41,737 research outputs found

    Aligning Multiple Sequences with Genetic Algorithm

    Get PDF
    The alignment of biological sequences is a crucial tool in molecular biology and genome analysis. It helps to build a phylogenetic tree of related DNA sequences and also to predict the function and structure of unknown protein sequences by aligning with other sequences whose function and structure is already known. However, finding an optimal multiple sequence alignment takes time and space exponential with the length or number of sequences increases. Genetic Algorithms (GAs) are strategies of random searching that optimize an objective function which is a measure of alignment quality (distance) and has the ability for exploratory search through the solution space and exploitation of current results

    Genetic Sequence Matching Using D4M Big Data Approaches

    Full text link
    Recent technological advances in Next Generation Sequencing tools have led to increasing speeds of DNA sample collection, preparation, and sequencing. One instrument can produce over 600 Gb of genetic sequence data in a single run. This creates new opportunities to efficiently handle the increasing workload. We propose a new method of fast genetic sequence analysis using the Dynamic Distributed Dimensional Data Model (D4M) - an associative array environment for MATLAB developed at MIT Lincoln Laboratory. Based on mathematical and statistical properties, the method leverages big data techniques and the implementation of an Apache Acculumo database to accelerate computations one-hundred fold over other methods. Comparisons of the D4M method with the current gold-standard for sequence analysis, BLAST, show the two are comparable in the alignments they find. This paper will present an overview of the D4M genetic sequence algorithm and statistical comparisons with BLAST.Comment: 6 pages; to appear in IEEE High Performance Extreme Computing (HPEC) 201

    BioWorkbench: A High-Performance Framework for Managing and Analyzing Bioinformatics Experiments

    Get PDF
    Advances in sequencing techniques have led to exponential growth in biological data, demanding the development of large-scale bioinformatics experiments. Because these experiments are computation- and data-intensive, they require high-performance computing (HPC) techniques and can benefit from specialized technologies such as Scientific Workflow Management Systems (SWfMS) and databases. In this work, we present BioWorkbench, a framework for managing and analyzing bioinformatics experiments. This framework automatically collects provenance data, including both performance data from workflow execution and data from the scientific domain of the workflow application. Provenance data can be analyzed through a web application that abstracts a set of queries to the provenance database, simplifying access to provenance information. We evaluate BioWorkbench using three case studies: SwiftPhylo, a phylogenetic tree assembly workflow; SwiftGECKO, a comparative genomics workflow; and RASflow, a RASopathy analysis workflow. We analyze each workflow from both computational and scientific domain perspectives, by using queries to a provenance and annotation database. Some of these queries are available as a pre-built feature of the BioWorkbench web application. Through the provenance data, we show that the framework is scalable and achieves high-performance, reducing up to 98% of the case studies execution time. We also show how the application of machine learning techniques can enrich the analysis process

    A highly parameterized and efficient FPGA-based skeleton for pairwise biological sequence alignment

    Get PDF

    Regulatory motif discovery using a population clustering evolutionary algorithm

    Get PDF
    This paper describes a novel evolutionary algorithm for regulatory motif discovery in DNA promoter sequences. The algorithm uses data clustering to logically distribute the evolving population across the search space. Mating then takes place within local regions of the population, promoting overall solution diversity and encouraging discovery of multiple solutions. Experiments using synthetic data sets have demonstrated the algorithm's capacity to find position frequency matrix models of known regulatory motifs in relatively long promoter sequences. These experiments have also shown the algorithm's ability to maintain diversity during search and discover multiple motifs within a single population. The utility of the algorithm for discovering motifs in real biological data is demonstrated by its ability to find meaningful motifs within muscle-specific regulatory sequences

    Rapid Sequence Identification of Potential Pathogens Using Techniques from Sparse Linear Algebra

    Full text link
    The decreasing costs and increasing speed and accuracy of DNA sample collection, preparation, and sequencing has rapidly produced an enormous volume of genetic data. However, fast and accurate analysis of the samples remains a bottleneck. Here we present D4^{4}RAGenS, a genetic sequence identification algorithm that exhibits the Big Data handling and computational power of the Dynamic Distributed Dimensional Data Model (D4M). The method leverages linear algebra and statistical properties to increase computational performance while retaining accuracy by subsampling the data. Two run modes, Fast and Wise, yield speed and precision tradeoffs, with applications in biodefense and medical diagnostics. The D4^{4}RAGenS analysis algorithm is tested over several datasets, including three utilized for the Defense Threat Reduction Agency (DTRA) metagenomic algorithm contest
    • …
    corecore