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Abstract 

    In recent years, there is an increasing need for the integration of multi-energy vectors 

with the traditional power systems due to energy decarbonization and the booming 

coupling technologies. Integrated electricity and gas system (IEGS) plays a vital part in 

the modern energy provision through coordinating supply, conversion, storage and 

consumption. Although the interaction between electricity and gas systems facilitates 

the economic performance and security, it raises computational and modelling 

challenges for analysis and accurate modelling of the emerging IEGS. The optimal 

operation of IEGS is one most significant research topic to ensure the economic and 

reliable perspectives of IEGS. Nevertheless, the uncertainties introduced from 

renewable energy resources (RES), integration of smart grid technologies and natural 

disasters will affect the economic operation and destroy the energy infrastructures. For 

instance, underestimated uncertain renewable generation could cause network 

congestion and overestimated renewable generation will lead to a lack of energy supply. 

Accordingly, non-optimal and even infeasible solutions will be yielded.  

    This thesis studies the centralized and coordinated operation of IEGS under different 

types of uncertainties which contributes to optimal operation schemes of IEGS for the 

economic, reliable, resilient and sustainable perspectives. The proposed studies will 

greatly contribute to efficient and economic-effective IEGS operation schemes and 

related industrial applications in the presence of inevitable uncertainties and disasters. 

The main achievements of this research can be summarized as follows: 

(1) This work proposes a two-stage distributionally robust operation model for 

integrated water-energy systems in a distribution level considering wind uncertainty. 

The optimization aims to minimize the total operation cost of the overall system. The 

presence of wind uncertainty inevitably leads to risks in decision making. Accordingly, 

a coherent risk measure, i.e., conditional value-at-risk, is combined with the 

optimization objective to determine risk-aversion operation schemes.  

(2) To alleviate the impacts of seismic events on both power lines and gas pipelines of 

IEGS. A two-stage distributionally robust optimization (DRO) model is proposed to 

enhance the resilience for an IEGS, where the damage on both power lines and gas 

pipelines are considered. The seismic activities are regarded as uncertain events and the 

random damage on power lines and pipelines are regarded as uncertainties, which are 

handled by DRO. A novel model to assess the performance of IEGS against seismic 

attacks is developed. This damage quantification builds a probabilistic model and 

estimated by damage scenarios. The proposed novel DRO framework avoids specifying 

uncertainty distributions but only uses moment information, which is more practical 

considering that it is normally not possible to gather a sufficiently large amount of 

distributional information for extreme events.  

(3) To address the adverse impact caused by the high integration of intelligent data 

technologies in IEGS, a two-stage risk mitigation strategy to address the uneconomic 

operation of IEGS under false data injection attacks (FDIA) considering renewable 
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generation uncertainties. The FDIA mitigation scheme conducts the day-ahead and real-

time operation, which is more powerful and convenient to be used by system operators 

to ensure the efficiency and security of the IEGS. FDIA is assumed to attack both 

electricity and gas meter readings, including i) load measurement of electricity and gas 

systems and ii) gas density measurement. Uncertainties of renewable resources are 

considered in the proposed model as they can worsen system operation conditions 

during FDIA.  

(4) The high penetration of renewable generation poses severe challenges to Volt/VAR 

optimization because of its output uncertainties, leading to voltage deviation and 

fluctuation. To resolve unacceptable voltage deviation under energy system 

interdependency, a novel coordinated two-stage multi-objective optimization is 

proposed for voltage control in the operation of IEGS, considering uncertain renewable 

generation and multi-vector energy system integration. The optimal voltage is achieved 

through efficiently coordinating the operation of on-load tap changers (OLTC), 

photovoltaic systems, and shunt capacitor banks. A conic tractable form with the dual 

formulation is transformed from the original problem and solved by constraint 

generation algorithm (CGA).  

(5) To investigate the optimal coordinated operation of energy infrastructures in IEGS 

meanwhile ensure the gas quality, a co-optimization for both gas quality and system 

operation in an IEGS is proposed. The renewable uncertainty is captured by DRO 

approach with Kullback-Leibler (KL) divergence-based ambiguity set to ensure both 

the system robustness and tractability. The key indices to quantify the gas quality 

include gross calorific value (GCV), specific gravity (SG), Wobbe Index (WI), and 

Combustion Potential (CP). Apart from ensuring the indices to meet the related 

standards, the injected gas from power-to-gas (P2G) facility to gas system is mixed with 

nitrogen and Liquid Petroleum Gas (LPG) for maintaining the overall gas quality.  

 

Keywords: Cyber-attacks; distributionally robust optimization; integrated 

electricity and gas system; gas quality; renewable energy resources; resilience; 

uncertainty. 
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1.1 Research background 

1.1.1 Transition to ‘Net Zero Emissions’ Target 

The environmental challenges are becoming unignorable with the increasing usage 

and depletion of traditional energy resources. Global warming and greenhouse gas 

emissions have become the two most serious and concerning issues in the 21st century, 

which arouse the attention of the public and government all around the world. The 

average temperature of the global surface has increased by 0.74 degrees in the last 50 

years according to [1]. As is shown in Fig. 1-1, global carbon emission has significantly 

increased by 90% since 1970 [2]. Paris Agreement [3] has been agreed and signed by 

many countries, which was the first full global agreement to deal with climate change, 

aiming at controlling the temperature increase below 2 degrees.   

To limit the increasing trend of temperature, the UK has led the global effort and 

become the first major country to achieve the ‘Net Zero Emissions’ target by 2050 [4]. 

Net zero is referred as the emission can be balanced via offset measures [5], e.g., 

planting trees, applying advanced energy technologies and strategies. In 2020, the 

greenhouse gas emissions were 51% below the level of 1990. This milestone was 

achieved after a dramatic 11% decrease of greenhouse gas emissions compared with 

2019, which is largely owing to the outbreak of COVID-19 [6]. Fig. 1-2 presents the 

opposite trend of the economy and emissions [4]. In Fig. 1-3, the progress of emission 

 

Fig. 1-1. The emission level of carbon dioxide [2].  

 

 

 

Fig. 1-2. The emission level of carbon dioxide.  
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reduction in different sectors is given. [5] To achieve the ‘Net Zero Emissions’ target, 

the UK government has taken the measures including: 

    Reducing coal-fired power generation: The UK government aims to eliminate all 

thermal power plants by 2025 to achieve carbon reduction targets [7]. Alternative 

energy sources include solar, wind, nuclear, natural gas and hydropower. An emission 

reduction test was designed in May 2019. During the two weeks, on average, nearly 40% 

of the electricity supply in the UK was from natural gas, 20% from nuclear power 

generation, 13% from wind power generation, and the rest came from other generations. 

It is estimated that the last coal-fired power plant will be closed by 2022 [8].  

Carbon capture technology: The government provides strong support for the 

promotion of carbon capture technologies such as carbon capture and storage (CCS), 

 

Fig.1- 2. UK realizes falling emissions with a growing economy [4].  

 

Fig.1- 3. The progress of emissions reduction in different sectors [4].  

 

 

 

TABLE 4-1  Optimal hardening plan under different planning budget
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carbon capture and utilisation (CCU) and carbon capture, utilisation and storage 

(CCUS). The industries have received government funding of 26 million pounds for 

carbon capture projects. CCUS aims to encourage industries to capture up to 70,000 

tons of carbon dioxide each year, which is used for industrial applications [8]. 

Renewable energy adoption: In the last five years, one-third of the UK’s fossil fuel-

based power generation capacity has been decommissioned. However, the installed 

capacity of wind, solar, biomass, and hydropower have been tripled to 42GW. 

Renewable energy accounts for the largest share of the UK’s installed power generation 

capacity, surpassing the 40.6GW installed capacity of fossil fuels. Wind power 

accounts for the largest share of renewable energy, with more than 20GW; solar power 

comes second with more than 13GW; biomass energy ranks third with 3.2GW [9]. 

1.1.2 Renewable Curtailment 

Based on the global energy statistics [10], it anticipates that the share of renewable 

power generation will be nearly doubled globally, i.e., from 26% in the current level to 

44% by 2040. And it is possible to overpass coal before 2026. Particularly, the share of 

combined wind and solar generation could potentially increase from 7% to 24% in the 

world. In comparison with the renewable generation share, the traditional generation 

share falls sharply from 67%. In particular, the share of coal’s generation, which surges 

5 times from 1970 to 2013, would decline from the current 38% to 25% by 2040. And 

the gas-fired generation is predicted to increase rapidly to approximately 50% by 2040 

due to the increasingly cheap price of gas sources [11]. 

In the UK, the large deployment of renewable energy resources causes curtailment 

problems, which causes the waste of renewable generation and economic losses.  The 

wind curtailment is 3.6TWh in 2020 in the UK [12]. The potential reasons for renewable 

energy curtailment can be listed: 

▪ The congestion of power systems affects the feed of power to users. 

▪ The inflexible plants such as nuclear plants cannot be flexibly controlled to 

provide renewable energy. 

▪ The growth of renewable capacity will lead to over-capacity issues when the 

demand is low. 
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1.1.3 Energy Internet  

    The concept of Energy Internet (EI) has been put forward by Jeremy Rifkin in 2011, 

which aims to make full use of the distributed renewable energy resources and thus 

improve the energy utilization efficiency [13]. The report pointed out that the final aim 

of the EI is to establish the realization of interdependent energy systems which facilitate 

the penetration of distributed renewable energy resources [14]. The achievement of EI 

requires the strong integration of power, gas, heating, cooling and water systems, with 

the supplement of energy storage technologies. The UK National Energy and Climate 

Plan strengthens the importance of developing and creating modern, integrated and low 

carbon energy systems [15]. In 2018, the Chinese government put forward a guideline 

for developing EI-based integrated energy systems and encouraged the applications and 

constructions of modern energy platforms [16]. Overall, the rising research and 

application attention on EI has motivated the associated modelling and operation 

research of EI.  

1.1.4 Integrated Energy Systems 

    The power system is the most vital part of EI, facilitated by the smart grid and multi-

energy technologies to achieve the coordination and complementation of each 

subsystem. Meanwhile, interdependent energy converters are also increasingly gaining 

attention, such as combined heat and power (CHP), power-to-gas (P2G) and gas turbine, 

etc. These conversion technologies enhance the couplings of subsystems and aggregate 

them into an efficient energy entity incorporating energy production, transmission, 

distribution, conversion, storage and usage. Integrate energy system (IES) is composed 

of multi-energy systems and renewable energy sources which are interconnected by 

coupling devices [17-19]. It improves energy efficiency compared with independent 

energy systems. Accordingly, the system economy, security, reliability and flexibility 

are strengthened. In addition, the excessive renewable generation can be accommodated 

within the IES. The aforementioned energy conversion technologies can tighten the 

couplings of different subsystems. For instance, CHP facilitates the interconnection 

between gas, power and heating systems [20]; P2G facilitates the interconnection 

between power and gas systems [21], and electric vehicles (EVs) enhance the 

interconnection between power and transportation systems [22]. Apart from the energy 

infrastructures, the optimal coordination between each energy vector also depends on 
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the advanced energy management schemes. The operation algorithm of IES will further 

improve the system economic efficiency and reliability through comprehensively 

coordinating the energy infrastructures.  

    Gas-fired generation has gradually taken the place of coal-fired generation due to the 

lower price, lower emission and high reliability of natural gas [23]. In addition, the 

advancing techniques in the gas industry further impact the electric power industry. The 

high integration of renewable resources brings security issues to power systems due to 

its variability and fluctuation. However, the integration of a gas system counteracts the 

resulted negative effects thanks to the slow inertia characteristic of natural gas [24]. 

Accordingly, the high integration of natural gas is becoming the trend of IES, which 

introduces the concept of integrated electricity and gas system (IEGS). In the UK, 

granted by the government, modelling and building real IEGS is given sufficient 

attention by Supergen, HubNet and other research associations for the energy transition 

[25]. The Adaptation and Resilience in Energy Systems (ARIES) project conducted by 

the University of Edinburgh aims to develop new methods to model the system 

vulnerabilities under the climate change for IEGS [26]. The project Horizon 2020 

MAGNITUDE is expected to identify flexibility options from synergies between power, 

gas, heating and cooling systems and also support the integration of renewable energy 

sources to achieve a cost-effective energy system [27]. CHP and gas turbines are widely 

utilized for coupling the power and gas systems in the existing IEGS projects. However, 

the energy flow is unidirectional, i.e., from a gas system to the power system. P2G is a 

promising technology, which enables to convert excessive renewable power output 

from the power system to the gas system and thus achieve the bidirectional energy flow 

in IEGS [28, 29]. However, most P2G projects are at the experimental stage and the 

application is few.  

 

1.1.5 Research Motivation 

    Due to the energy crisis, pollution issues and the encouragement of governments’ 

policies, renewable industry witnesses a rapid development. The wide deployment of 

renewable energy sources leads to power systems facing more challenges on secure 

system operation and power-load balance. IEGS is considered and planned to resolve 

the new challenges based on the significant coordination and complementation between 
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power and gas systems. Accordingly, accurate and feasible mathematical modelling, 

strengthening energy integration, facilitating renewable integration are the key 

elements.  

This thesis focuses on investigating the benefits and challenges of economic efficiency, 

security and sustainability due to the integration of power and gas systems. This thesis 

aims to resolve the following five problems: 

i) The renewable uncertainty turns the operation of IEGS into a stochastic and 

complicated optimization problem. The economic performance of the IEGS operation 

needs to be guaranteed pertaining to the variation of renewable power generation. 

ii) Natural disasters can cause huge power losses of energy systems that threaten the 

economy. Enhancing resilience to withstand seismic hazards and mitigate resulting 

damages is of great value for IEGS. 

iii) With the extensive deployment of digital communication technologies, IEGS is 

under extensive exposure to information and communication technology (ICT). The 

adversary can launch false data injection attacks (FDIA) to tamper critical data and 

inject falsified data, which brings serious challenges to state estimators, indirectly 

affecting system operation and control. 

iv) Due to the variable and intermittent nature renewable energy penetration, it poses 

operational and security challenges to voltage profile by affecting normal operations of 

on-load tap changer (OLTC) and capacity banks in IEGS. 

v) P2G enables the conversion from electric energy to hydrogen and synthetic natural 

gas, accordingly achieving bidirectional energy flows for tighter couplings in IEGS. 

However, the injection of hydrogen could impact gas quality since gas composition 

fundamentally changes, adversely effecting the combustion, safety and lifespan of 

appliances.  

 

1.2 Research Contributions  

 

This thesis contains research contributions as follows: 

▪ Energy structure: The innovative energy structures of IEGS and IWENS 

designed for economic effective, resilient, reliable and sustainable 



Chapter 1  Introduction 

 

24 

 

functionalities are extensively modelled. It aggregates considerable 

interconnections and converters among subsystems, e.g., gas turbines, P2G 

facilities, CHP, GF, GSHP, water pumps and electric boilers. The enormous 

interdependencies and interactions between energy sectors are beneficial for 

improving economic efficiency and sustainability. 

▪ Uncertainty modelling: Two-stage DRO models are applied to optimize 

operation and planning schemes. It is the first attempt to combine DRO with 

mean-risk optimization. The benefits are in threefold: i) it overcomes the 

shortages of SO and RO by using partial distributional information with 

moderate robustness, ii) the KL divergence-based ambiguity set can flexibly 

shape the considered candidate distributions compared with moment-based 

ambiguity sets and accordingly yields less-conservative results and iii) the 

trade-off between economic performance and risk can be realized based on the 

incorporation of Conditional Value at Risk (CVaR) on the objective function. 

▪ Resilience enhancement: A two-stage earthquake-resilient co-optimization 

model is established, incorporating both planning and operation schemes, is for 

the first time proposed to enhance IES resilience, considering the worst-

distributed seismic attack. A novel model to assess the performance of IES 

against seismic attacks is developed. This damage quantification builds a 

probabilistic model and estimated by damage scenarios. This assessment model 

can be easily combined with the proposed two-stage DRO model to determine 

the optimal enhancement plan for IES. 

 

▪ Cyber resilience: This work models FDIA in an IEGS for the first time, 

particularly on natural gas load and density measurement, where existing 

research only focuses on FDIA on electricity systems. 

 

▪ Voltage regulation: This paper is the first such effort to investigate VVO in an 

IEGS. The strong coupling of power and gas infrastructure and tight 

interdependency between the two systems are considered. 
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▪ Gas quality improvement: Four key indices are used in the economic operation 

of IEGS to quantify the impact of hydrogen injection from P2G on gas quality. 

A novel co-optimization model is developed to minimize system operation 

costs and maintain gas quality within an acceptable range, achieved by a 

mixture of nitrogen and LPG.   

 

1.3 Thesis Layout 

The rest of the thesis is organised as follows: 

Chapter two is devoted to the DRO approach, where the moment-based DRO and 

discrepancy-based DRO are introduced, respectively. This chapter summarizes the 

methodology of handling uncertainties for chapters 3-7. The formulations and solution 

algorithms of each method are explicitly discussed. 

Chapter three provides a two-stage economic operation scheme for an integrated 

electricity, gas and water system under the water-energy nexus with enormous 

interdependencies. The tight couplings and interactions between each subsystem enable 

the reliable and economic operation for the entire IES. Renewable uncertainty is 

captured by mean-risk DRO. The coherent risk measure, CVaR provides the trade-off 

to system operators with flexible alternatives on choosing between economic efficiency 

and risk. A tractable Bender’s decomposition is employed to solve the problem.  

Chapter four proposes a two-stage DRO method to enhance the resilience of an 

IEGS under seismic attacks with combined planning and operation strategies. The 

proposed method provides optimal hardening plans for specific power lines and gas 

pipelines under different seismic intensity levels and investment budgets. This method 

can help system operators to make economical hardening and operation strategies to 

improve the resilience of the IES under seismic attacks. 

