16 research outputs found

    A polynomial time approximation scheme for computing the supremum of Gaussian processes

    Full text link
    We give a polynomial time approximation scheme (PTAS) for computing the supremum of a Gaussian process. That is, given a finite set of vectors VāŠ†RdV\subseteq\mathbb{R}^d, we compute a (1+Īµ)(1+\varepsilon)-factor approximation to EXā†Nd[supā”vāˆˆVāˆ£āŸØv,XāŸ©āˆ£]\mathop {\mathbb{E}}_{X\leftarrow\mathcal{N}^d}[\sup_{v\in V}|\langle v,X\rangle|] deterministically in time polyā”(d)ā‹…āˆ£Vāˆ£OĪµ(1)\operatorname {poly}(d)\cdot|V|^{O_{\varepsilon}(1)}. Previously, only a constant factor deterministic polynomial time approximation algorithm was known due to the work of Ding, Lee and Peres [Ann. of Math. (2) 175 (2012) 1409-1471]. This answers an open question of Lee (2010) and Ding [Ann. Probab. 42 (2014) 464-496]. The study of supremum of Gaussian processes is of considerable importance in probability with applications in functional analysis, convex geometry, and in light of the recent breakthrough work of Ding, Lee and Peres [Ann. of Math. (2) 175 (2012) 1409-1471], to random walks on finite graphs. As such our result could be of use elsewhere. In particular, combining with the work of Ding [Ann. Probab. 42 (2014) 464-496], our result yields a PTAS for computing the cover time of bounded-degree graphs. Previously, such algorithms were known only for trees. Along the way, we also give an explicit oblivious estimator for semi-norms in Gaussian space with optimal query complexity. Our algorithm and its analysis are elementary in nature, using two classical comparison inequalities, Slepian's lemma and Kanter's lemma.Comment: Published in at http://dx.doi.org/10.1214/13-AAP997 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    New Bounds for Edge-Cover by Random Walk

    Full text link
    We show that the expected time for a random walk on a (multi-)graph GG to traverse all mm edges of GG, and return to its starting point, is at most 2m22m^2; if each edge must be traversed in both directions, the bound is 3m23m^2. Both bounds are tight and may be applied to graphs with arbitrary edge lengths, with implications for Brownian motion on a finite or infinite network of total edge-length mm

    The evolution of the cover time

    Full text link
    The cover time of a graph is a celebrated example of a parameter that is easy to approximate using a randomized algorithm, but for which no constant factor deterministic polynomial time approximation is known. A breakthrough due to Kahn, Kim, Lovasz and Vu yielded a (log log n)^2 polynomial time approximation. We refine this upper bound, and show that the resulting bound is sharp and explicitly computable in random graphs. Cooper and Frieze showed that the cover time of the largest component of the Erdos-Renyi random graph G(n,c/n) in the supercritical regime with c>1 fixed, is asymptotic to f(c) n \log^2 n, where f(c) tends to 1 as c tends to 1. However, our new bound implies that the cover time for the critical Erdos-Renyi random graph G(n,1/n) has order n, and shows how the cover time evolves from the critical window to the supercritical phase. Our general estimate also yields the order of the cover time for a variety of other concrete graphs, including critical percolation clusters on the Hamming hypercube {0,1}^n, on high-girth expanders, and on tori Z_n^d for fixed large d. For the graphs we consider, our results show that the blanket time, introduced by Winkler and Zuckerman, is within a constant factor of the cover time. Finally, we prove that for any connected graph, adding an edge can increase the cover time by at most a factor of 4.Comment: 14 pages, to appear in CP

    Mixing and relaxation time for Random Walk on Wreath Product Graphs

    Full text link
    Suppose that G and H are finite, connected graphs, G regular, X is a lazy random walk on G and Z is a reversible ergodic Markov chain on H. The generalized lamplighter chain X* associated with X and Z is the random walk on the wreath product H\wr G, the graph whose vertices consist of pairs (f,x) where f=(f_v)_{v\in V(G)} is a labeling of the vertices of G by elements of H and x is a vertex in G. In each step, X* moves from a configuration (f,x) by updating x to y using the transition rule of X and then independently updating both f_x and f_y according to the transition probabilities on H; f_z for z different of x,y remains unchanged. We estimate the mixing time of X* in terms of the parameters of H and G. Further, we show that the relaxation time of X* is the same order as the maximal expected hitting time of G plus |G| times the relaxation time of the chain on H.Comment: 30 pages, 1 figur

    Adversarial scheduling analysis of Game-Theoretic Models of Norm Diffusion.

    Get PDF
    In (Istrate et al. SODA 2001) we advocated the investigation of robustness of results in the theory of learning in games under adversarial scheduling models. We provide evidence that such an analysis is feasible and can lead to nontrivial results by investigating, in an adversarial scheduling setting, Peyton Young's model of diffusion of norms . In particular, our main result incorporates contagion into Peyton Young's model.evolutionary games, stochastic stability, adversarial scheduling

    Cover Time and Broadcast Time

    Get PDF
    We introduce a new technique for bounding the cover time of random walks by relating it to the runtime of randomized broadcast. In particular, we strongly confirm for dense graphs the intuition of Chandra et al. (1997) that ``the cover time of the graph is an appropriate metric for the performance of certain kinds of randomized broadcast algorithms\u27\u27. In more detail, our results are as follows: begin{itemize} item For any graph G=(V,E)G=(V,E) of size nn and minimum degree deltadelta, we have mathcalR(G)=mathcalO(fracāˆ£Eāˆ£deltacdotlogn)mathcal{R}(G)= mathcal{O}(frac{|E|}{delta} cdot log n), where mathcalR(G)mathcal{R}(G) denotes the quotient of the cover time and broadcast time. This bound is tight for binary trees and tight up to logarithmic factors for many graphs including hypercubes, expanders and lollipop graphs. item For any deltadelta-regular (or almost deltadelta-regular) graph GG it holds that mathcalR(G)=Omega(fracdelta2ncdotfrac1logn)mathcal{R}(G) = Omega(frac{delta^2}{n} cdot frac{1}{log n}). Together with our upper bound on mathcalR(G)mathcal{R}(G), this lower bound strongly confirms the intuition of Chandra et al.~for graphs with minimum degree Theta(n)Theta(n), since then the cover time equals the broadcast time multiplied by nn (neglecting logarithmic factors). item Conversely, for any deltadelta we construct almost deltadelta-regular graphs that satisfy mathcalR(G)=mathcalO(maxsqrtn,deltacdotlog2n)mathcal{R}(G) = mathcal{O}(max { sqrt{n},delta } cdot log^2 n). Since any regular expander satisfies mathcalR(G)=Theta(n)mathcal{R}(G) = Theta(n), the strong relationship given above does not hold if deltadelta is polynomially smaller than nn. end{itemize} Our bounds also demonstrate that the relationship between cover time and broadcast time is much stronger than the known relationships between any of them and the mixing time (or the closely related spectral gap)

    Adversarial Scheduling Analysis of Game Theoretic Models of Norm Diffusion

    Get PDF
    In (Istrate, Marathe, Ravi SODA 2001) we advocated the investigation of robustness of results in the theory of learning in games under adversarial scheduling models. We provide evidence that such an analysis is feasible and can lead to nontrivial results by investigating, in an adversarial scheduling setting, Peyton Young's model of diffusion of norms. In particular, our main result incorporates into Peyton Young's model
    corecore