20 research outputs found

    Cross-Lingual Semantic Role Labeling with High-Quality Translated Training Corpus

    Full text link
    Many efforts of research are devoted to semantic role labeling (SRL) which is crucial for natural language understanding. Supervised approaches have achieved impressing performances when large-scale corpora are available for resource-rich languages such as English. While for the low-resource languages with no annotated SRL dataset, it is still challenging to obtain competitive performances. Cross-lingual SRL is one promising way to address the problem, which has achieved great advances with the help of model transferring and annotation projection. In this paper, we propose a novel alternative based on corpus translation, constructing high-quality training datasets for the target languages from the source gold-standard SRL annotations. Experimental results on Universal Proposition Bank show that the translation-based method is highly effective, and the automatic pseudo datasets can improve the target-language SRL performances significantly.Comment: Accepted at ACL 202

    Unsupervised Domain Adaptation within Deep Foundation Latent Spaces

    Full text link
    The vision transformer-based foundation models, such as ViT or Dino-V2, are aimed at solving problems with little or no finetuning of features. Using a setting of prototypical networks, we analyse to what extent such foundation models can solve unsupervised domain adaptation without finetuning over the source or target domain. Through quantitative analysis, as well as qualitative interpretations of decision making, we demonstrate that the suggested method can improve upon existing baselines, as well as showcase the limitations of such approach yet to be solved

    Multi-source Attention for Unsupervised Domain Adaptation

    Get PDF
    Domain adaptation considers the problem of generalising a model learnt using data from a particular source domain to a different target domain. Often it is difficult to find a suitable single source to adapt from, and one must consider multiple sources. Using an unrelated source can result in sub-optimal performance, known as the \emph{negative transfer}. However, it is challenging to select the appropriate source(s) for classifying a given target instance in multi-source unsupervised domain adaptation (UDA). We model source-selection as an attention-learning problem, where we learn attention over sources for a given target instance. For this purpose, we first independently learn source-specific classification models, and a relatedness map between sources and target domains using pseudo-labelled target domain instances. Next, we learn attention-weights over the sources for aggregating the predictions of the source-specific models. Experimental results on cross-domain sentiment classification benchmarks show that the proposed method outperforms prior proposals in multi-source UDA

    Adversarial Training in Affective Computing and Sentiment Analysis: Recent Advances and Perspectives

    Get PDF
    Over the past few years, adversarial training has become an extremely active research topic and has been successfully applied to various Artificial Intelligence (AI) domains. As a potentially crucial technique for the development of the next generation of emotional AI systems, we herein provide a comprehensive overview of the application of adversarial training to affective computing and sentiment analysis. Various representative adversarial training algorithms are explained and discussed accordingly, aimed at tackling diverse challenges associated with emotional AI systems. Further, we highlight a range of potential future research directions. We expect that this overview will help facilitate the development of adversarial training for affective computing and sentiment analysis in both the academic and industrial communities

    Domain Consistency Regularization for Unsupervised Multi-source Domain Adaptive Classification

    Full text link
    Deep learning-based multi-source unsupervised domain adaptation (MUDA) has been actively studied in recent years. Compared with single-source unsupervised domain adaptation (SUDA), domain shift in MUDA exists not only between the source and target domains but also among multiple source domains. Most existing MUDA algorithms focus on extracting domain-invariant representations among all domains whereas the task-specific decision boundaries among classes are largely neglected. In this paper, we propose an end-to-end trainable network that exploits domain Consistency Regularization for unsupervised Multi-source domain Adaptive classification (CRMA). CRMA aligns not only the distributions of each pair of source and target domains but also that of all domains. For each pair of source and target domains, we employ an intra-domain consistency to regularize a pair of domain-specific classifiers to achieve intra-domain alignment. In addition, we design an inter-domain consistency that targets joint inter-domain alignment among all domains. To address different similarities between multiple source domains and the target domain, we design an authorization strategy that assigns different authorities to domain-specific classifiers adaptively for optimal pseudo label prediction and self-training. Extensive experiments show that CRMA tackles unsupervised domain adaptation effectively under a multi-source setup and achieves superior adaptation consistently across multiple MUDA datasets

    Hallucinating Agnostic Images to Generalize Across Domains

    Get PDF
    The ability to generalize across visual domains is crucial for the robustness of artificial recognition systems. Although many training sources may be available in real contexts, the access to even unlabeled target samples cannot be taken for granted, which makes standard unsupervised domain adaptation methods inapplicable in the wild. In this work we investigate how to exploit multiple sources by hallucinating a deep visual domain composed of images, possibly unrealistic, able to maintain categorical knowledge while discarding specific source styles. The produced agnostic images are the result of a deep architecture that applies pixel adaptation on the original source data guided by two adversarial domain classifier branches at image and feature level. Our approach is conceived to learn only from source data, but it seamlessly extends to the use of unlabeled target samples. Remarkable results for both multi-source domain adaptation and domain generalization support the power of hallucinating agnostic images in this framework
    corecore