Chapter five designs a risk mitigation scheme for IEGS against FDIA with a two-

stage DRO model. The hierarchical two-stage framework can determine both day-ahead 

and real-time system optimal operation schemes considering the impact of FDIA and 

renewable uncertainties on electricity load, gas load and gas density. A tractable 

semidefinite programming formulation is built for the original problem, which is solved 
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by constraint generation algorithm (CGA) in an iterative manner. The proposed 

mitigation scheme ensures the economic performance of IEGS by providing a two-stage 

risk mitigation scheme by implementing efficient load shedding under FDIA and 

renewable uncertainty. 

Chapter six proposes a multi-objective optimization for minimizing both operation 

cost and voltage deviation of IES considering renewable power uncertainty. A two-

stage data-driven DRO approach is used to solve the voltage management with dual 

and semidefinite (SDP) formulations to ensure computational tractability. The 

reformulated two-stage voltage management is solved by CGA with master and 

subproblems. This work can benefit integrated system operators with powerful 

operation tool to manage the systems with fewer costs but integrate more renewable 

energy.  

Chapter seven presents a coordinated optimization for gas quality management 

and operation of IEGS in the presence of wind uncertainty is proposed. The wind 

uncertainty is handled by DRO with Kullback-Leibler divergence for controlling the 

conservatism of numerical performance. A tractable deterministic formulation is 

obtained and the resulted linear programming model can be efficiently solved. The 

proposed co-optimization for IEGS ensures both the economic performance and gas 

quality via coordinating traditional DGs, natural gas resources and P2G facility, which 

can benefit system operators with economic benefits through saving operation cost and 

secure gas distribution with gas quality guaranteed. 

Chapter eight concludes the main findings of the thesis and the major 

contributions. 

Chapter nine presents some potential research topics in future work. 
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Distributionally Robust 
Optimization 

This chapter describes the application of distributionally robust 
optimization method on IEGS optimization problems. The problem 
formulations, mathematical reformulations and solution algorithms are 
explicitly discussed.  
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    Distributionally robust optimization (DRO) is developed to bridge between 

stochastic optimization (SO) and robust optimization (RO) [30]. In terms of uncertainty 

modelling, SO either relies on a vast number of samples to approximate distributions 

or fits data into an empirical distribution, which could be overly optimistic. RO also 

considers the worst case via uncertainty sets, potentially resulting in over-conservative 

solutions. By contrast, DRO avoids assuming a specific uncertainty distribution and 

yields less-conservative results [31]. DRO has simpler requirements of uncertainties 

and is mathematically tractable, which accommodates distributions via an ambiguity 

set [30]. Additionally, DRO performs better in making the best use of limited statistical 

data and produces less-conservative results by considering the worst expectation over 

all possible distributions, compared to the traditional worst-case oriented RO. 

    Ambiguity set is used to characterize the distributional information of uncertainties. 

DRO can be generally categorized into moment-based DRO and discrepancy-based 

DRO with respect to different types of ambiguity sets. Moment-based DRO applies the 

moment information, e.g., mean vectors, covariance matrices, to shape the uncertain 

distribution [32]. Discrepancy-based DRO measures the closeness between the 

reference distribution and the candidate distributions [33]. This chapter presents i) the 

modelling of the moment-based DRO constructed via Markov and Chebyshev 

ambiguity sets; ii) the modelling of discrepancy-based DRO relies on the KL-

divergence. The main technical chapters, i.e., chapters 3-7, utilize DRO to handle the 

uncertainty modelling.  

2.1 Moment-Based DRO 

2.1.1 Markov Ambiguity Set 

    Markov ambiguity set contains all distributions with known mean information. This 

section proposes the modelling and solution of a two-stage DRO problem based on the 

Markov ambiguity set. Assume that the abstract forms of matrices and vectors are used 

to describe the constraints and variables. Then the ambiguity set modelling is proposed 

followed by Bender’s decomposition as the solution algorithm.  

    The compact form of a two-stage optimization model can be reformulated as (2-1).  

The first-stage objective function is represented by 𝑐′𝑥. And the expected second-stage 

objective function is represented by 𝑄(𝑥, 𝜉). 𝑥 and 𝑦 are the variables of the first and 

second stages. The uncertain variable is denoted as 𝜉. The ‘min-sup’ structure allows 
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the model to make decision under the worst-case scenario. The first and second stage 

constraints are represented by (2-1) and (2-4), respectively.  

min
𝑥∈𝑋

𝑐′𝑥 + sup
𝑃∈𝐷 

𝐸𝑃[𝑄(𝑥, 𝜉)] (2-1) 

s.t. 𝐴𝑥 ≤ 𝑏, (2-2) 

𝑄(𝑥, 𝜉) = min
𝑦
𝑓′𝑦 (2-3) 

s.t. 𝐸𝑥 + 𝐹𝑦 + 𝐺𝜉 ≤ ℎ, (2-4) 

    The ambiguity set containing the mean vector information is presented as (2-5).   

𝐷𝑀𝑎𝑟𝑘𝑜𝑣
  = {𝑓(𝜉 

 )|
P{𝜉 

 ∈ 𝛯 } = 1

E{𝜉 
 } = 𝜇 

} (2-5) 

     In some occasions, the support 𝛯  is required for accommodating the uncertainties, 

i.e., the total number of a uncertain binary variable is fixed.  

𝛯 = {∑𝜉 
 

 

= 𝑁 } (2-6) 

    The variables of the optimization problem are the probability densities in (2-5). The 

optimization problem contains a finite number of constraints and an infinite number of 

variables, which is non-tractable. By transforming it from the primal form into the dual 

form, the problem becomes tractable.  

    The second-stage objective function sup
𝑃∈𝐷𝐸𝐿

 ,𝐷𝑃𝐿
 
𝐸𝑃[𝑄(𝑥, 𝜉)] can be represented by S(x), 

where 𝑃(𝜉 
 ) is the probability density function.  

𝑆(𝑥)𝑝𝑟𝑖𝑚𝑎𝑙 = max
𝑃(𝜉)∈𝐷𝐸𝐿,𝐷𝑃𝐿

∫𝑄(𝑥, 𝜉)
 

𝛯

𝑃(𝜉)𝑑𝜉 (2-7) 

s.t. 𝑃(𝜉) ≥ 0, ∀𝜉 ∈ 𝛯 (2-8) 

∫𝑃(𝜉)𝑑𝜉 
 = 1

 

𝛯

 (2-9) 

∫𝜉𝑃(𝜉)𝑑𝜉 = 𝜇 

 

𝛯

 (2-10) 

    Based on dual theory [30], when the strong duality holds, the dual form of (2-7) is 

transformed to (2-11). Accordingly, the results of (2-11) are equal to those of (2-7) [34, 

35]. Now, the dual form has an infinite number of constraints and a finite number of 

variables after the dual formulation, which is easier to solve. The dual variables 𝛹 and  

𝜓0 are associated with constraints (2-9) and (2-10). 
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𝑆(𝑥)𝑑𝑢𝑎𝑙 = min
𝛹,𝜓0

𝛹 𝜇 + 𝜓0 (2-11) 

s.t. 𝛹𝜉 + 𝜓0 ≥ 𝑄(𝑥, 𝜉) 

∀𝜉 ∈ 𝛯 
(2-12) 

    Then, the dual formulation (2-11) is substituted into (2-1) and the following 

reformulations can be obtained:  

min
𝛹,𝜓0

𝑐′𝑥 + 𝛹 𝜇 + 𝜓0 (2-13) 

s.t. 𝐴𝑥 ≤ 𝑏, (2-14) 

𝛹𝜉 + 𝜓0 ≥ 𝑄(𝑥, 𝜉), ∀𝜉 ∈ 𝛯 (2-15) 

    Bender’s decomposition is applied to solve the overall model in a master-subproblem 

framework, summarized in the flowchart in Fig. 2-1. Under the acceptable optimality 

gap, the master problem and subproblem are solved separately with the update of upper 

 

Fig. 2-1. Flow chart of bender’s decomposition method. 
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and lower bounds. A Bender’s cut is formulated and added to the set in each iteration. 

The set of Bender’s cut becomes larger until the real gap between lower and upper 

bounds is smaller than the optimality gap. The master problem and primal subproblem 

are shown in (2-16)-(2-17) and (2-18).  

min
𝛹,𝜓0

𝑐′𝑥 + 𝛹 𝜇 + 𝜓0 (2-16) 

s.t. 𝐴𝑥 ≤ 𝑏, (2-17) 

max
𝛹
𝑄(𝑥∗, 𝜉) − 𝛹∗𝜉 (2-18) 

    The new dual variable 𝜏  is introduced to represent the dual form of (2-3). 

Accordingly, (2-3) and (2-4) can be represented in the following closed form: 

max
 
𝜏′(𝑏 − 𝐸𝑥 − 𝐺𝜉𝑠

 )      (2-19) 

s.t. 𝐹′𝜏 ≤ 𝑓, 𝜏 ≥ 0      (2-20) 

    Equation (2-18) is recast as (2-21) based on the new dual variable. 

max
 
𝜏′(𝑏 − 𝐸𝑥 − 𝐺𝜉𝑠

 ) −𝛹∗𝜉      (2-21) 

s.t. 𝐹′𝜏 ≤ 𝑓, 𝜏 ≥ 0      (2-22) 

    It is worth noting that the term 𝛹∗𝜉 in (2-21) is nonlinear because it contains the 

product of dual variable 𝛹∗ and binary variable 𝜉. Although it can be solved by some 

nonlinear solvers, linearization is still required to ensure a more efficient and global 

solution. McCormick inequality is used to relax this nonconvex problem, where 𝜗𝑖𝑗 is 

used to represent  𝜏𝑖𝐺𝑖𝑗𝜉𝑗 .  

 𝜗𝑖𝑗 ≥ 𝐺𝑖𝑗𝜏𝑖 −  𝑀(1 − 𝜉𝑗)     (2-23) 

 𝜗𝑖𝑗 ≥ − 𝑀𝜉𝑗     (2-24) 

    Therefore, the dual subproblem can be written as:  

max
 
𝜏′(𝑏 − 𝐸𝑥) − 𝜗 −𝛹

∗𝜉     (2-25) 

s.t. 𝐹′𝜏 ≤ 𝑓, 𝜏 ≥ 0     (2-26) 

𝜗𝑖𝑗 ≥ 𝐺𝑖𝑗𝜏𝑖 −  𝑀(1 − 𝜉𝑗)     (2-27) 

 𝜗𝑖𝑗 ≥ − 𝑀𝜉𝑗     (2-28) 
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    Based on the obtained 𝜉∗, the primal and dual Bender’s cuts can be presented in (2-

29) and (2-31) respectively.  

𝜓0  ≥ 𝑓′𝑦∗−𝛹  𝜉∗ (2-29) 

𝐸𝑥 + 𝐹𝑦∗ + 𝐺𝜉∗ ≤ ℎ, (2-30) 

𝜓0  ≥ 𝜏
′∗(𝑏 − 𝐸𝑥 − 𝐺𝜉∗) − 𝛹  𝜉∗      (2-31) 

 

2.1.2 Chebyshev Ambiguity Set  

     Based on the Markov ambiguity set, Chebyshev ambiguity set models the 

distributional ambiguity utilizing the mean and covariance matrix. The original problem 

can be recast as a semidefinite programming (SDP). First of all, the linear DRO problem 

can be epresented by a compact matrix form. Then, the family of possible uncertainty 

distributions is defined by an ambiguity set. Finally, the dual problem is formulated and 

solved by a column generation algorithm (CGA) efficiently.  

    Matrices and vectors are used to represent the original problem for notation 

abbreviation. The objective function (2-32) is to minimize the sum of the first-stage 

objective 𝑐′𝑥  and the expected second-stage objective 𝐸𝑃𝑓[𝑄(𝑥, 𝜉)] . The random 

parameter 𝜉 is sampled from a family of distributions 𝑃𝑓.   

min
𝑥∈𝑋

𝑐′𝑥 + sup
𝑃𝑓∈𝐷𝜉,𝜉=Δ𝑃𝑘,𝜉𝑗 

𝐸𝑃𝑓[𝑄(𝑥, 𝜉)] (2-32) 

s.t. 𝐴𝑥 ≤ 𝑏, (2-33) 

𝑄(𝑥, 𝜉) = min
𝑦
𝑓′𝑦 (2-34) 

s.t. 𝐸𝑥 + 𝐹𝑦 + 𝐺𝜉 ≤ ℎ, (2-35) 

    The first-stage constraints are shown in (2-33). Equations (2-34) and (2-35) represent 

the recourse function.  

    The uncertainties can be captured by ambiguity sets that define a family of 

distributions. Based on limited historical data, moment information, i.e., mean and 

covariance can be obtained for constructing empirical point-estimates. The proposed 

ambiguity set is given in (2-36) which guarantees i) the integral of distribution of 𝜉  is 

1, and ii) the second moments are known.  
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𝐷  =

{
 

 

𝑓(𝜉 )||

 
P{𝜉 } = 1

E{𝜉 } = 𝜇 
E{𝜉 (𝜉 )

′} = Σ + 𝜇 (𝜇 )
′

 }
 

 

 

 

 

(2-36) 

 

     The ambiguity set used to characterize uncertain variables is composed of mean and 

covariance information. Intuitively, a certain set of mean vector and covariance matrix 

contains all possible probability distributions. To obtain a ‘min’ form of the second-

stage problem, dual reformulation is required for the inner problem ‘min sup 

𝐸𝑃𝑓[𝑄(𝑥, 𝜉)] ’. The second-stage problem 𝐸𝑃𝑓[𝑄(𝑥, 𝜉)]  is an infinite-dimensional 

linear problem and the primal form is given in (2-37)-(2-41).  

𝑆(𝑥)𝑝𝑟𝑖𝑚𝑎𝑙 = max
𝑃𝑓∈𝐷𝜉 

 
∫𝑄(𝑥, 𝜉)
 

𝛯

𝑃𝑓(𝜉)𝑑𝜉 (2-37) 

s.t. 𝑃𝑓(𝜉) ≥ 0, ∀𝜉 ∈ 𝛯 (2-38) 

∫𝑃𝑓(𝜉)𝑑𝜉 = 1
 

𝛯

 (2-39) 

∫ 𝜉 
𝑚𝑃𝑓(𝜉)𝑑𝜉 = 𝜇𝑚

 

𝛯
, m=1,2, …, 𝛯 (2-40) 

∫ 𝜉 
𝑚𝜉 

𝑛𝑃𝑓(𝜉)𝑑𝜉 = 𝛴𝑚𝑛 + 𝜇𝑚𝜇𝑛
 

𝛯
, m, n=1,2, …, 𝛯 (2-41) 

         
Fig. 2-2.  Flowchart of constrained generation algorithm.   
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    For tractability, the primal form needs to be recast as (2-42) and (2-43), where 𝜓0, 

𝜓𝑗  and 𝛹𝑗𝑘  are dual variables associated with the second-stage constraints and 𝛩 

represents Σ + 𝜇 (𝜇)
′. When the weak duality holds, 𝑆(𝑥)𝑝𝑟𝑖𝑚𝑎𝑙 ≤ 𝑆(𝑥)𝑑𝑢𝑎𝑙. However, 

(2-41) ensures that the strong duality holds when 𝛩 is strictly positive definite and thus 

𝑆(𝑥)𝑝𝑟𝑖𝑚𝑎𝑙 = 𝑆(𝑥)𝑑𝑢𝑎𝑙 [30]. Accordingly, now the problem with an infinite number of 

variables is transformed into one with a finite number of variables (2-42)-(2-43), which 

is easier to solve.  

𝑆(𝑥)𝑑𝑢𝑎𝑙 = min
𝛹,𝜓,𝜓0

〈𝛹′𝛩〉 + 𝜓′ 𝜇 + 𝜓0 (2-42) 

s.t. (𝜉)′𝛹𝜉 + 𝜓′𝜉 + 𝜓0 ≥ 𝑄(𝑥, 𝜉) 

∀𝜉 ∈ 𝛯 
(2-43) 

    The new compact form is:  

min
𝑥∈𝑋

𝑐′𝑥 + 𝑆(𝑥)𝑑𝑢𝑎𝑙 (2-44) 

    Problem (2-44) is a semi-infinite-dimensional program which contains an infinite 

number of constraints. Thus, it is required to be transformed into a closed form [36]. 

By introducing the new dual variable 𝜏, a positive quadratic function in (2-45) can be 

obtained from (2-34). 𝑉𝑆 denotes the polyhedral set of extreme points and 𝑁𝑣 is the set 

of vertices of feasible region in 𝑉𝑆.  

max
𝑢∈𝑉𝑆

𝜏′(𝑏 − 𝐸𝑥 − 𝐺𝜉 
 )   (2-45) 

𝑉𝑆 = {𝜏|𝐹′𝜏 = 𝑓, 𝜏 ≤ 0} (2-46) 

(𝜉)′𝛹𝜉 + (𝜓 + 𝐺′𝜏𝑖)′𝜉  + 𝜓0 − (ℎ − 𝐸𝑥)𝜏
𝑖 ≥ 0 

∀𝜉 ∈ 𝛯, i =1,2, …, 𝑁𝑣 

(2-47) 

    In summary, the SDP form is as follow, which is the master problem. 

min
𝑥,𝛹,𝜓,𝜓0

𝑐′𝑥 + 〈𝛹′𝛩〉 + 𝜓′𝜇 + 𝜓0  

[
𝜉
1
]
′

[
𝛹

1

2
(𝜓 + 𝐺′𝜏𝑖)

1

2
 (𝜓 + 𝐺′𝜏𝑖)

′
𝜓0 − (ℎ − 𝐸𝑥)

′𝜏𝑖
] [
𝜉
1
] ⪰ 0 

∀𝜉 ∈ 𝛯, i =1,2, …, 𝑁𝑣, 𝑥 ∈ 𝑋, ∀𝜏𝑖 ∈ 𝑉𝑆 

(2-48) 

    A large number of constraints with infinite cardinality of 𝑉𝑆  cause high 

computational burden. CGA initially enumerates a subset of vertices and incorporates 
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more vertices step by step. This relaxation method can efficiently solve the proposed 

problem, which is separated into a master and sub problem in (2-48) and (2-49). The 

flowchart of the CGA is given in Fig. 2-2.   

