4 research outputs found

    A Cyber-Secured Operation for Water-Energy Nexus

    Get PDF
    The wide implementation of information and communication technologies (ICT) cause power system operations exposed to cyber-attacks. Meanwhile, the tendency of integrated multi energy vectors has worsened this issue with multiple energy coupled. This paper proposes a two-stage risk-averse mitigation strategy for water-energy systems (WESs), incorporating power, natural gas and water systems against false data injection attacks (FDIA) under water-energy nexus. The FDIA on individual sub-systems is modelled through hampering false data integrity to the systems. An innovative two-stage risk-averse distributionally robust optimization (RA-DRO) is proposed to mitigate uneconomic operation and provides a coordinated optimal load shedding scheme for the nexus system security. A coherent risk measure, Conditional Value-at-Risk is incorporated into the RA-DRO to model risk. A Benders decomposition method is used to solve the original NP-hard RA-DRO problem. Case studies are demonstrated on a WES under water-energy nexus and results show that the effectiveness of the method to mitigate risks from potential FDIA and renewable uncertainties. This research provides WES operators an economic system operation tool by optimally coordinating energy infrastructures and implementing reasonable load shedding to enhance cybersecurity

    A Cyber-Secured Operation for Water-Energy Nexus

    Get PDF
    The wide implementation of information and communication technologies (ICT) cause power system operations exposed to cyber-attacks. Meanwhile, the tendency of integrated multi energy vectors has worsened this issue with multiple energy coupled. This paper proposes a two-stage risk-averse mitigation strategy for water-energy systems (WESs), incorporating power, natural gas and water systems against false data injection attacks (FDIA) under water-energy nexus. The FDIA on individual sub-systems is modelled through hampering false data integrity to the systems. An innovative two-stage risk-averse distributionally robust optimization (RA-DRO) is proposed to mitigate uneconomic operation and provides a coordinated optimal load shedding scheme for the nexus system security. A coherent risk measure, Conditional Value-at-Risk is incorporated into the RA-DRO to model risk. A Benders decomposition method is used to solve the original NP-hard RA-DRO problem. Case studies are demonstrated on a WES under water-energy nexus and results show that the effectiveness of the method to mitigate risks from potential FDIA and renewable uncertainties. This research provides WES operators an economic system operation tool by optimally coordinating energy infrastructures and implementing reasonable load shedding to enhance cybersecurity

    Water-Energy Nexus Management for Power Systems

    Get PDF
    The water system management problem has been widely investigated. However, the interdependencies between water and energy systems are significant and the effective co-optimization is required considering strong interconnections. This paper proposes a two-stage distributionally robust operation model for integrated water-energy nexus systems including power, gas and water systems networked with energy hub systems at a distribution level considering wind uncertainty. The presence of wind power uncertainty inevitably leads to risks in the optimization model. Accordingly, a coherent risk measure, i.e., conditional value-at-risk, is combined with the optimization objective to determine risk-averse operation schemes. This two-stage mean-risk distributionally robust optimization is solved by Bender's decomposition method. Both the day-ahead and real-time operation cost are minimized with an optimal set of scheduling the multi-energy infrastructures. Case studies focus on investigating the strong interdependencies among the four interconnected energy systems. Numerical results validate the economic effectiveness of IES through optimally coordinating the multi-energy infrastructures. The proposed model can provide system operators a powerful two-stage operation scheme to minimise operation cost under water-energy nexus considering risk caused by renewable uncertainties, thus benefiting customers with lower utility bills
    corecore