5,139 research outputs found

    EEG Based Inference of Spatio-Temporal Brain Dynamics

    Get PDF

    Multi-Pitch Estimation Exploiting Block Sparsity

    Get PDF
    We study the problem of estimating the fundamental frequencies of a signal containing multiple harmonically related sinusoidal components using a novel block sparse signal representation. An efficient algorithm for solving the resulting optimization problem is devised exploiting a novel variable step-size alternating direction method of multipliers (ADMM). The resulting algorithm has guaranteed convergence and shows notable robustness to the f 0 vs f0/2f0/2 ambiguity problem. The superiority of the proposed method, as compared to earlier presented estimation techniques, is demonstrated using both simulated and measured audio signals, clearly indicating the preferable performance of the proposed technique

    A unified approach to sparse signal processing

    Get PDF
    A unified view of the area of sparse signal processing is presented in tutorial form by bringing together various fields in which the property of sparsity has been successfully exploited. For each of these fields, various algorithms and techniques, which have been developed to leverage sparsity, are described succinctly. The common potential benefits of significant reduction in sampling rate and processing manipulations through sparse signal processing are revealed. The key application domains of sparse signal processing are sampling, coding, spectral estimation, array processing, compo-nent analysis, and multipath channel estimation. In terms of the sampling process and reconstruction algorithms, linkages are made with random sampling, compressed sensing and rate of innovation. The redundancy introduced by channel coding i

    Automatic Drum Transcription and Source Separation

    Get PDF
    While research has been carried out on automated polyphonic music transcription, to-date the problem of automated polyphonic percussion transcription has not received the same degree of attention. A related problem is that of sound source separation, which attempts to separate a mixture signal into its constituent sources. This thesis focuses on the task of polyphonic percussion transcription and sound source separation of a limited set of drum instruments, namely the drums found in the standard rock/pop drum kit. As there was little previous research on polyphonic percussion transcription a broad review of music information retrieval methods, including previous polyphonic percussion systems, was also carried out to determine if there were any methods which were of potential use in the area of polyphonic drum transcription. Following on from this a review was conducted of general source separation and redundancy reduction techniques, such as Independent Component Analysis and Independent Subspace Analysis, as these techniques have shown potential in separating mixtures of sources. Upon completion of the review it was decided that a combination of the blind separation approach, Independent Subspace Analysis (ISA), with the use of prior knowledge as used in music information retrieval methods, was the best approach to tackling the problem of polyphonic percussion transcription as well as that of sound source separation. A number of new algorithms which combine the use of prior knowledge with the source separation abilities of techniques such as ISA are presented. These include sub-band ISA, Prior Subspace Analysis (PSA), and an automatic modelling and grouping technique which is used in conjunction with PSA to perform polyphonic percussion transcription. These approaches are demonstrated to be effective in the task of polyphonic percussion transcription, and PSA is also demonstrated to be capable of transcribing drums in the presence of pitched instruments

    Non-negative Matrix factorization:Theory and Methods

    Get PDF

    Single-channel source separation using non-negative matrix factorization

    Get PDF
    corecore