                    (𝜉𝑠
 )′𝛹𝜉𝑠

 + 𝜓′𝜉𝑠
  + 𝜓0 − (ℎ − 𝐸𝑥 − 𝐺𝜉𝑠

 )′𝜏  ≥ 0                       (2-49) 

s.t. ∀𝜉 ∈ 𝛯, 𝜏 ∈ 𝑉𝑆 

 

2.2 KL-Divergence-Based DRO 

    Discrepancy-based ambiguity set use more distributional information to shape real 

distributions compared with moment-based ambiguity set [33]. It measures the 

discrepancy between the candidate distribution and reference distribution. The 

discrepancy can be controlled to either decrease or increase the conservatism depending 

on the reliability requirement of the optimization. KL divergence is a common ϕ-

divergence to measure the distance between two distributions. Estimation of uncertainty 

distributions can be obtained by statistical fitting [33, 37]. KL divergence-based 

ambiguity set models uncertainty requiring the candidate distribution within a 

predefined distance from the nominal distribution.  

2.2.1 Risk-Based Ambiguity Set  

    Firstly, the linear problem is represented by a compact form for notation brevity. 

Secondly, the KL divergence-based ambiguity set is used to define the uncertainty. 

Then, CVaR is derived. The final step incorporates the mathematical reformulation and 

decomposition methods for solving the problem.  

    The original problem can be represented by vectors and matrices to represent the 

objective function and constraints for notation simplicity. Compared to the proposed 

risk-averse model, the traditional risk-neutral DRO model does not consider risk factor,

which is given in (2-50). In (2-50), the first-stage objective function is represented by 

𝑐′𝑥. And the expected second-stage objective function is represented by 𝑄(𝑥, 𝜉). 𝑥 and 

𝑦 are the variables of the first and second stages. The uncertain variable is denoted as 

𝜉. The ‘min-sup’ structure allows the model to make decision under the worst-case 

scenario.  
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min
𝑥∈𝑋

𝑐′𝑥 + sup
𝑝∈𝐷𝜉 

𝐸𝑝[𝑄(𝑥, 𝜉)] (2-50) 

    Based on the traditional risk-neutral DRO model, the risk measure can be included 

in the second stage problem, shown below: 

min
𝑥∈𝑋

𝑐′𝑥 + sup
𝑝∈𝐷𝜉 

{(1 − 𝛼)𝐸𝑝[𝑄(𝑥, 𝜉)] + 𝛼𝑅(𝑄(𝑥, 𝜉))}   (2-51) 

s.t. 𝐴𝑥 ≤ 𝑏, (2-52) 

𝑄(𝑥, 𝜉) = min
𝑦
𝑓′𝑦 (2-53) 

s.t. 𝐸𝑥 + 𝐹𝑦 + 𝐺𝜉 ≤ ℎ, (2-54) 

    The risk-averse objective function (2-51) is to minimize the sum of the first-stage 

objective 𝑐′𝑥, the weighted expected second-stage objective(1 − 𝛼)𝐸𝑝[𝑄(𝑥, 𝜉)], and 

the weighted risk measure  𝛼𝑅(𝑄(𝑥, 𝜉)) . 𝐷𝜉  denotes the ambiguity set, containing 

distribution 𝑝. The weighting factor 𝛼  ranges between 0 and 1. When 𝛼=0, (2-51) 

degrades to the traditional risk-neutral DRO. Equation (2-51) presents the first-stage 

constraints. The recourse process is represented by (2-53) and (2-54), where f denotes 

the coefficient of (2-53).  

    The discrepancy-based ambiguity set is constructed based on measuring the distance 

between probability distributions, i.e., the divergence tolerance η in (2-55). The true 

and reference probability distribution are represented by 𝑝 and 𝑝𝑟𝑒𝑓, respectively. The 

KL divergence between 𝑝 and 𝑝𝑟𝑒𝑓 is defined in (2-55), where 𝑝 (𝜉) and 𝑝𝑟𝑒𝑓(𝜉) are 

the probability density functions. 

𝐷𝑖𝑠 = {𝑝 ∈ 𝐷𝜉,|𝐷𝜉,(𝑝‖𝑝𝑟𝑒𝑓) ≤ 𝜂} (2-55) 

𝐷𝜉,(𝑝‖𝑝𝑟𝑒𝑓) = ∫𝑓 (𝜉) 𝑙𝑜𝑔
𝑝 (𝜉)

𝑝𝑟𝑒𝑓(𝜉)
𝑑𝜉 

(2-56) 

    KL-divergence function of variable a is in (2-57), which will be used in the dual 

formulation to solve the inner maximization problem in section D. 

𝜑𝐾𝐿(𝑎):= 𝑎 log 𝑎 − 𝑎 + 1 (2-57) 

    The probability of the second-stage objective function 𝑄(𝑥, 𝜉), i.e., the corrective 

operation cost including load shedding lost, is restricted by the threshold ζ. As an 
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emerging risk measure method, CVaR is a coherent risk measure, which is convex, 

transition-equivalent, and monotonic. The original expression of CVaR is in (2-58), 

which can be further approximated by (2-59) to avoid the computation of multiple 

integral [38]. [𝑄(𝑥, 𝜉) − 𝜁]+ represent determining the larger value between 𝑄(𝑥, 𝜉) −

𝜁 and 0.  

𝐶𝑉𝑎𝑅𝛽(𝑄(𝑥, 𝜉)): =
1

1 − 𝛽
∫ 𝑄(𝑥, 𝜉)𝑝 (𝜉)𝑑𝜉
 

𝑄(𝑥,𝜉)≥𝑉𝑎𝑅𝛽(𝑥,𝜉)

 
(2-58) 

𝐶𝑉𝑎𝑅𝛽(𝑄(𝑥, 𝜉)): = min
𝜁∈ℝ

{𝜁 +
1

1 − 𝛽
𝐸𝑝[𝑄(𝑥, 𝜉) − 𝜁]

+ } 
(2-59) 

    The proposed FMS is formulated as (2-60) with weighted CVaR.  Equation (2-61) 

can be derived by substituting CVaR in (2-62) with (2-61).  

min
𝑥∈𝑋

𝑐′𝑥 + sup
𝑝∈𝐷𝜉,𝜉=Δ𝑃𝑘,𝜉𝑗 

{(1 − 𝛼)𝐸𝑝[𝑄(𝑥, 𝜉)] + 𝛼𝐶𝑉𝑎𝑅𝛽(𝑄(𝑥, 𝜉))}   (2-60) 

min
𝑥∈𝑋

{𝑐′𝑥 + sup
𝑝∈𝐷𝜉,𝜉=Δ𝑃𝑘,𝜉𝑗 

min
𝜁∈ℝ

{𝛼𝜁 + 𝐸𝑝[𝐺(𝑥, 𝜉)]}  } 
(2-61) 

𝐺(𝑥, 𝜉): = (1 − 𝛼)[𝑄(𝑥, 𝜉)] +
𝛼

1 − 𝛽
𝑎̃  

s.t.𝑄(𝑥, 𝜉) − 𝑎̃ − 𝜁 ≤ 0, 𝑎̃ ≥ 0  

    Based on the proof in [39] on the strong duality, (2-61) can be reformulated to (2-62) 

and (2-63) with a further step, where  

min
𝑥∈𝑋

{𝑐′𝑥 + min
𝜁∈ℝ

sup
𝑝∈𝐷𝜉,𝜉=Δ𝑃𝑘,𝜉𝑗 

{𝛼𝜁 + 𝐸𝑝[𝐺(𝑥, 𝜉)]}  } 
 

      (2-62) 

min
𝑥∈𝑋

{𝑐′𝑥 + 𝛼𝜁 + max
𝑝∈𝐷𝜉,𝜉=Δ𝑃𝑘,𝜉𝑗 

{∑𝑝𝑖𝐺𝑖(𝑥, 𝜉)

𝑚

𝑖=1

}  } 
 

      (2-63) 

    The inner maximization problem can be handled by the Lagrange function (2-64) 

with its dual formulation (2-70). 
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ℒ(𝑝, 𝜏, 𝜇) =∑𝑝𝑖𝐺𝑖(𝑥, 𝜉)

𝑚

𝑖=1

+ 𝜏 (1 −∑𝑝𝑖

𝑚

𝑖=1

)

+ 𝜇(𝜂 −∑𝑝𝑟𝑒𝑓,𝑖

𝑚

𝑖=1

𝜑𝐾𝐿 (
𝑝𝑖
𝑝𝑟𝑒𝑓,𝑖

)) 

 

 (2-64) 

max  ℒ(𝑝, 𝜏, 𝜇) = 𝜏 + 𝜂𝜇 + 𝜇∑𝑝𝑟𝑒𝑓,𝑖

𝑚

𝑖=1

[exp (
𝐺𝑖(𝑥, 𝜉) − 𝜏

𝜇
) − 1] 

 

(2-65) 

    According to Slater’s condition [40], when 𝜂  is larger than 0, the below 

reformulation can be made: 

max
𝑝∈𝐷𝜉,𝜉=Δ𝑃𝑘,𝜉𝑗 

{∑𝑝𝑖𝐺𝑖(𝑥, 𝜉)

𝑚

𝑖=1

} = min
𝜏,𝜇≥0

max  ℒ(𝑝, 𝜏, 𝜇)

  

 
 

(2-66) 

= min
𝜏,𝜇≥0

{𝜏 + 𝜂𝜇 + 𝜇∑𝑝𝑟𝑒𝑓,𝑖

𝑚

𝑖=1

[exp (
𝐺𝑖(𝑥, 𝜉) − 𝜏

𝜇
) − 1]} 

 

(2-67) 

    Substituting the inner maximization in (3-57) with (3-61), the below derivation can 

be obtained.  

min
𝜁,𝜏,𝜇≥0

{𝑐′𝑥 + 𝛼𝜁 + 𝜏 + 𝜂𝜇 + 𝜇∑𝑝𝑟𝑒𝑓,𝑖

𝑚

𝑖=1

[exp (
𝐺𝑖(𝑥, 𝜉) − 𝜏

𝜇
) − 1]} 

 

(2-68) 

s.t. 𝑥 ∈ 𝑋, 𝑄(𝑥, 𝜉) − 𝑎̃ − 𝜁 ≤ 0, 𝑎̃ ≥ 0,𝐺(𝑥, 𝜉):= (1 − 𝛼)[𝑄(𝑥, 𝜉)] +
𝛼

1−𝛽
𝑎̃ 

    However, the optimization problem (3-62) is nonlinear, which needs to be linearized 

before decomposition. For a given 𝑥 = 𝑥𝑘 , when 𝑄(𝑥𝑘, 𝜉) < ∞ , then 𝑄(𝑥𝑘 , 𝜉)  is 

subdifferentiable [41] and equation (3-63) can be obtained, where 𝐷𝑢𝑎𝑙(𝑥𝑘) =

𝑎𝑟𝑔max{𝜋′(ℎ − 𝐸𝑥𝑘): 𝐹′𝜋 ≤ 𝑓} is the set of optimal solutions of dual problem for (3-

47) and 𝜋𝑘,𝑖 ∈ 𝐷𝑢𝑎𝑙(𝑥𝑘) is optimal solution for ith and kth iterations. 

𝜕𝑄(𝑥𝑘 , 𝜉) = −𝐸′𝐷𝑢𝑎𝑙(𝑥𝑘) (2-69) 

    Let 𝑠𝑘: =
𝐺𝑖(𝑥

𝑘,𝜉)−𝜏𝑘

𝜇𝑘
 and 𝐹𝑖

𝑘: = 𝜇𝑘[exp(𝑠𝑘) − 1] , the subgradient of 𝐹𝑖
𝑘  can be 

described as: 
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𝜕𝐹𝑖
𝑘 = [(1 − 𝛼)exp(𝑠𝑘)𝐸′𝜋𝑘,𝑖, (1 − 𝑠𝑘)exp(𝑠𝑘)

− 1,−exp(𝑠𝑘),
𝛼

1 − 𝛽
exp(𝑠𝑘)] 

(2-70) 

    Based on the subgradient inequality of convex function, the below equation can be 

obtained. The optimality cut can be defined in (3-66). 

𝐹𝑖
 (𝑥, 𝜇, 𝜏, 𝑎̃𝑖) ≥ 𝐹𝑖

 (𝑥𝑘 , 𝜇𝑘, 𝜏𝑘, 𝑎̃𝑖
𝑘) + 𝜕𝐹𝑖

𝑘

∙ (𝑥 − 𝑥𝑘 , 𝜇 − 𝜇𝑘, 𝜏 − 𝜏𝑘 , 𝑎̃𝑖 − 𝑎̃𝑖
𝑘) 

(2-71) 

𝐹𝑖
 (𝑥, 𝜇, 𝜏, 𝑎̃𝑖) ≥ [𝐺𝑖(𝑥

𝑘, 𝜉) + (1 − 𝛼)(𝜋𝑘,𝑖)
′
𝐸𝑥𝑘 −

𝛼𝑎̃𝑖
𝑘

1 − 𝛽
]

+ 𝜕𝐹𝑖
𝑘(𝑥  , 𝜇 , 𝜏  , 𝑎̃𝑖

 ) 

(2-72) 

A Bender’s decomposition is employed to solve the problem and the flowchart is given 

in Fig. 2-3.   

         
Fig. 2- 3.  Flowchart of Bender’s decomposition approach.   
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2.2.2 Kernel Density Estimation-Based Ambiguity Set 

    The uncertainty in a equality constraint can be represented by two inequality 

constraints. For instance, the original equality constraint in (2-73) can be represented 

by (2-75) and (2-76), where 𝜔𝑗,𝑡
𝑠  is the real-time wind power output and 𝜉  is the 

uncertain wind power forecast error. 

∑ 𝑃𝑖𝑒,𝑡
 +

𝑖𝑒∈𝐼𝑒

∑𝜔𝑗,𝑡
𝑠 + ∑ 𝑓𝑙𝑒,𝑡

𝑎,𝑖𝑛𝑖 −

𝑙𝑒∈𝐿𝑒

∑ 𝑓𝑙𝑒,𝑡
𝑎,𝑡𝑒𝑟

𝑙𝑒∈𝐿𝑒

− ∑ 𝑃𝑘𝑒,𝑡
𝑘𝑒∈𝐾𝑒

= 0

𝑗∈𝐽

 
(2-73) 

𝜔𝑗,𝑡
𝑠 = 𝜔𝑗,𝑡

𝑓
+ 𝜉 (2-74) 

∑ 𝑃𝑖𝑒,𝑡
 +

𝑖𝑒∈𝐼𝑒

∑𝜔𝑗,𝑡
𝑠 + ∑ 𝑓𝑙𝑒,𝑡

𝑎,𝑖𝑛𝑖 −

𝑙𝑒∈𝐿𝑒

∑ 𝑓𝑙𝑒,𝑡
𝑎,𝑡𝑒𝑟

𝑙𝑒∈𝐿𝑒

− ∑ 𝑃𝑘𝑒,𝑡
𝑘𝑒∈𝐾𝑒

≥ 0

𝑗∈𝐽

 
(2-75) 

∑ 𝑃𝑖𝑒,𝑡
 +

𝑖𝑒∈𝐼𝑒

∑𝜔𝑗,𝑡
𝑠 + ∑ 𝑓𝑙𝑒,𝑡

𝑎,𝑖𝑛𝑖 −

𝑙𝑒∈𝐿𝑒

∑ 𝑓𝑙𝑒,𝑡
𝑎,𝑡𝑒𝑟

𝑙𝑒∈𝐿𝑒

− ∑ 𝑃𝑘𝑒,𝑡
𝑘𝑒∈𝐾𝑒

≤ 0

𝑗∈𝐽

 
(2-76) 

    Constraint (2-75) is used as the representative of reformulations in the later section, 

which is transformed into (2-77) since DRO considers the worst distribution of 

uncertain forecast error. 

𝑚𝑖𝑛
𝑃∈

∑ 𝑃𝑖𝑒,𝑡
 +

𝑖𝑒∈𝐼𝑒

∑𝜔𝑗,𝑡
𝑠 + ∑ 𝑓𝑙𝑒,𝑡

𝑎,𝑖𝑛𝑖 −

𝑙𝑒∈𝐿𝑒

∑ 𝑓𝑙𝑒,𝑡
𝑎,𝑡𝑒𝑟

𝑙𝑒∈𝐿𝑒

− ∑ 𝑃𝑘𝑒,𝑡
𝑘𝑒∈𝐾𝑒

≥ 0

𝑗∈𝐽

 
(2-77) 

Equation (2-78) measures the discrepancy between two probability distribution 𝑃 

and reference distribution 𝑃𝑟𝑒𝑓 based on φ-divergence through the divergence tolerance 

η. Equation (2-79) defines the KL divergence between 𝑃 and 𝑃𝑟𝑒𝑓 , where f (ξ) and 

fref(ξ) are the probability density functions.  

𝑃 = {𝑃 ∈ 𝐷|𝐷(𝑃‖𝑃𝑟𝑒𝑓) ≤ 𝜂} (2-78) 

𝐷(𝑃‖𝑃𝑟𝑒𝑓) = ∫𝑓 (𝜉) 𝑙𝑜𝑔
𝑓 (𝜉)

𝑓𝑟𝑒𝑓(𝜉)
𝑑𝜉 

(2-79) 

DRO considers the worst distribution scenario and thus the expectation of constraint 

(2-75) is based on all the possible uncertainty distributions are considered, which is 

given in (2-80).  

𝑚𝑖𝑛
𝑃∈𝐷

𝐸𝑝 [𝐻(𝑥, 𝜉)] ≥ 0 (2-80) 
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Based on the change-of-measure method, (2-81) can be obtained according to [33], 

where 𝐿(𝜉) = 𝑓 (𝜉)/𝑓𝑟𝑒𝑓(𝜉). By applying the change-of-measure method to constraint 

(2-80), equation (2-82) can be obtained.  

