxeter element

    Hurwitz equivalence of braid monodromies and extremal elliptic surfaces

    Get PDF
    We discuss the equivalence between the categories of certain ribbon graphs and subgroups of the modular group Γ\Gamma and use it to construct exponentially large families of not Hurwitz equivalent simple braid monodromy factorizations of the same element. As an application, we also obtain exponentially large families of {\it topologically} distinct algebraic objects such as extremal elliptic surfaces, real trigonal curves, and real elliptic surfaces

    Higher melonic theories

    Full text link
    We classify a large set of melonic theories with arbitrary qq-fold interactions, demonstrating that the interaction vertices exhibit a range of symmetries, always of the form Z2n\mathbb{Z}_2^n for some nn, which may be 00. The number of different theories proliferates quickly as qq increases above 88 and is related to the problem of counting one-factorizations of complete graphs. The symmetries of the interaction vertex lead to an effective interaction strength that enters into the Schwinger-Dyson equation for the two-point function as well as the kernel used for constructing higher-point functions.Comment: 43 pages, 12 figure
    corecore