𝐷(𝑃‖𝑃𝑟𝑒𝑓) = ∫𝑓 (𝜉) 𝑙𝑜𝑔
𝑓 (𝜉)

𝑓𝑟𝑒𝑓(𝜉)
𝑑𝜉 = 𝐸𝑃𝑟𝑒𝑓[𝐿(𝜉) 𝑙𝑜𝑔 𝐿(𝜉)] 

(2-81) 

𝐸𝑃 [𝐻(𝑥, 𝜉)] = ∫𝐻 (𝑥, 𝜉)  
𝑓 (𝜉)

𝑓𝑟𝑒𝑓(𝜉)
𝑓𝑟𝑒𝑓(𝜉) 𝑑𝜉 = 𝐸𝑃𝑟𝑒𝑓[𝐻(𝑥, 𝜉)𝐿(𝜉)] 

(2-82) 

To incorporate uncertainty within the constraint (2-77), it needs to be treated as an 

inner optimization problem with sub-objectives and constraints.  

𝑚𝑖𝑛 𝐸𝑃𝑟𝑒𝑓[𝐻(𝑥, 𝜉)𝐿(𝜉)] (2-83) 

s.t. 𝐸𝑃𝑟𝑒𝑓[𝐿(𝜉) 𝑙𝑜𝑔 𝐿(𝜉)] ≤ 𝜂  

The original optimization problem is reformulated into (2-84) as follows with the 

expectation of the constraints. 

min  𝛤  (2-84) 

s.t. Constraints (5)-(31) 

s.t. 𝑚𝑖𝑛
𝑃∈𝑃

𝐸𝑃𝑟𝑒𝑓 [𝐻(𝑥, 𝜉)] ≥ 0 

𝑃 = {𝑃 ∈ 𝐷|𝐷(𝑃‖𝑃𝑟𝑒𝑓) ≤ 𝜂} 

 

    According to [33], when strong duality holds, (2-84) can be transformed into (2-85).   

min  Γ  

s.t. Constraints (5)-(31) 

 (2-85) 

s.t. 𝑚𝑎𝑥
𝑃∈𝑃

𝛼 𝑙𝑜𝑔 𝐸𝑃𝑟𝑒𝑓[𝑒
𝐻(𝑥,𝜉)/𝛼 + 𝛼𝜂] ≥ 0  

    Then, the explicit expression of constraints of (2-85) according to (2-71) can be 

obtained in (2-86). 

max
𝑃∈𝑃

𝛼 𝑙𝑜𝑔 𝐸𝑃𝑟𝑒𝑓 [𝑒
∑ 𝑃𝑖𝑒,𝑡

𝑠 +𝑖𝑒∈𝐼𝑒
∑ 𝜔𝑗,𝑡

𝑠 +∑ 𝑓𝑙𝑒,𝑡
𝑎,𝑠,𝑖𝑛𝑖−𝑙𝑒∈𝐿𝑒

∑ 𝑓𝑙𝑒,𝑡
𝑎,𝑠,𝑡𝑒𝑟

𝑙𝑒∈𝐿𝑒𝑗∈𝐽 −∑ 𝑃𝑘𝑒,𝑡𝑘𝑒∈𝐾𝑒 /𝛼 +

𝛼𝜂] ≥ 0                                                                                                                     (2-86) 

The logarithmic expression under expectation is a moment generating function with 

distribution 𝑃𝑟𝑒𝑓, which can be transformed into a deterministic formulation. In this 
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paper, kernel density estimation (KDE) in (2-87) is used to estimate the reference 

distribution, where 𝜉𝑖  represents error data, N  is the number of error data, hN  is a 

positive smoothing parameter, and H( ) is the kernel function (non-negative and the 

integral of the probability distribution is 1) [42]. Assuming H( ) follows the normal 

distribution, (2-88) is formulated from (2-87) with mean value 𝜉𝑖 and variance ℎ𝑁
2
. 

𝑓𝑁(𝜉) =
1

𝑁ℎ𝑁
∑𝐻(

𝜉 − 𝜉𝑖

ℎ𝑁
)

𝑁

𝑖=1

 

 

(2-87) 

𝑓𝑁(𝜉) =
1

𝑁
∑

1

ℎ𝑁√2𝜋
𝑒−(

(𝜉−𝜉𝑖)
2
/2ℎ𝑁

2 )

𝑁

𝑖=1

 

 

(2-88) 

Finally, (2-73) can be transformed into (2-89) based on [33].  

 ∑ 𝑃𝑖𝑒,𝑡
𝑠 +

𝑖𝑒∈𝐼𝑒

∑𝜔𝑗,𝑡
𝑓
+ ∑ 𝑓𝑙𝑒,𝑡

𝑎,𝑠,𝑖𝑛𝑖 −

𝑙𝑒∈𝐿𝑒

∑ 𝑓𝑙𝑒,𝑡
𝑎,𝑠,𝑡𝑒𝑟

𝑙𝑒∈𝐿𝑒

− ∑ 𝑃𝑘𝑒,𝑡
𝑘𝑒∈𝐾𝑒𝑗∈𝐽

+𝑚𝑎𝑥
𝛼≥0

{𝛼𝜂 +
ℎ𝑁,𝑃
2

2𝛼
+ 𝛼 𝑙𝑛

1

𝑁𝑃,𝑡
∑𝑒(

(𝜉𝑃
𝑖 (𝑡)/𝛼))

𝑁𝑃,𝑡

𝑖=1

} ≥ 0 

 

(2-89) 
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decomposition method. 
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3.1 Abstract 

    Integrated energy system (IES) is a viable and effective solution for improving the 

energy utilization efficiency and promoting the renewable penetration via aggregating 

independent systems into an integrated management scheme. The water system 

management problem has been widely investigated. However, the interdependencies 

between water and energy systems are significant and the effective co-optimization is 

required considering strong interconnections. For instance, around 80% of the power 

consumed in water systems is used for pumping and distributing water. In power 

systems, surplus water resources significantly contribute to the generation and 

conversion in power systems. This paper proposes a two-stage distributionally robust 

operation model for integrated water-energy nexus systems (IWENS) including power, 

gas and water systems networked with energy hub systems in a distribution level 

considering wind uncertainty. The presence of the wind uncertainty inevitably leads to 

the risks in decision-making process. Accordingly, a coherent risk measure, i.e., 

conditional value-at-risk, is combined with the optimization objective to determine risk-

aversion operation schemes. This two-stage mean-risk distributionally robust 

optimization is solved by Bender’s decomposition method. Case studies focus on 

investigating the strong interdependencies among the four interconnected energy 

systems. Numerical results validate the economic effectiveness of IES through 

optimally coordinating the multi-energy infrastructures. This work aims at jointly 

optimizing the IWENS in a distribution level considering the extensive water-energy 

nexus and renewable variation. To the end, the overall operational efficiency can be 

improved.   

3.2 Nomenclature 

    Due to space limitation, the variables defined in section C represents both the 

scheduled variables in the first stage optimization and the regulated variables in the 

second stage. The superscript ‘s’ and ‘re’ representing ‘scheduled’ and ‘regulated’ 

respectively are omitted in section C. The full expression of variables is given in section 

Ⅱ. In addition, the superscript ‘ini’ and ‘ter’ representing initial and terminal nodes of 

power bus, gas and water nodes are also omitted in this section to save space. 

A. Indices and sets 
t, T Index and set of time periods.  
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𝑏 , 𝐵  Index and set of electricity buses. 

𝑛 , 𝑁  Index and set of gas nodes. 

𝑤 , 𝑊  Index and set of water nodes. 

𝑖𝑒, 𝐼𝑒 Index and set of traditional distributed generators (DG). 

𝑖𝑔, 𝐼𝑔 Index and set of natural gas sources. 

wr, WR Index and set of water reservoirs.  

j,  J Index and set of renewable DGs.  

gt, GT Index and set of gas turbines. 

wp, WP Index and set of water pumps. 

𝑙𝑒, 𝐿𝑒 Index and set of power lines. 

𝑙𝑔, 𝐿𝑔 Index and set of gas pipelines. 

𝑙𝑤, 𝐿𝑤 Index and set of water pipelines without pumps. 

𝑙𝑤𝑝, 𝐿𝑤𝑝 Index and set of water pipelines with pumps. 

𝑘𝑒, 𝐾𝑒 Index and set of power loads. 

𝑘𝑔, 𝐾𝑔 Index and set of gas loads. 

𝑘𝑤, 𝐾𝑤 Index and set of water loads. 

B. Parameters  

𝑃𝑘𝑒,𝑡, 𝑄𝑘𝑒,𝑡, 𝐺𝑘𝑔,𝑡, 

𝑃𝑘𝑤,𝑡 

Demand of active power, reactive power, gas and water. 

𝑃𝑚,𝑚𝑎𝑥, 𝑃𝑤𝑟,𝑚𝑎𝑥 Maximum active power purchase from upper level 
market and water purchase from reservoir. 

𝑅𝑖𝑒
+ , 𝑅𝑖𝑒

− , 𝑅𝑔𝑡
+ , 𝑅𝑔𝑡

− , 𝑅𝑤𝑝
+ , 

𝑅𝑤𝑝
−  

Maximum up and down reserve capacity of traditional 
DGs, the gas turbine and water pumps. 

𝑃𝑖𝑒,𝑚𝑎𝑥, 𝑃𝑖𝑒,𝑚𝑖𝑛, 

𝑃𝑔𝑡,𝑚𝑎𝑥, 𝑃𝑔𝑡,𝑚𝑖𝑛, 

𝑃𝑤𝑝,𝑚𝑎𝑥,𝑃𝑤𝑝,𝑚𝑖𝑛 

Maximum and minimum limits for active power output 
of traditional DGs, gas turbine output and water pump 
power consumption. 

𝑄𝑖𝑒,𝑚𝑎𝑥, 𝑄𝑖𝑒,𝑚𝑖𝑛 Maximum and minimum reactive power output of 
traditional DG 𝑖𝑒.   

𝑉𝑏,𝑚𝑎𝑥
 ,𝑉𝑏,𝑚𝑖𝑛

  Maximum and minimum voltage limits. 

𝑥𝑙𝑒 , 𝑟𝑙𝑒 Reactance and resistance of power line 𝑙𝑒. 

𝑉0 Reference voltage magnitude. 

𝑓𝑙𝑒,𝑚𝑎𝑥,𝑞𝑓𝑙𝑒,𝑚𝑎𝑥 Maximum active and reactive power flow of line 𝑙𝑒. 

𝑐𝑒𝑏, 𝑐𝑔𝑡 Conversion coefficient for electric boilers and the gas 
turbine. 

𝜔𝑗
𝑠(𝑡) Forecasted output of renewable DG j at time t. 

𝐺𝑖𝑔,𝑚𝑎𝑥,𝐺𝑖𝑔,𝑚𝑖𝑛 Maximum and minimum output of gas source 𝑖𝑔.   
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𝑃𝑟𝑙𝑔,𝑚𝑎𝑥, 𝑃𝑟𝑙𝑔,𝑚𝑖𝑛 Maximum and minimum gas pressure of gas pipeline 𝑙𝑔.  

𝛾𝑙𝑔 Coefficient for Weymouth equation. 

𝑓𝑙𝑔,𝑚𝑎𝑥, Maximum gas flow of line 𝑙𝑔. 

𝐶𝐹𝑙𝑔  Gas compressor coefficient. 

𝜂𝑒 Electrical efficiency for electrolyser.  

𝜂ℎ𝑦−𝑐𝑎, 𝜂ℎ𝑦−𝑚𝑒 Reaction coefficients for required carbon dioxide and 
methanation output. 

ℎ𝑤,𝑚𝑎𝑥
𝑙𝑤𝑝 , ℎ

𝑤,𝑚𝑖𝑛

𝑙𝑤𝑝 , 

ℎ𝑤,𝑚𝑎𝑥
𝑙𝑤 , ℎ𝑤,𝑚𝑖𝑛

𝑙𝑤  

Maximum and minimum limits for head pressure of water 
node connected with or without water pump. 

𝑎𝑙𝑤𝑝 , 𝑏𝑙𝑤𝑝 Water pump characteristic coefficients.  

𝑅𝑙𝑤𝑝 , 𝑅𝑙𝑤 Head gain and loss coefficients. 

𝜋𝑤𝑝 Water pump efficiency. 

𝑓𝑙𝑤𝑝,𝑚𝑎𝑥
𝑠 , 𝑓𝑙𝑤,𝑚𝑎𝑥

𝑠  Water flow for water pipeline with and without pump. 

𝜂𝑐𝑝𝑒 , 𝜂𝑐𝑝𝑒 Electric and heating efficiency for combined heat and 
power (CHP). 

𝜂𝐶𝑂𝑃,𝜂𝐺𝐹  Coefficient of performance of ground source heat pump 
(GSHP) and efficiency of gas furnace (GF). 

𝑃𝑐𝑝,𝑚𝑎𝑥
𝑖 , 𝑃𝑐𝑝,𝑚𝑖𝑛

𝑖 , 𝑃𝐻𝑃,𝑚𝑎𝑥
𝑖 , 

𝑃𝐻𝑃,𝑚𝑖𝑛
𝑖 , 𝑃𝐺𝐹,𝑚𝑎𝑥

𝑖 , 𝑃𝐺𝐹,𝑚𝑖𝑛
𝑖  

Maximum and minimum input limits of CHP, GSHP and 
GF. 

𝑃𝐵𝑆,𝑚𝑎𝑥
𝑐ℎ , 𝑃𝐵𝑆,𝑚𝑖𝑛

𝑐ℎ , 

𝑃𝐵𝑆,𝑚𝑎𝑥
𝑑𝑐ℎ , 𝑃𝐵𝑆,𝑚𝑖𝑛

𝑑𝑐ℎ  

Maximum and minimum charging and discharging 
power for battery storage. 

𝑃𝐻𝑆,𝑚𝑎𝑥
𝑐ℎ , 𝑃𝐵𝑆,𝑚𝑖𝑛

𝑐ℎ , 

𝑃𝐻𝑆,𝑚𝑎𝑥
𝑑𝑐ℎ , 𝑃𝐻𝑆,𝑚𝑖𝑛

𝑑𝑐ℎ  

Maximum and minimum charging and discharging heat 
for heat storage. 

𝜂𝐵𝑆
𝑐ℎ , 𝜂𝐵𝑆

𝑑𝑐ℎ , 𝜂𝐻𝑆
𝑐ℎ , 𝜂𝐻𝑆

𝑑𝑐ℎ Charging and discharging efficiency for battery and heat 
storage. 

𝐸𝐵𝑆,𝑚𝑎𝑥
 , 𝐸𝐵𝑆,𝑚𝑖𝑛

 , 

𝐸𝐻𝑆,𝑚𝑎𝑥
 , 𝐸𝐻𝑆,𝑚𝑖𝑛

 , 

Maximum and minimum remaining energy limits of 
battery and heat storage. 

𝐿𝑒,𝑡, 𝐿ℎ,𝑡 Electricity and heat load ofenergy hub system. 

𝜆𝑖𝑒
𝑎 , 𝜆𝑖𝑒

𝑏 , 𝜆𝑖𝑒
𝑐  Cost coefficients for generation of traditional DG 𝑖𝑒.  

𝜆𝑖𝑔 Cost coefficient for output of natural gas source 𝑖𝑔. 

𝜆𝑚,𝜆𝑤𝑟 Cost coefficient of power and water purchase. 

𝜆𝑖𝑒
+ , 𝜆𝑖𝑒

− , 𝜆𝐺𝑇
+ , 𝜆𝐺𝑇

− , 𝜆𝑤𝑝
+ , 

𝜆𝑤𝑝
−  

Cost coefficient for up and down reserve of traditional 
DGs, the gas turbine and water pumps.  
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𝜆𝑚
𝑟𝑒, 𝜆𝑖𝑒

𝑟𝑒 , 𝜆𝑗
𝑟𝑒 , 𝜆𝑖𝑔

𝑟𝑒, 𝜆𝑤𝑟
𝑟𝑒  Regulation cost coefficient of power purchase, traditional 

DGs 𝑖𝑒 , wind turbines, natural gas sources and water 
reservoir. 

C. Variables 
𝑃𝑚,𝑡, 𝑃𝑤𝑟,𝑡 Active power and water purchase. 

𝑟𝑖𝑒,𝑡
+ ,𝑟𝑖𝑒,𝑡

− , 𝑟𝑔𝑡,𝑡
+ , 

𝑟𝑔𝑡,𝑡
− , 𝑟𝑤𝑝,𝑡

+ , 𝑟𝑤𝑝,𝑡
−  

Up and down reserve capacity of traditional DGs, the gas 
turbine and water pumps. 

𝑃𝑖𝑒,𝑡
 , 𝑃𝑔𝑡,𝑡

 , 𝑃𝑤𝑝,𝑡
  Active power output of traditional DGs, gas turbine 

output and water pump power consumption. 

𝑄𝑖𝑒,𝑡
  Reactive power output of traditional DGs. 

𝑃𝑖𝑔,𝑡
  Output of natural gas source. 

𝑉𝑏,𝑡
𝑠 , 𝑉𝑏,𝑡

𝑟𝑒 Scheduled and regulated voltage of bus b at time t. 

𝑓𝑙𝑒,𝑡
 , 𝑞𝑓𝑙𝑒,𝑡

 , 𝑓𝑙𝑔,𝑡
   Active and reactive power flow and gas flow. 

𝑓𝑙𝑒,𝑒𝑏,𝑡
 , 𝑃𝑒𝑏,𝑡

  Injected power flow and output of electric boiler.  

𝐺𝑖𝑔,𝑡
  Output of natural gas sources. 

𝑃𝑟𝑛,𝑡
  Pressure of gas node n.  

𝑓𝑙𝑔,𝐺𝑇,𝑡
 , 𝑃𝑔𝑡,𝑡

  Injected gas flow and output of gas turbine.  

𝑃𝑛,𝑡
𝑃2𝐺  Power consumed by the electrolyser. 

𝐺𝑛,𝑡
ℎ𝑦 

, 𝐺𝑛,𝑡
ℎ𝑦_𝑚𝑒 

,

 𝐺𝑛,𝑡
ℎ𝑦_𝑑 

, 𝐺𝑛,𝑡
𝑚𝑒  

Gas output for overall P2G process, direct hydrogen 
injection, hydrogen during methanation process and 
methanation.  

𝐺𝑛,𝑡
𝑐𝑎  Required gas of carbon dioxide during methanation 

process. 

ℎ𝑤,𝑡
𝑙𝑤𝑝 , ℎ𝑤,𝑡

𝑙𝑤 ,  Water pressure of pipe with and without water pump. 

ℎ̅𝑤,𝑡
𝑙𝑤 , ℎ̅𝑤,𝑡

𝑙𝑤𝑝   Elevation of water node connected with and without 
pump. 

ℎ̃𝑤,𝑡
𝑙𝑤 , ℎ̃𝑤,𝑡

𝑙𝑤𝑝
 Head loss and gain of water node. 

𝑓𝑙𝑤𝑝,𝑡,
 𝑓𝑙𝑤,𝑡

  Water flow of pipe with and without water pump. 

𝑓𝑙𝑒,𝑡
 𝑖𝑛𝑗
, 𝑓𝑙𝑔,𝑡

 𝑖𝑛𝑗
 Power and gas flow injection to EHSs. 

𝑃𝐶𝑂𝑃,𝑡
𝑖 , 𝑃𝐶𝑂𝑃,𝑡

𝑜 , Power input and heat output of GSHP. 

𝑃𝐺𝐹,𝑡
𝑖 , 𝑃𝐺𝐹,𝑡

𝑜  Gas input and output of gas furnace. 

𝑃𝑐𝑝 ,𝑡
𝑠,𝑖 , 𝑃𝑐𝑝𝑒,𝑡

𝑠,𝑜 , 𝑃
𝑐𝑝ℎ,𝑡

𝑠,𝑜
 Gas input and power and heat output of CHP. 

𝑃𝐵𝑆,𝑡
𝑐ℎ , 𝑃𝐵𝑆,𝑡

𝑑𝑐ℎ, 

𝑃𝐻𝑆,𝑡
𝑐ℎ , 𝑃𝐻𝑆,𝑡

𝑑𝑐ℎ  

Charging and discharging power and heat of battery and 
heat storage. 

𝐸𝐵𝑆,𝑡
 , 𝐸𝐻𝑆,𝑡

  Remaining energy of battery and heat storage. 
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𝑣𝑒,𝑡
 , 𝑣𝑔,𝑡

  Dispatch factors of power and gas. 

x, y  Vectors of first and second stage variables. 

3.3 Introduction 

    Integrated energy system (IES) is an interdependent configuration and management 

solution to coordinate multiple energy vectors. It can be realised by the utilization of 

energy converters, e.g., power-to-gas (P2G), combined heat and power (CHP), heat 

pumps and gas turbines, etc, further intensify the operational interdependency of IES. 

Through optimally coordinating multiple energy infrastructures, system efficiency can 

be significantly improved, renewable energy penetration can be highly facilitated, and 

environmental targets can be achieved.  

    Much effort has been focused on the optimization of IES, mainly achieving economic 

and environmental targets. A robust optimization (RO) model is proposed for an 

integrated power-gas-heat system in smart districts [43]. This model is demonstrated 

on a real multi-energy district and real-world physical limitations of energy 

infrastructures are examined. Paper [44] designs an optimal operation model for a 

regional IES considering energy price variations. Both system cost and environmental 

pollutions can be reduced through this optimization model. In [45], an energy sharing 

framework for multiple interconnected microgrids in an integrated power and heat 

system is proposed. This model comprehensively optimizes energy generation cost, 

trading cost with the utility grid and other microgrids, and discomfort cost. Paper [19] 

presents a decentralized optimization framework for an integrated power and gas 

system with networked energy hubs. A distributed algorithm based on Bender’s 

decomposition is used to solve this mixed-integer second-order cone programming 

problem. In [46], a consumption-based carbon pricing method is combined with an 

optimization model for IES. Accordingly, energy customers are given proper incentives 

to use low-carbon energy.   

    Traditionally, water and power systems are designed and operated separately. 

Nevertheless, water and energy systems are mutually interdependent [47]. According 

to [48], 3% of the U.S. electricity is facilitated by water distribution systems and 

approximately 80% of  the water consumed electricity is used for distributing and 

pumping water. The abundant water resources largely contribute to power generation 

and conversion in power systems.  
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    The existing work on joint optimization of water and power systems mainly focus on 

reducing system operation cost and gas emissions. Paper [49] proposes an optimal 

water-power usage by controllable assets considering the couplings in an integrated 

water and power system (IWPS). A distributed algorithm based on the alternating 

direction method of multipliers helps pursue individual objectives. In [50], a 

coordinated day-ahead optimization model for IWPS is proposed considering the 

hydraulic constraints of water systems. An energy flexibility model for water systems 

is designed to offer the feasible energy flexibility capacity to the system operator. Paper 

[51] proposes an optimization model for the demand-side management of IWPS. The 

water system is treated as an effective resource to manage renewable generation. 

Stochastic programming (SP) based multi-stage fuzzy optimization is developed for a 

combined operation and planning problem in an IWPS considering uncertain power 

demand [52].   

    The inherent interdependencies between subsystems in IES have been promoted due 

to increasing energy demand growth, lower prices of gas resources, and emerging 

conversion technologies for interconnecting subsystems. The aforementioned literature 

review in the IES demonstrates the benefits of interdependencies. Moreover, the 

integration of multiple energy systems and water systems will further strengthen the 

couplings and interdependencies.  

    However, research on the integration of multi-energy systems and water system is 

very limited until  very recent work in[53], which proposes a robust optimization model 

(RO) for a multi-energy water-energy nexus system (MEWENS) considering wind 

uncertainty based on a box-like uncertainty set. The multi-energy flow of power, gas, 

heat and water systems is analysed in a two-stage optimization framework and solved 

by column-and-constraint generation algorithm. 

    In the existing literature, the uncertainty pertaining to renewable generation in IES 

operation is commonly handled by SP [54, 55] and RO [43, 53]. SP assumes that the 

distribution of uncertain variables is known. However, obtaining explicit distributions 

is impractical and the scenario approach will lead to computational burden in 

optimization. RO copes with uncertainty considering all realizations, including the 

worst-case renewable fluctuation scenario, which ensures system robustness but 

sacrifices system cost effectiveness. Distributionally robust optimization (DRO) , 

which employs partial distributional information to capture the ambiguous uncertainty 
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distributions, can overcome the limitations and deficiencies of SP and RO. Recently, 

DRO has been applied in the operation of IES. An optimal gas-power flow model is 

established in [56] and wind power uncertainty is characterized by Wasserstein-based 

ambiguity set. Paper [57] proposes distributionally robust scheduling for integrated 

electricity and gas systems considering demand response. The revenue from demand 

response is maximized and expected load shedding cost is minimized.  

    DRO employs ambiguity sets to capture the uncertainties pertaining to known 

distributional information. The optimization results will be intractable or over-

conservative if the ambiguity set is not chosen appropriately. There are two common 

methods to characterize ambiguity sets, moment-based ambiguity set and discrepancy-

based ambiguity set. The former one has simple tractable reformulations, e.g., 

semidefinite program (SDP) or second-order cone program (SOCP). Nevertheless, 

different distributions might have the same moment information, which introduces 

challenges for determining the worst-case distribution. Discrepancy-based ambiguity 

set measures the statistical distance between the reference distribution and candidate 

distributions. Kullback-Leibler (KL) divergence is widely applied in operation 

problems in the area of power systems [58, 59].  

    The uncertainties bring risks into economic operation. Intuitively, risks in the 

proposed IES operation model can lead to abnormal high operation cost. Mean-risk 

optimization considers a coherent trade-off between system economic performance and 

risk, which has been applied with SP on energy system operation [60-62]. Paper [60] 

develops a mean-risk stochastic programming model for unit commitment considering 

renewable energy uncertainty. A conditional value-at-risk (CVaR) is incorporated to 

assess the risk from renewable energy uncertainty. In [62], a day-ahead operational 

planning model for a regional energy service provider with electricity price uncertainty 

is proposed. The CVaR criterion is employed to hedge against the uncertainty.  

   This paper aims at constructing a two-stage mean-risk DRO model, which is helpful 

for providing system operators the trade-off operation scheme between operation cost 

and risk mitigation. Based on the common IES, this paper proposes a coordinated 

optimization for integrated water-energy nexus system (IWENS) with the connection 

of multiple energy hub systems (EHSs) containing power, gas, heat and water systems. 

This paper proposes a two-stage mean-risk distributionally robust optimization (TSMR-

DRO) for IWENS considering the uncertainty of wind power generation. The two-stage 
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model includes day-ahead and real-time operation schemes, prior to and after wind 

uncertainty realization. The ambiguity set for capturing wind uncertainty is constructed 

using KL divergence. The coherent risk measure, i.e., CVaR is employed to model the 

trade-off between expected computational performance and risk. Bender’s 

decomposition is applied to solve the problem in an iterative manner. The proposed 

IWENS can provide system operators a two-stage operation scheme aiming at 

minimizing the system operation cost and a new perspective when dealing with 

enormous interdependencies.  

    Compared with the existing MEWENS [53], this paper makes further improvements: 

i) the proposed IWENS is in distribution level, which further considers the voltage at 

each bus, and both active and reactive power; ii) IWENS is connected with multiple 

EHSs, which supplies residential energy customers. It also brings about more 

conversions and interdependencies and accordingly enhances the overall energy 

utilization efficiency; iii) The proposed KL divergence-based DRO offers less-

conservative results than RO; iv) compared with the risk-neutral optimization, TSMR-

DRO offers the system operators with decision makings between the economic 

efficiency and the risk.  

    The main contributions of this paper are as follows: 

1) Energy structure: It is the first attempt to model an innovative IWENS structure 

networked with EHSs and renewable distributed generators (DGs) in a distribution level. 

The intricate nexus between power, gas and water is extensively modelled. The high 

renewable penetration in the IWENS can be effectively facilitated by the energy 

conversions and thus the excessive power flow caused by renewable fluctuation can be 

compensated by other subsystems. 

2) It aggregates considerable interconnections and converters among subsystems, e.g., 

gas turbines, P2G facilities, CHP, GF, GSHP, water pumps and electric boilers. The 

enormous interdependencies and interactions between energy sectors are beneficial for 

improving economic efficiency and sustainability. 

3) A two-stage DRO model is applied to optimize both day-ahead and real-time 

operation schemes. The day-ahead stage determines the initial operation scheme with 

reserve capacity from traditional DGs and CHPs and water pumps. 

4) Optimization method: It is the first attempt to combine DRO with mean-risk 

optimization. The benefits of the proposed DR-MRO is in threefold: i) it overcomes the 
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shortages of SO and RO by using partial distributional information with moderate 

robustness, ii) the KL divergence-based ambiguity set can flexibly shape the considered 

candidate distributions compared with moment-based ambiguity sets and accordingly 

yields less-conservative results and iii) the trade-off between economic performance 

and risk can be realized based on the incorporation of CVaR on the objective function. 

    The remainder of this paper is organized as follows. Section 3.4 presents the 

objective function and constraints for both day-ahead and real-time stages. Section 

2.2.1 proposes the method for solving KL divergence-based TSMR-DRO considering 

the incorporation of CVaR. The case studies for demonstrating the advantages of 

IWENS and TSMR-DRO are given in Section 3.5. Finally, section 3.6 concludes the 

entire paper. 

3.4 IWENS Structure  

    The enormous interdependencies among each subsystem are realized by the strong 

couplings for subsystems with multiple energy converters facilitated. CHP enables the 

conversion from gas to both heat and electricity to supply the heating and electricity 

loads of energy hubs.  P2G facilities can convert excessive renewable power generation 

to synthetic natural gas; The conversion from gas to power is mainly realized by 

utilizing gas turbines; Ground source heat pump (GSHP) and gas furnace (GF) enable 

the heat conversion from power and gas respectively; The electrolyses in the P2G 

facilities consume the water from water system; The energy conversion from CHP relies 

on the water supply; Water pumps consume electricity from power system; The 

electricity boiler in the water system requests the electricity supply to convert the water 

to heat. Consequently, modelling and optimizing all the subsystems as an entity can 

facilitate the economy and security of IWENS.  

    The proposed IWENS structure is given in Fig. 3-1. The power and gas systems have 

three interconnection points: i) bus 6 and 15 in power system is connected with node 2 

and 6 in gas system via gas turbines and P2G facility on bus 10 is connected with gas 

node 3. The two EHSs are sourced from both power and gas systems. The water 

distribution system interconnects with all the other subsystems: i) water node 11 is 

connected with the P2G facility for the water electrolysis process, ii) water node 2 

connects with EHS 1 and 2 for CHP conversion; iii) water pump at node 1, 2 and 6 

consume electricity from EHS 1 and iv) water system is connected with EHS via an 

electric boiler. The IWENS contains two EHSs. Each EHS contains a CHP, a GSHP, a 
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GF. EHS 1 contains an energy storage system (ESS). The ESS is composed of a battery 

storage and a water tank for storing excessive electricity and heating respectively.  

3.5 Problem Formulation 

    This section proposes the mathematical modelling for IWENS including both  day-

ahead and real-time operation schemes. Then the risk measure is given. Finally, the 

objective function is illustrated. The assumption is made that the entire IWENS is 

owned by a single entity who controls all the energy infrastructures and there is no 

trading between each subsystem. 

3.5.1. Day-ahead Operation 

    The day-ahead optimization schedules power generation plan of traditional DGs and 

the reserve capacity dispatch from traditional DGs, gas turbines and water pumps 

considering the operation status of other energy infrastructures. The constraints are in 

(3-1)-(3-40). The power purchase from upper-level market is given in (3-1). The reserve 

capacity from traditional DGs, gas turbines and water pumps are shown in (3-2) and  

(3-3), followed by their output limits in (3-4) and (3-5). Constraint (3-6) limits the 

reactive power output of traditional DGs. In power distribution systems, linearized 

      
    

   

 

Fig. 3-1 . Proposed structure of IWENS.   

 

TABLE 3-1 PARAMETERS OF WATER RESERVOIRS 

 

Node 

No. 

𝑃𝑤𝑟,𝑚𝑎𝑥 

(m3/h) 

𝜆𝑤𝑟 

($/m3) 

Elevation 

(m) 

1 325 6.4 -252.5 

2 700 2.6 -255 

 

TABLE 3-2 PARAMETERS OF NATURAL GAS SOURCES 

 

Node 

No. 

𝑃𝑖𝑔,𝑚𝑖𝑛 

(kcf/h) 

𝑃𝑖𝑔,𝑚𝑎𝑥 

(kcf/h) 

𝜆𝑖𝑔 

($/kcf) 

1 1000 3000 2.2 

2 1000 6000 2 

 

TABLE 3-3 GENERATOR PARAMETERS 

 

Bus 

No. 

𝑃𝑖𝑒,𝑚𝑎𝑥 

(MW) 

𝑃𝑖𝑒,𝑚𝑖𝑛 

(MW) 

𝑅𝑖
+, 𝑅𝑖

− 

(MW) 

𝑎𝑖 

($/MW2) 

𝑏𝑖 

($/MW) 

𝑐𝑖 

($) 

13 1.2 0.3 0.2 6000 7100 6200 

28 1.0 0.1 0.2 4500 10500 4000 

 

TABLE 3-4 ECONOMIC PERFORMANCE FOR ALL CASES 

 

Economic result Case 1 Case 2 Case 3 Case 4 Case 5 

Power system 

operation cost ($) 
22900 20400 13275 21472 28925 

Gas system 
15512 14485 12044 16324 26140 
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DistFlow equations are commonly used in optimization problems,  given in (3-7)-(3-9). 

Constraint (3-10) is the output of electric boiler. The balancing conditions for active 

and reactive power are in (3-11) and (3-12).   

    The output of natural gas source is constrained in (3-13). Constraints (3-14) and (3-

15) are used to limit the gas pressure. Note that the gas pressures of initial nodes are 

always higher than terminal nodes due to the unidirectional gas flow. Initial and 

terminal nodes exist at the same pipeline. The initial node represents the origin of the 

gas flow and the terminal node represents the end of the gas flow. Accordingly, 

constraint (3-15) is used to ensure unidirectional gas flow. Equation (3-16) is the 

Weymouth gas flow equation that characterizes the relationship between gas pressure 

and flow. The gas flow of gas pipelines is constrained in (3-17). The output of gas 

turbine is in (3-18). Equation (3-19) presents the relationship between the gas pressure 

of initial and terminal nodes of  gas compressors. The excessive renewable generation 

can be converted into gas via P2G. The electrolyser splits water into hydrogen and 

oxygen. The output of electrolyser is given in (3-20). The nodal gas balance is given in 

(3-21).  

    In water distribution systems, constraint (3-22) limits the output of reservoir. 

Equation (3-23) is the constraint of water pressure limit for pipes installed with and 

without water pumps. In (3-24)-(3-27), the hydraulic characteristics of water pipes are 

given for pipes installed with and without water pump in terms of head gain and loss. 

The pressure head gain of water pump is in (3-26). Equation (3-27) describes the 

hydraulic characteristic of pipes without pumps using Darcy-Weisbach equation [63]. 

The power consumption of  water pump is in (3-28). Constraint (3-29) limits the water 

flow magnitude. The mass balance for the water system is in (3-30). 

    In EHSs, the energy conversion of CHP, GF and GSHP are in (3-31)-(3-33). The 

input limit for all converters is given in (3-34). Equation (3-35) is the constraint of the 

charging and discharging power and heat for ESSs. Constraint (3-36) and (3-37) limit 

the remaining energy for battery storage and water tank. Constraint (3-38) presents the 

coupling relationship for the EHSs, which is the energy balance constraint of EHSs.  

0 ≤ 𝑃𝑚,𝑡
𝑠 ≤ 𝑃𝑚,𝑚𝑎𝑥  (3-1) 

0 ≤ 𝑟{∙},𝑡
+ ≤ 𝑅{∙}

+ , {∙} = 𝑖𝑒 , 𝑔𝑡, 𝑤𝑝 (3-2) 
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0 ≤ 𝑟{∙},𝑡
− ≤ 𝑅{∙}

− , {∙} = 𝑖𝑒 , 𝑔𝑡, 𝑤𝑝 (3-3) 

𝑃{∙},𝑡
𝑠 + 𝑟{∙},𝑡

+ ≤ 𝑃{∙},𝑚𝑎𝑥, {∙} = 𝑖𝑒 , 𝑔𝑡, 𝑤𝑝 (3-4) 

𝑃{∙},𝑚𝑖𝑛 ≤ 𝑃{∙},𝑡
𝑠 − 𝑟{∙},𝑡

− , {∙} = 𝑖𝑒 , 𝑔𝑡, 𝑤𝑝 (3-5) 

𝑄𝑖𝑒,𝑚𝑖𝑛 ≤ 𝑄𝑖𝑒,𝑡
𝑠 ≤ 𝑄𝑖𝑒,𝑚𝑎𝑥  (3-6) 

𝑉𝑏,𝑚𝑖𝑛
 ≤ 𝑉𝑏,𝑡

𝑠 ≤ 𝑉𝑏,𝑚𝑎𝑥
  (3-7) 

𝑉𝑏
𝑠,𝑖𝑛𝑖 − 𝑉𝑏

𝑠,𝑡𝑒𝑟 = (𝑓𝑙𝑒,𝑡
 𝑠 𝑟𝑙𝑒 + 𝑞𝑓𝑙𝑒,𝑡

 𝑠 𝑥𝑙𝑒)/𝑉0 (3-8) 

0 ≤ {∙}𝑙𝑒,𝑡
 𝑠 ≤ {∙}𝑙𝑒,𝑚𝑎𝑥

𝑠 , {∙} = 𝑓, 𝑞𝑓 (3-9) 

𝑃𝑒𝑏,𝑡
 𝑠 = 𝑐𝑒𝑏𝑓𝑙𝑒,𝑒𝑏

 𝑠  (3-10) 

∑ 𝑃𝑖𝑒,𝑡
𝑠 +

𝑖𝑒∈𝐼𝑒

∑𝜔𝑗,𝑡
𝑠 + ∑ 𝑓𝑙𝑒,𝑡

𝑠,𝑖𝑛𝑖 −

𝑙𝑒∈𝐿𝑒

∑ 𝑓𝑙𝑒,𝑡
𝑠,𝑡𝑒𝑟

𝑙𝑒∈𝐿𝑒

+ 𝑃𝑔𝑡,𝑡
 𝑠 =

𝑗∈𝐽

∑ 𝑃𝑘𝑒,𝑡
𝑘𝑒∈𝐾𝑒

+ ∑ 𝑓𝑙𝑒,𝑡
 𝑠,𝑖𝑛𝑗

𝑙𝑒∈𝐿𝑒

+ ∑ 𝑃𝑒𝑏,𝑡
𝑠

𝑒𝑏∈𝐸𝐵

+∑𝑃𝑛,𝑡
𝑠,𝑃2𝐺

𝑛∈𝑁

+ ∑ 𝑃 𝑤𝑝,𝑡
𝑠

𝑤𝑝∈𝑊𝑃

 

(3-11) 

∑ 𝑄𝑖𝑒,𝑡
𝑠 +

𝑖𝑒∈𝐼𝑒

∑ 𝑞𝑓𝑙𝑒,𝑡
𝑠,𝑖𝑛𝑖 −

𝑙𝑒∈𝐿𝑒

∑ 𝑞𝑓𝑙𝑒,𝑡
𝑠,𝑡𝑒𝑟

𝑙𝑒∈𝐿𝑒

= ∑ 𝑄𝑘𝑒,𝑡
𝑘𝑒∈𝐾𝑒

 
(3-12) 

 

𝐺𝑖𝑔,𝑚𝑖𝑛
  ≤ 𝐺𝑖𝑔,𝑡

𝑠 ≤ 𝐺𝑖𝑔,𝑚𝑎𝑥
  (3-13) 

𝑃𝑟𝑙𝑔,𝑚𝑖𝑛
2   

≤ 𝑃𝑟𝑙𝑔,𝑡
𝑠2 ≤ 𝑃𝑟𝑙𝑔,𝑚𝑎𝑥

 2  (3-14) 

𝑃𝑟𝑙𝑔,𝑡
𝑠,𝑖𝑛𝑖 ≥ 𝑃𝑟𝑙𝑔,𝑡

𝑠,𝑡𝑒𝑟  
 (3-15) 

𝑓𝑙𝑔,𝑡
 𝑠 2

= 𝛾𝑙𝑔 (𝑃𝑟𝑙𝑔,𝑡
𝑠,𝑖𝑛𝑖2 − 𝑃𝑟𝑙𝑔,𝑡

𝑠,𝑡𝑒𝑟2
 

) (3-16) 

0 ≤ 𝑓𝑙𝑔,𝑡
 𝑠 ≤ 𝑓𝑙𝑔,𝑚𝑎𝑥

 𝑠  (3-17) 

𝑃𝑔𝑡,𝑡
 𝑠 = 𝑐𝐺𝑇𝑓𝑙𝑔,𝑔𝑡,𝑡

 𝑠  (3-18) 

𝑃𝑟𝑙𝑔,𝑡
𝑡𝑒𝑟  ≤ 𝐶𝐹𝑙𝑔𝑃𝑟𝑙𝑔,𝑡

𝑖𝑛𝑖  (3-19) 

𝐺𝑛,𝑡
𝑠,ℎ𝑦 

= 𝜂𝑒
𝑃𝑛,𝑡
𝑠,𝑃2𝐺

𝛺ℎ𝑦
 

(3-20) 
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∑ 𝐺𝑖𝑔,𝑡
𝑠

𝑖𝑔∈𝐼𝑔

+∑𝐺𝑛,𝑡
𝑠,ℎ𝑦

𝑛∈𝑁

+ ∑ 𝑓𝑙𝑔,𝑡
𝑠,𝑖𝑛𝑖 −

𝑙𝑔∈𝐿𝑔

∑ 𝑓𝑙𝑔,𝑡
𝑠,𝑡𝑒𝑟  

𝑙𝑔∈𝐿𝑔

= ∑ 𝐺𝑘𝑔,𝑡
𝑘𝑔∈𝐾𝑔

+ ∑ 𝑓𝑙𝑔,𝑔𝑡,𝑡
𝑠

𝑙𝑔∈𝐿𝑔

+ ∑ 𝑓𝑙𝑔,𝑡
 𝑠,𝑖𝑛𝑗

𝑙𝑔∈𝐿𝑔

 

(3-21) 

0 ≤ 𝑃𝑤𝑟,𝑡
𝑠 ≤ 𝑃𝑤𝑟,𝑚𝑎𝑥

  (3-22) 

ℎ𝑤,𝑚𝑖𝑛
{∙} ≤ ℎ𝑤,𝑡

𝑠,{∙} ≤ ℎ𝑤,𝑚𝑎𝑥
{∙} , {∙} = 𝑙𝑤, 𝑙𝑤𝑝 (3-23) 

ℎ̃{∙},𝑡
𝑠 = (ℎ𝑤,𝑡

𝑠,{∙},𝑖𝑛𝑖
+ ℎ̅𝑤,𝑡

𝑠,{∙},𝑖𝑛𝑖
) − (ℎ𝑤,𝑡

𝑠,{∙},𝑡𝑒𝑟
+ ℎ̅𝑤,𝑡

𝑠,{∙},𝑡𝑒𝑟
) , {∙} = 𝑙𝑤, 𝑙𝑤𝑝 (3-24) 

ℎ̃𝑙𝑤𝑝,𝑡
𝑠 ≥ 0 (3-25) 

ℎ̃𝑙𝑤𝑝,𝑡
𝑠 + 𝑎𝑙𝑤𝑝𝑓𝑙𝑤𝑝,𝑡

 𝑠  
+ 𝑏𝑙𝑤𝑝

 = 𝑅𝑙𝑤𝑝𝑓𝑙𝑤𝑝,𝑡
 𝑠 2

 (3-26) 

ℎ̃𝑙𝑤,𝑡
𝑠 = 𝑅𝑙𝑤𝑓𝑙𝑤𝑝,𝑡

 𝑠 2
 (3-27) 

𝑃 𝑤𝑝,𝑡
𝑠 = (𝑎𝑙𝑤𝑝𝑓𝑙𝑤𝑝,𝑡

 𝑠 2
+ 𝑏𝑙𝑤𝑝𝑓𝑙𝑤𝑝,𝑡

 𝑠  
) /𝜋𝑤𝑝 (3-28) 

0 ≤ 𝑓{∙},𝑡
 𝑠 ≤ 𝑓{∙},𝑚𝑎𝑥

𝑠 , {∙} = 𝑙𝑤, 𝑙𝑤𝑝 (3-29) 

∑ 𝑃𝑤𝑟,𝑡
𝑠

𝑤𝑟∈𝑊𝑅

+ ∑ 𝑓{∙},𝑡
𝑠,𝑖𝑛𝑖 −

{∙}∈𝐿𝑤,𝐿𝑤𝑝

∑ 𝑓{∙},𝑡
𝑠,𝑡𝑒𝑟  

{∙}∈𝐿𝑤,𝐿𝑤𝑝

 

= ∑ 𝜎𝑘𝑝𝑔𝑃𝑛,𝑡
𝑠,𝑃2𝐺

𝑘𝑝𝑔∈𝐾𝑝𝑔

+ ∑ 𝜎𝑘𝑐𝑝𝑃𝑐𝑝,𝑡
𝑠,𝑖

 
𝑘𝑐𝑝∈𝐾𝑐𝑝

+ ∑ 𝜎𝑒𝑏
𝑒𝑏∈𝐸𝐵

𝑃𝑒𝑏,𝑡
 𝑠

+ ∑ 𝑃𝑘𝑤,𝑡
𝑘𝑤∈𝐾𝑤

 

 

(3-30) 

𝑃{∙},𝑡
𝑠,𝑜 = 𝜂{∙}𝑃{∙},𝑡

𝑠,𝑖 , {∙} = 𝐶𝑂𝑃, 𝐺𝐹 (3-31) 

𝑃𝑐𝑝𝑒,𝑡
𝑠,𝑜 = 𝜂𝑐𝑝𝑒𝑃𝑐𝑝 ,𝑡

𝑠,𝑖
 (3-32) 

𝑃
𝑐𝑝ℎ,𝑡

𝑠,𝑜 = 𝜂𝑐𝑝ℎ𝑃𝑐𝑝 ,𝑡
𝑠,𝑖

 (3-33) 

𝑃{∙},𝑚𝑖𝑛
𝑖 ≤ 𝑃{∙},𝑡

𝑖 ≤ 𝑃{∙},𝑚𝑎𝑥
𝑖 , {∙} = 𝑐𝑝 , 𝐶𝑂𝑃, 𝐺𝐹 (3-34) 

𝑃{∙},𝑚𝑖𝑛
𝑠,𝑐ℎ/𝑑𝑐ℎ

≤ 𝑃{∙},𝑡
𝑠,𝑐ℎ/𝑑𝑐ℎ

≤ 𝑃{∙},𝑚𝑎𝑥
𝑠,𝑐ℎ/𝑑𝑐ℎ

, {∙} = 𝐵𝑆,𝐻𝑆  (3-35) 

𝐸{∙},𝑡
𝑠 = 𝐸{∙},𝑡−1

𝑠 +∑ 𝑃{∙},𝑡
𝑠,𝑐ℎ𝜂{∙}

𝑐ℎ −
𝑡

1
𝑃{∙},𝑡
𝑠,𝑑𝑐ℎ/𝜂{∙}

𝑑𝑐ℎ, {∙} = 𝐵𝑆,𝐻𝑆  
(3-36) 
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𝐸{∙},𝑚𝑖𝑛 ≤ 𝐸{∙},𝑡
𝑠 ≤ 𝐸{∙},𝑚𝑎𝑥

 , {∙} = 𝐵𝑆,𝐻𝑆  (3-37) 

[
𝐿𝑒,𝑡 + 𝑃𝐵𝑆,𝑡

𝑠

𝐿ℎ,𝑡 + 𝑃𝐻𝑆,𝑡
𝑠 ] = 

[
1 − 𝑣𝑒,𝑡

𝑠 𝑣𝑔,𝑡
𝑠 𝜂𝐶𝐻𝑃𝑒(1 − 𝑣𝑒,𝑡

𝑠 )

𝑣𝑒,𝑡
𝑠 𝜂𝐶𝑂𝑃 𝑣𝑔,𝑡

𝑠 (𝜂𝐶𝐻𝑃ℎ + 𝜂𝐶𝐻𝑃𝑒𝑣𝑒,𝑡
𝑠 𝜂𝐶𝑂𝑃 + 𝜂𝐺𝐹 − 𝑣𝑔,𝑡

𝑠 𝜂𝐺𝐹)
] × [

𝑓𝑙𝑒,𝑡
 𝑠,𝑖𝑛𝑗

𝑓𝑙𝑔,𝑡
 𝑠,𝑖𝑛𝑗] 

(3-38) 

3.5.2. Real-time Operation 

    In the second stage, corrective operation schemes are deployed based on the 

realization of wind uncertainty. Equation (3-39) is the constraint for the regulated power 

output of traditional DGs and gas turbine. And (3-40) is the new power balance 

constraint considering wind uncertainty. Apart from (3-39) and (3-40), the rest second-

stage constraints are the same as the first-stage constraints, where the superscript ‘s’ on 

each variable is changed to ‘re’. ‘s’ represents the scheduled decision variables in the 

first stage and ‘re’ represents the regulated decision variables in the second stage. The 

regulated decision variables are summarized in (3-41).  

𝑃{∙},𝑡
𝑠 − 𝑟{∙},𝑡

− ≤ 𝑃{∙},𝑡
𝑟𝑒 ≤ 𝑃{∙},𝑡

𝑠 + 𝑟{∙},𝑡
+ , {∙} = 𝑖𝑒 , 𝑔𝑡, 𝑤𝑝 (3-39) 

∑ 𝑃𝑖𝑒,𝑡
𝑟𝑒 +

𝑖𝑒∈𝐼𝑒

∑𝜉𝑗,𝑡 + ∑ 𝑓𝑙𝑒,𝑡
𝑟𝑒,𝑖𝑛𝑖 −

𝑙𝑒∈𝐿𝑒

∑ 𝑓𝑙𝑒,𝑡
𝑟𝑒,𝑡𝑒𝑟

𝑙𝑒∈𝐿𝑒

+ 𝑃𝐺𝑇,𝑡
 𝑟𝑒 =

𝑗∈𝐽

∑ 𝑃𝑘𝑒,𝑡
𝑘𝑒∈𝐾𝑒

+ ∑ 𝑓𝑙𝑒,𝑡
 𝑟𝑒,𝑖𝑛𝑗

𝑙𝑒∈𝐿𝑒

+ ∑ 𝑃𝑒𝑏,𝑡
𝑟𝑒

𝑒𝑏∈𝐸𝐵

+∑𝑃𝑛,𝑡
𝑟𝑒,𝑃2𝐺

𝑛∈𝑁

+ ∑ 𝑃 𝑤𝑝,𝑡
𝑟𝑒

𝑤𝑝∈𝑊𝑃

 

(3-40) 

 𝑦 =

{
  
 

  
 
𝑃𝑚,𝑡
𝑟𝑒 , 𝑃𝑖𝑒,𝑡

𝑟𝑒 , 𝑃𝑔𝑡,𝑡
𝑟𝑒 , 𝑄𝑖𝑒,𝑡

𝑟𝑒 , 𝑉𝑏,𝑡
𝑟𝑒 , 𝑓𝑙𝑒,𝑡

 𝑟𝑒 , 𝑞𝑓𝑙𝑒,𝑡
 𝑟𝑒 , 𝐺𝑖𝑔,𝑡

𝑟𝑒 , 𝑃𝑟𝑙𝑔,𝑡
𝑟𝑒  , 𝑓𝑙𝑔,𝑡

 𝑟𝑒 , 𝑃𝑔𝑡,𝑡
 𝑟𝑒 , 𝑃𝑛,𝑡

𝑟𝑒,𝑃2𝐺 ,

𝐺𝑛,𝑡
𝑟𝑒,ℎ𝑦 

, 𝑃𝑛,𝑡
𝑟𝑒,𝑃2𝐺 , 𝐺𝑛,𝑡

𝑟𝑒,ℎ𝑦𝑚𝑒 , 𝐺𝑛,𝑡
𝑟𝑒,ℎ𝑦𝑑 , 𝐺𝑛,𝑡

𝑟𝑒,𝑐𝑎, 𝐺𝑛,𝑡
𝑟𝑒,𝑚𝑒 , 𝑃𝑤𝑟,𝑡

𝑟𝑒 , ℎ𝑙𝑤,𝑡
𝑟𝑒 , ℎ𝑙𝑤𝑝,𝑡

𝑟𝑒 ,

ℎ̃𝑙𝑤,𝑡
𝑟𝑒 , ℎ̃𝑙𝑤𝑝,𝑡

𝑟𝑒 , 𝑓𝑙𝑤,𝑡
 𝑟𝑒  , 𝑓𝑙𝑤𝑝,𝑡

 𝑟𝑒 , 𝑃 𝑤𝑝,𝑡
𝑟𝑒 , 𝑃𝐶𝑂𝑃,𝑡

𝑟𝑒,𝑖 , 𝑃𝐺𝐹,𝑡
𝑟𝑒,𝑖, 𝑃𝑐𝑝 ,𝑡

𝑟𝑒,𝑖 , 𝑃𝐶𝑂𝑃,𝑡
𝑟𝑒,𝑜 , 𝑃𝐺𝐹,𝑡

𝑟𝑒,𝑜 , 𝑃𝑐𝑝𝑒,𝑡
𝑟𝑒,𝑜 ,

𝑃
𝑐𝑝ℎ,𝑡

𝑟𝑒,𝑜 , 𝑃𝐵𝑆,𝑡
𝑟𝑒,𝑐ℎ, 𝑃𝐵𝑆,𝑡

𝑟𝑒,𝑑𝑐ℎ, 𝑃𝐻𝑆,𝑡
𝑟𝑒,𝑐ℎ, 𝑃𝐻𝑆,𝑡

𝑟𝑒,𝑑𝑐ℎ, 𝐸𝐵𝑆,𝑡
𝑟𝑒 , 𝐸𝐻𝑆,𝑡

𝑟𝑒 , 𝑣𝑒,𝑡
𝑟𝑒 , 𝑣𝑔,𝑡

𝑟𝑒

 }
  
 

  
 

 

 

 

(3-41) 

3.5.3. Objective Function 

    In the first stage, the day-ahead objective in (3-42) is to minimize total operation cost, 

including i) generation cost of traditional DGs and natural gas sources, ii) power 

purchase cost from day-ahead upper-level market, iii) water purchase cost from water 
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reservoirs, iv) cost for reserve capacity from traditional DGs, gas turbines and water 

pumps.  

𝛤1 = min ∑ 𝜆𝑚
 𝑃𝑚,𝑡

𝑠 + 𝜆𝑖𝑒
𝑎

𝑖𝑒∈𝐼𝑒,𝑖𝑔∈𝐼𝑔,𝑡∈𝑇,𝑤𝑟∈𝑊𝑅,𝑔𝑡∈𝐺𝑇 

𝑃𝑖𝑒,𝑡
𝑠 2

+ 𝜆𝑖𝑒
𝑏 𝑃𝑖𝑒,𝑡

𝑠 + 𝜆𝑖𝑒
𝑐

+ 𝜆𝑤𝑟𝑃𝑤𝑟,𝑡
𝑠 + 𝜆𝑖𝑔𝑃𝑖𝑔,𝑡

𝑠 + 𝜆{∙}
+ 𝑟{∙},𝑡

+ + 𝜆{∙}
− 𝑟{∙},𝑡

− , {∙}

= 𝑖𝑒 , 𝑔𝑡, 𝑤𝑝  

 

(3-42) 

    The second-stage problem considers real-time redispatch and corrective actions 

pertaining to wind uncertainty. The objective function contains the penalties due to the 

overestimation or underestimation of scheduling in the first stage. The first-stage 

generation decisions include the scheduled power and water purchase, wind generation 

forecast, scheduled output of traditional DGs and natural gas sources. The penalties for 

the renewable forecast error is calculated by the multiplication of the penalty coefficient 

and the forecast error. The renewable forecast error is calculated by the difference of 

the renewable forecast and the real-time realization, i.e., |𝜔𝑗,𝑡
𝑠 − 𝜉𝑗,𝑡|. The minimization 

of deviation between scheduled and regulated results promotes the utilization of 

renewable energy [64, 65].  

𝛤2 = min ∑ 𝜆𝑚
𝑟𝑒|𝑃𝑚,𝑡

𝑠 − 𝑃𝑚,𝑡
𝑟𝑒 | + 𝜆𝑗

𝑟𝑒|𝜔𝑗,𝑡
𝑠 − 𝜉𝑗,𝑡|

𝑖𝑒∈𝐼𝑒,𝑖𝑔∈𝐼𝑔,𝑡∈𝑇,𝑤𝑟∈𝑊𝑅

+ 𝜆𝑖𝑒
𝑟𝑒|𝑃𝑖𝑒,𝑡

𝑠 − 𝑃𝑖𝑒,𝑡
𝑟𝑒 | + 𝜆𝑖𝑔

𝑟𝑒 |𝑃𝑖𝑔,𝑡
𝑠 − 𝑃𝑖𝑔,𝑡

𝑟𝑒 |

+ 𝜆𝑤𝑟
𝑟𝑒 |𝑃𝑤𝑟,𝑡

𝑠 − 𝑃𝑤𝑟,𝑡
𝑟𝑒 | 

 

(3-43) 

   

3.6 Case Studies  

    The proposed DR-IWENS is verified on a district water-energy nexus system 

consisting of a modified IEEE 33-bus system, a 6-node gas system, two EHSs and a 

11-node water system [53, 66-68], where generator information is given in TABLEs 3-

1, 3-2 and 3-3. The gas pressure is regulated between 105 Psig and 170 Psig. The power 

system has two traditional DGs and four renewable DGs. The power system is 

connected with the gas system via two gas turbines and a P2G facility. Two EHSs are 

supplied by both electricity and gas from buses 20 and 25 of power system and nodes 

2 and 5 from gas system. The water consumption from P2G and CHPs are supplied by 

node 11 of water system. It is assumed that the water is injected into the CHP with 
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heated outflow, which converts into the heating. The capacity of CHP is 0.35MW. The 

heat/power ratio is 1.73.  

The electric boilers enable the heating conversion from power and water. The following 

cases are considered:  

Case 1: Benchmark case. 

Case 2: Risk-neutral optimization without considering CVaR in the objective function.  

Case 3: The output of renewable DGs is twice of case 1. 

Case 4: No P2G facility. 

TABLE 3-1 PARAMETERS OF WATER RESERVOIRS 

 

Node 

No. 

𝑃𝑤𝑟,𝑚𝑎𝑥 

(m3/h) 

𝜆𝑤𝑟 

($/m3) 

Elevation 

(m) 

1 325 6.4 -252.5 

2 700 2.6 -255 

 

TABLE 3-2 PARAMETERS OF NATURAL GAS SOURCES 

 

Node 

No. 

𝑃𝑖𝑔,𝑚𝑖𝑛 

(kcf/h) 

𝑃𝑖𝑔,𝑚𝑎𝑥 

(kcf/h) 

𝜆𝑖𝑔 

($/kcf) 

1 1000 3000 2.2 

2 1000 6000 2 

 

TABLE 3-3 GENERATOR PARAMETERS 

 

Bus 

No. 

𝑃𝑖𝑒,𝑚𝑎𝑥 

(MW) 

𝑃𝑖𝑒,𝑚𝑖𝑛 

(MW) 

𝑅𝑖
+, 𝑅𝑖

− 

(MW) 

𝑎𝑖 

($/MW2) 

𝑏𝑖 

($/MW) 

𝑐𝑖 

($) 

13 1.2 0.3 0.2 6000 7100 6200 

28 1.0 0.1 0.2 4500 10500 4000 

 

TABLE 3-4 ECONOMIC PERFORMANCE FOR ALL CASES 

 

Economic result Case 1 Case 2 Case 3 Case 4 Case 5 

Power system 

operation cost ($) 
22900 20400 13275 21472 28925 

Gas system 

operation cost ($) 
15512 14485 12044 16324 26140 

Water system 

operation cost ($) 
1962 1802 2310 1858 2352 

System operation 

cost ($) 
40374 36687 27629 39609 57417 

 

 

 
 

 

TABLE 3-5 PARAMETERS OF WATER RESERVOIRS 

 

Node 

No. 

𝑃𝑤𝑟,𝑚𝑎𝑥 

(m3/h) 

𝜆𝑤𝑟 

($/m3) 

Elevation 

(m) 

1 325 6.4 -252.5 

2 700 2.6 -255 

 

TABLE 3-6 PARAMETERS OF NATURAL GAS SOURCES 

 

Node 

No. 

𝑃𝑖𝑔,𝑚𝑖𝑛 

(kcf/h) 

𝑃𝑖𝑔,𝑚𝑎𝑥 

(kcf/h) 

𝜆𝑖𝑔 

($/kcf) 

1 1000 3000 2.2 

2 1000 6000 2 
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Case 5: The gas price is twice of case 1. 

    The economic performance for all the cases is studied firstly in this section, followed 

by the optimal schedule of interdependent energy converters. The mathematical 

performance with different risk-aversion parameters is given in section 3.5.3. 

3.6.1. Economic Performance of Each Subsystem 

 The economic performance for all the cases is given in TABLE 3-4, which 

incorporates the operation cost of power system, gas system, water system and entire 

IES. Overall, case 3 with twice output of the renewable DGs yields the lowest total 

operation cost whilst the total operation cost of case 5 is the highest when gas price is 

twice of case 1. Case 2 is the risk-neutral optimization without considering CVaR in 

 

 
Fig. 3-2.  Gas scheduling of gas turbines and P2G.  

 
Fig. 3-3.  Water injection of boilers.  

 

 

 
Fig. 3-3.  Gas scheduling of gas turbines and P2G.  
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the objective function. It can be seen that the operation cost of each subsystem is lower 

than those of case 1. The total operation cost, i.e., $36687, is 91% of that of case 1. 

When the output of renewable DGs is doubled in case 3, the most distinct feature is the 

operation cost of power system, which is only $13275. Meanwhile, the gas system 

operation cost is also reduced by $3468 since the there is more excessive renewable 

output injecting to the gas system via the P2G facility. However, the water system 

operation cost is $348 more than that of case 1. The reason is that the P2G and CHPs 

cosume more water with increasing renewable output. In case 4, there is no supply from 

the power system to the gas system, which causes the higher operation cost of gas 

system since the excessive renewable generation cannot be fully utilized. The operation 

cost of all the subsystems and the overall system is the highest in case 5. Compared 

with case 3 with the lowest cost, the total operation cost is 107% higher. Particularly, 

the gas system operation cost is $26140, which is $10628 more than that of case 1.  

 
Fig. 3-4. Heating output of CHP, gas furnace and GSHP.  

 

 
Fig. 3-5.  Water consumption of CHPs and P2G.  

 
 

 

 

 

TABLE 3-9 Economic performance with different confience levels

 
Fig. 3-5. Heating output of CHP, gas furnace and GSHP.  
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3.6.2. Analysis of Energy Conversions  

    This section investigates the scheduling of coupling devices for interconnecting each 

system, i.e., gas turbines, P2G facility, electric boilers, CHP, gas furnace and GSHP.     

To begin with, the operation scheme of gas turbines and the P2G facility is given in Fig. 

3-2. Note that it shows the input of gas turbines and output of P2G facility. It can be 

seen that the gas turbine at node 2 has higher gas consumption than node 5. The average 

gas consumption of node 2 is 1867kcf and that of node 5 is 591kcf. The potential reason 

of the higher gas consumption at node 2 are i) node 2 is connected to a natural gas 

source which has abundant gas supply and ii) the requirement of power transformation 

at bus 6 is higher as it is connected with more buses. As for P2G, it produces 549kcf 

averagely. The transformed gas from P2G can supply loads at nodes 3, 5 and 6. In 

addition, the abundant gas can be converted back to power system at node 5. The 

scheduling of water injection of electric boilers is shown in Fig. 3-3. The water injection 

is 3 at node 6m3 and 37m3 at node 1 averagely. Although the heating loads of EHS 1 

and 2 have similar amount, the heating supplied by water system at water node 1 is 

more than 6 times of that at node 6. Since the gas supply of EHS 2 connected to gas 

node 5 is less but the water supply from water node 1 is sufficient connected to the 

water reservoir.  

    In Fig. 3-4, the heating output of converters in EHS 1 and 2 are given, respectively. 

Overall, the total heating output of converters in EHS 1 is 0.1MW higher than that of 

TABLE 3-5 ECONOMIC PERFORMANCE WITH DIFFERENT CONFIENCE LEVELS 

 

Economic 

result ($) 
β=0.8 β=0.9 β=0.95 β=0.99 

Case 1 35635 39573 40374 40652 

Case 3 25830 26412 27629 27940 

Case 4 38749 39015 39609 40527 

Case 5 54119 57087 57417 57906 

 

TABLE 3-6 ECONOMIC PERFORMANCE WITH DIFFERENT WEIGHTING FACTORS 

 

Economic 

result ($) 
α=0 α=0.25 α=0.5 α=0.75 

Case 1 36687 38200 40374 42049 

Case 3 25872 26412 27629 28950 

Case 4 37321 38580 39609 47140 

Case 5 50767 51263 57417 62875 
 

 

 

TABLE 3-10 ECONOMIC PERFORMANCE WITH DIFFERENT CONFIENCE LEVELS 

 

Economic 

result ($) 
β=0.8 β=0.9 β=0.95 β=0.99 

Case 1 35635 39573 40374 40652 

Case 3 25830 26412 27629 27940 

Case 4 38749 39015 39609 40527 

Case 5 54119 57087 57417 57906 

 

TABLE 3-11 ECONOMIC PERFORMANCE WITH DIFFERENT WEIGHTING FACTORS 

 

Economic 

result ($) 
α=0 α=0.25 α=0.5 α=0.75 

Case 1 36687 38200 40374 42049 

Case 3 25872 26412 27629 28950 

Case 4 37321 38580 39609 47140 

Case 5 50767 51263 57417 62875 
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EHS 2. The heating supply composition is different for EHS 1 and 2. The CHP is 

utilized around 0.15MW for each hour and takes up 50% of the total heating output of 

converters. While the CHP in EHS 2 outputs approximately 0.33MW, which is 81% of 

the total heating conversion. The reason is that the supply from power system is not 

sufficient, which affects the heat conversion of GSHP even though the heating 

conversion efficiency of GSHP is high. The insufficient electricity consumption needs 

to be satisfied by CHP conversion, which also increases heating conversion.  

    The water consumption of CHPs and P2G is in Fig. 3-5. As discussed for Fig. 3-4, 

the heating conversion from CHP in EHS 2 is higher than that of EHS 1. The water 

consumption of CHP in EHS 2 is also higher than that of EHS 1, i.e., the average water 

consumption of CHP in EHS 2 is 0.28m3 and it is 0.77m3 of CHP in EHS 1. Compared 

to CHP, P2G consumes less water and its average water consumption is 0.15 m3.  

3.6.3. The Impact of CVaR on Economic Performance  

    Through adjusting the confidence level and weighting factor for operation cost versus 

risk trade-off, the overall economic performance varies. TABLEs 3-5 and 3-6 present 

the economic performance with different beta and alpha, respectively. This paper 

considers 95% as the benchmark alpha used in TABLE Ⅳ. As shown in TABLE Ⅴ, the 

total cost increases with the increase of alpha. For case 1, the highest total operation 

cost is $40652 with beta=0.9 and the lowest total operation cost is $35635 with 

beta=0.99. When beta is fixed, case 5 which considers twice of the original gas price 

has the highest total operation cost, followed by cases 4, 1 and 3, which is the same as 

discussed in section 3.5.1. In TABLE 3-6, the impact of changing beta on the economic 

performance for all cases is presented. It can be seen that the higher alpha causes higher 

priority on minimizing the risk, which leads to higher operation cost. When alpha=0, 

the mean-risk DRO degrades into the risk-neutral DRO. For case 5, the total operation 

cost is only $50767 compared with the $57417 solved by the benchmark mean-risk 

DRO. 

3.7 Chapter Summary 

A mean-risk coordinated optimization for an IES in the water-energy nexus with 

enormous interdependencies is proposed in this chapter. The tight couplings and 

interactions between each subsystem enable the reliable and economic operation for the 

entire IES. The renewable uncertainty is captured by mean-risk DRO. The coherent risk 
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measure, CVaR provides the trade-off to system operators with flexible alternatives on 

choosing between economic efficiency and risk. A tractable Bender’s decomposition is 

employed to solve the DR-IWENS problem.  

Through the extensive case studies on the economic performance, scheduling of 

interdependent coupling devices and the risk management via adjusting parameters, the 

major contributions are tested: 

▪ The coordination of each subsystem with the conversion technologies enhances 

the energy efficiency. 

▪ The water system is highly required to consider in the IES operation as the water 

is extensively consumed by energy conversions.   

    The mean-risk DRO applied in IES operation problem provides system operators 

with not only economic but risk concerns. 
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Chapter 4  
Resilience Enhancement and 

Emergency Response for 

Integrated Energy Systems 

against Seismic Attacks: A Data-

Driven Approach  

 

  

 

 

 

 

This chapter proposes to utilise distributionally robust optimization 
(DRO) to analyse and resolve the resilience-oriented planning problem 
with uncertain seismic attacks in integrated energy systems (IES). The 
optimal system hardening plan optimal joint load shedding scheme can 
be eventually obtained. 

 

TABLE 4-1 RANGES OF PGA, PGV AND SEISMIC INTENSITY 

 

Intensity  Ⅰ         Ⅱ~Ⅲ         Ⅳ          Ⅴ         Ⅵ        Ⅶ      Ⅷ        Ⅸ 

PGA 

(%g)    <0.17   0.2-1.4   1.4-3.9   3.9-9.2   9.2-18   18-34   34-65   65-124 

 

 

Resilience Enhancement and 
Emergency Response for 

Integrated Energy Systems 
against Seismic Attacks: A 

Data-Driven Approach  
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4.1 Abstract 

    Seismic events can severely damage both electricity and natural gas systems, causing 

devastating consequences. Ensuring the secure and reliable operation of the integrated 

energy system (IES) is of high importance to avoid potential damage to the 

infrastructure and reduce economic losses. This paper proposes a new optimal two-

stage data-driven optimization to enhance the resilience of IES planning and operation 

against seismic attacks. In the first stage, hardening investment on the IES is conducted, 

featuring in preventive measure for seismic attacks. The second stage minimizes the 

expected operation cost of emergency response. The random seismic attack is modelled 

as uncertainty, which is realized after the first stage. An explicit damage assessment 

model is developed to define the budget set of the uncertain seismic activity. Based on 

the survivability of transmission lines and gas pipelines of IES, an optimal system 

investment plan is developed. The problem is formulated as a two-stage data-driven 

distributionally robust optimization (DRO) model, which is tested on an integrated 

IEEE 30-bus system and 6-node gas network. Case studies demonstrate that the two-

stage DRO outperforms robust optimization and single-stage optimization model in 

terms of minimizing the investment cost and expected economic loss.  

4.2 Nomenclature 

A. Sets 

T Set for time periods. 

I Set for power lines. 

M Set for gas pipelines.  

𝐺𝐸 Set for electricity distributed generators. 

𝐺𝐺  Set for gas-fired distributed generators. 

𝐷𝐸  Set for electricity loads. 

𝐷𝐺  Set for gas loads. 

B. Parameters 

𝐶𝐿𝑐𝑜,𝐶𝐿𝑒𝑥, 𝐶𝐿𝑚𝑜, 
𝐶𝐿𝑚𝑖 

Connection loss for complete, extensive, moderate and minor 
seismic level. 

γ Failure rate constant for gas pipelines. 

𝜋𝑖𝑗 , 𝜋𝑚𝑛  Unit hardening cost for power lines and gas pipelines. 

𝐸𝐿ℎ , 𝑃𝐿ℎ  Maximum number of hardening power lines and pipelines.  

𝐼𝐶𝑚𝑎𝑥 Maximum monetary budget. 

𝑥𝑖𝑗 Reactance of power line ij. 
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𝑓𝑖𝑗,𝑚𝑎𝑥,𝑓𝑚𝑛,𝑚𝑎𝑥 Maximum power flow of line ij and gas flow of pipeline mn. 

𝑃𝑔𝑒,𝑚𝑖𝑛,𝑃𝑔𝑒,𝑚𝑎𝑥 Minimum and maximum power output of electricity generators.  

𝛿𝑑𝑒,𝑚𝑎𝑥, 

𝛿𝑑𝑔,𝑚𝑎𝑥   

Maximum limit for electricity and gas load shedding.  

𝑃𝑑𝑒,𝑡, 𝑃𝑑𝑔,𝑡 Electricity and gas load demand at time t.  

𝑃𝑔𝑔,𝑚𝑖𝑛, 

𝑃𝑔𝑔,𝑚𝑎𝑥 

Minimum and maximum output of gas-fired generators. 

𝑃𝑟𝑚𝑖𝑛,𝑃𝑟𝑚𝑎𝑥  Minimum and maximum pressure.  

𝛾𝑚𝑛 Coefficient for Weymouth equation. 

C. Variables 

𝑃𝑐𝑜, 𝑃𝑒𝑥, 𝑃𝑚𝑜, 𝑃𝑚𝑖 Probability of being complete, extensive, moderate and minor 
seismic attacks under a randomly chosen seismic level. 

𝑃𝐸𝐷 Expected connection loss. 

ℎ𝑖𝑗
 , ℎ𝑚𝑛

  Binary variables indicate if power line (i,j)/pipeline (m,n) is 
hardened.  

𝜃𝑖,𝑡, 𝜃𝑗,𝑡 Phase angle at electricity bus i and j 

𝑥𝑖𝑗 Reactance of power line ij. 

𝑓𝑖𝑗,𝑡,𝑓𝑚𝑛,𝑡,  Power and gas flow of power line ij and gas pipeline mn at time 
t. 

𝑃𝑔𝑒,𝑡, 𝑃𝑔𝑔,𝑡 Electricity and gas-fired distributed generation at time t.  

𝛿𝑑𝑒,𝑡, 𝛿𝑑𝑔,𝑡 Electricity and gas load shedding at time t. 

𝑃𝑟𝑡 Gas pressure at time t.  

𝜉𝑖𝑗
 , 𝜉𝑚𝑛

  Binary variable indicates if power line (i,j)/ pipeline (m,n) is 
damaged.  

𝑎𝑖𝑗
 , 𝑎𝑚𝑛

  Binary variable indicates if power line (i,j)/pipeline (m,n) is 
available.  

 

 

4.3 Introduction  

    Natural disasters can cause huge power losses of energy systems that threaten the 

economy. Earthquake is considered as one of the most disruptive natural disasters, 

which may cause large-scale blackouts without sufficient time for response due to the 

weak predictability. The Wenchuan earthquake in May 2008 damaged around 270 

transmission lines and 900 substations, leaving 46 million people suffered without 

electricity. A massive power outage was caused in 2010 Chile earthquake. 
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Approximately 3GW generation capacity became unavailable, 26% of transmission 

network substations were damaged, where 93% residents suffered from a power outage 

with two weeks [69]. According to existing research, more than 90% of such damage 

can be avoided if upgraded seismic preventive measures are adopted [70]. The most 

powerful earthquake in 20 years damaged the gas transmission and distributions 

systems in July, 2019, which causes the unavailable gas usage of 13000 customers [71]. 

To enhance the resilience of power systems against natural disasters, resilience 

planning has been extensively investigated. Paper [72] proposes a multi-stage and 

multi-zone based robust optimization (RO) for a bi-level resilience problem considering 

power line hardening and distributed generation resource placement. Different grid 

enhancing strategies against extreme weather conditions are considered in [73] in a tri-

level framework, which is transformed into an equivalent bi-level problem and solved 

by a greedy searching algorithm. Paper [74] develops a two-stage stochastic 

optimization (SO) for resilient planning in a large-scale transmission network to 

mitigate seismic risk. Optimal capacity expansion is considered as the planning strategy 

based on explicit damage distribution.  

Meanwhile, energy infrastructures are becoming more complex and independent, 

especially with higher attention on the interdependence of different energy carriers. The 

rapid growth of gas consumption and mushrooming deployment of gas-fired generation 

and electrolysis have boosted the synergetic integration of electricity and natural gas 

systems. The integrated energy system (IES) can significantly increase energy 

utilization efficiency. Therefore, enhancing resilience to withstand seismic hazards and 

mitigate resulting damages is of great vitality for IES. A two-stage robust integrated 

planning of IES is proposed for enhancing the resilience in [75], which is implemented 

by replacing power lines by a gas transportation system. Paper [76] optimally 

minimizes the worst-case electricity and gas load shedding through a tri-level robust 

planning model with network hardening. Paper [77] proposes a resilience assessment 

for IES including heating, cooling and distributed generation systems. The proposed 

assessment is quantified through functionality loss and monetary costs.  

    However, recent IES planning studies consider the impacts of general natural 

disasters without specifying the types and ignore the attack assessment model, hardly 

targeting at mitigating seismic risks [75, 76]. This is impractical as the impacts of 
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natural disasters depend on the grid structure, disaster types, duration and intensity, etc. 

Different natural disasters could have a very different damage scale that needs specified 

preventive investment strategies. Thus, it is essential to develop models for assessing 

seismic risks on IES.   

    To accommodate the uncertainty of natural disasters, RO and SO have been 

extensively applied [73-75]. Nevertheless, RO ensures system robustness while 

inevitably leads to over conservativeness. SO requires the explicit distributions with a 

large number of samples, which not only produces high computational burden but also 

is not always practical. Distributionally robust optimization (DRO) bridges the 

strengths of RO and SO, which relaxes the assumption of specifying a certain 

distribution and considers the worst distributions compared to the worst-case oriented 

RO. An optimal gas-power flow is proposed in [78] by DRO with wind uncertainty. 

Wasserstein metric is used to select candidate distributions. A two-stage DRO model 

for IES scheduling is proposed in [79] and compared with traditional adjustable robust 

optimization, proving that DRO generates less conservative and more economical 

solutions.  

    This paper targets at alleviating the impacts of seismic events on both power lines 

and gas pipelines of IES. A two-stage DRO model is proposed to enhance the resilience 

for an IES, where the damage on both power lines and gas pipelines are considered. For 

simplicity, the keywords ‘distributionally robust’, ‘seismic’, ‘integrated’ and ‘planning’ 

are picked and this proposed model is referred to DR-SIP. The seismic activities are 

regarded as uncertain events and the random damage on power lines and pipelines are 

regarded as uncertainties, which are handled by DRO. The first stage minimizes the 

investment cost for hardening IES against seismic attacks. The hardening strategy 

incorporates strengthening power lines and gas pipelines with earthquake-resistant 

material and design. After the uncertainty of seismic activities is realized, the second 

stage minimizes the loss of emergency response through load shedding under the worst 

potential seismic risks. The Bender’s decomposition is utilized to solve this IES 

resilience optimization problem, which is then demonstrated through extensive case 

study. The merits of the proposed model are summarized in the case study section. 

The main contributions of this paper are as follows:  
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1) A two-stage DRO method, incorporating both planning and operation schemes, is 

for the first time proposed to enhance IES resilience, considering the worst-distributed 

seismic attack. Compared to existing research, such as  [74], [75] and [76], this paper 

is specifically focused on resilience enhancement for IES. 

2) A novel model to assess the performance of IES against seismic attacks is developed. 

This damage quantification builds a probabilistic model and estimated by damage 

scenarios. This assessment model can be easily combined with the proposed two-stage 

DRO model to determine the optimal enhancement plan for IES. 

3) It utilizes the novel DRO in IES resilience assessment and enhancement with a 

tractable reformulation. The historical information of seismic events is efficiently used 

to reduce the conservativeness, thus producing more economical investment and 

operation decisions. 

4) The proposed novel DRO framework avoids specifying uncertainty distributions but 

only uses moment information, which is more practical considering that it is normally 

not possible to gather a sufficiently large amount of distributional information for 

extreme events. 

    The rest of this paper is organized as follows. Section 4.4 proposes the damage 

assessment of seismic events. Section 4.5 designs resilience enhancement strategies. 

Section 4.6 presents the mathematical formulation for resilience planning and 

emergency operation. The methodology and solution algorithm are given in section 

2.1.1. Section 4.7 demonstrates case studies and performance of DR-SIP. Conclusions 

are drawn in section 4.8. 

4.4 Assessment of Seismic Damage on IES 

    This section provides the seismic damage modelling for both electricity and natural 

gas systems, which mainly considers the damages on power lines and gas pipelines. 

The relationship between damage consequence and seismic level is established in this 

section. The seismic intensity is described by peak ground acceleration (PGA) and peak 

ground velocity (PGV), which are mainly related to landslides and surface faulting [80]. 

The relationship between seismic level, PGA and PGV are summarized in TABLE 4-1 

[81].  

    The concept of connection loss (CL) is adopted to quantify the line failures of 
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electricity systems [82] due to the damage on pylons and conductors from seismic 

events. They destroy conductors and shake pylons and consequently damage power 

lines. For simplicity, this paper considers the number of damaged power lines, which 

are modelled as CL. Paper [83] concludes four-line damage states, minor, moderate, 

extensive and complete, which refers to 4%, 12%, 50% and 80% of CL, indicating the 

number of damaged power lines in percentage. For clarity, the relationship between line 

damage state and the probability in each damage state is shown in TABLE 4-2.  

    A random intensity level can cause a certain range of PGA, presented in TABLE 4-

1. Based on the fragility curve in Fig. 4-1, a random PGA can cause an earthquake in 

one or a combination of different line damage states. For example, when PGA is 0.6g, 

the line damage state of being complete is 0% and being extensive is 60%, while 100% 

for being moderate and minor. Thus, the expected number of line failures modelled as 

CL under a specific PGA is described in (4-1).  

𝑁𝐸𝐷 = 𝑃𝑐𝑜𝐶𝐿𝑐𝑜 + (𝑃𝑒𝑥 − 𝑃𝑐𝑜)𝐶𝐿𝑒𝑥 + (𝑃𝑚𝑜 − 𝑃𝑒𝑥)𝐶𝐿𝑚𝑜 + (𝑃𝑚𝑖 − 𝑃𝑚𝑜)𝐶𝐿𝑚𝑖 (4-1) 

    The steps to specify seismic damages on electricity lines are summarized as: 

1. A random seismic intensity level is sampled from the Monte Carlo approach 

based on an empirical probability density function of seismic intensity level. 

2. Based on TABLE 4-1 and the sampled intensity level, a certain range of PGA 

is given. Then Monte Carlo approach is used to pick a random PGA from the PGA 

range. 

3. Based on the fragility curve in Fig. 4-1 and obtained PGA, the probability of 4 

damage states is obtained.  

4. Finally, according to TABLE 4-2 and equation (4-1), the expected number of 

damaged power lines, 𝑁𝐸𝐷, is obtained.   

To quantify the damage of the natural gas system due to seismic events, similar to 

CL of the electricity system, failure rate (FR) is defined to represent the number of 

damage points on gas pipelines [84]. For simplicity, the natural gas system is assumed 

to operate in the steady state, ignoring the dynamic gas leakage characteristics of 

pipelines.  

FR can be described with PGV:  

𝐹𝑅 = 𝛾(𝑃𝐺𝑉)2.25𝐿   (4-2) 

The steps to acquire FR of gas pipelines are as follows: 
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1. As described in step 1 of section A, the same seismic intensity level is obtained.  

2. Based on TABLE 4-1 and obtained seismic intensity level, a certain range of 

PGV is given. Then Monte Carlo approach is used to pick a random PGV from the PGV 

range. 

3. According to equation (4-2), FR is obtained.  

 

4.5 Seismic Risk Oriented Resilience Enhancement 

In terms of resilience-based IES planning, Fig. 4-2 presents the order of widely 

adopted enhancement steps [85], consisting of adaptation and recovery. The scope of 

this paper is on resilience planning and emergency response against seismic attacks. 

The preventive response is ignored as the preventive time after detecting seismic events 

TABLE 4-1 RANGES OF PGA, PGV AND SEISMIC INTENSITY 

 

Intensity  Ⅰ         Ⅱ~Ⅲ         Ⅳ          Ⅴ         Ⅵ        Ⅶ      Ⅷ        Ⅸ 

PGA 

(%g)    <0.17   0.2-1.4   1.4-3.9   3.9-9.2   9.2-18   18-34   34-65   65-124 

PGV 

(cm/s)  <0.1     0.1-1.1   1.1-3.4   3.4-8.1   8.1-16   16-31   31-60   60-116 

 

TABLE 4-2 LINE DAMAGE OF ELECTRICITY SYSTEMS 

 

Damage state CL Probability 

Minor 4% Pmi 
Moderate 12% Pmo 

Extensive 50% Pex 
Complete 80% Pco 

 

 
Fig. 4-1. Fragility curve of damage states for seismic attacks. 

 
 

 
 

TABLE 4-3 RANGES OF PGA, PGV AND SEISMIC INTENSITY 

 

Intensity  Ⅰ         Ⅱ~Ⅲ         Ⅳ          Ⅴ         Ⅵ        Ⅶ      Ⅷ        Ⅸ 

PGA 

(%g)    <0.17   0.2-1.4   1.4-3.9   3.9-9.2   9.2-18   18-34   34-65   65-124 

PGV 

(cm/s)  <0.1     0.1-1.1   1.1-3.4   3.4-8.1   8.1-16   16-31   31-60   60-116 

 

TABLE 4-4 LINE DAMAGE OF ELECTRICITY SYSTEMS 

 

Damage state CL Probability 

Minor 4% Pmi 
Moderate 12% Pmo 

Extensive 50% Pex 
Complete 80% Pco 
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is only up to a few seconds, which is too short for seismic preventive actions. In 

resilience planning, system operators make investment plans for seismic hardening on 

existing energy infrastructures. After the damage caused by seismic disasters, 

emergency response is implemented by system operators to mitigate the impact. There 

are two steps in the proposed DR-SIP: the first stage -resilience planning and the second 

stage - emergency response:  

    In the first stage, hardening on power lines is considered as the proposed resilience 

planning measure. Grid hardening, including constructing new lines and facilities, 

upgrading damaged poles and burying power lines underground, etc, is the most widely-

proposed and effective measure to protect systems against natural disasters [86]. In this 

paper, reconstruction and upgrade to be earthquake-resistant are considered as the 

hardening measures for power lines and gas pipelines. It is assumed that the hardened 

lines will survive from seismic attacks [72, 74, 76]. In the second stage, the daily 

operation is implemented in the pre-hardened IES. The daily operation is designed 

instantly after the emergence of the seismic attack with a 24-hour time horizon. To 

maintain the system balance while suffered from uncertain seismic attacks, load 

shedding is considered.  

4.6 Mathematical Formulation for Resilience Enhancement 

    Resilience planning and emergency response modelling are illustrated in this section. 

The seismic hardening strategy is considered for power lines and gas pipelines. 

Linearized DC power flow and Weymouth gas flow equations are employed with load 

shedding to meet flow constraints. Finally, a two-stage optimization is proposed to 

minimize hardening costs in the first stage and operation cost in the second stage.  

4.6.1. Overall Objective 

    It is assumed that the system operator curtails electricity and gas load under the 

worst-distributed seismic attacks to mitigate damage. The first and second-stage 

objectives are in (4-3) and (4-4). 𝛤𝑃  represents hardening investment cost. 𝛤𝑅  is 

 

 
Fig. 4-2. Steps for resilience enhancement under seismic attacks. 

 

 

 

 

 

 

 
Fig. 4-3. Steps for resilience enhancement under seismic attacks. 
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emergency response cost, including: 1) shedding costs of electricity and gas loads and 

2) generation costs of electricity and gas-fired generators. In the second stage objective, 

in addition to supplying electricity by gas, gas generation in the gas system is also 

considered, which is given in ‘ ∑ 𝜆𝑔𝑔𝑃𝑔𝑔,𝑡
 

𝑡∈𝑇,𝑔𝑔∈𝐺𝐺 ’.  

𝛤𝑃 = ∑ ℎ𝑖𝑗
 𝜋𝑖𝑗

𝑖,𝑗∈𝐼

+ ∑ ℎ𝑚𝑛
 𝜋𝑚𝑛

𝑚,𝑛∈𝑀

 
(4-3) 

𝛤𝑅 = ∑ 𝛿𝑑𝑒,𝑡𝜋𝑑𝑒
𝑡∈𝑇,𝑑𝑒∈𝐷𝐸

+ ∑ 𝛿𝑑𝑔,𝑡𝜋𝑑𝑔
𝑡∈𝑇,𝑑𝑒∈𝐷𝐸

+ 

∑ 𝜆𝑔𝑒
𝑎 𝑃𝑔𝑒,𝑡

2 + 𝜆𝑔𝑒
𝑏 𝑃𝑔𝑒,𝑡

 + 𝜆𝑔𝑒
𝑐

𝑡∈𝑇,𝑔𝑒∈𝐺𝐸

+ ∑ 𝜆𝑔𝑔𝑃𝑔𝑔,𝑡
 

𝑡∈𝑇,𝑔𝑔∈𝐺𝐺

 

(4-4) 

    The overall objective of the proposed DR-SIP is to minimize the planning cost in the 

first stage and the emergency response cost in the second stage in (4-5).  

min
 
𝛤𝑃 + sup

 
𝐸𝑃[𝛤𝑅] (4-5) 

4.6.2. Seismic Risk Oriented Resilience Planning 

    Here, the feasibility set of hardening strategies for electricity network, gas network 

and the overall IES are shown in (4-6) to (4-8) respectively. The maximum number of 

power lines and pipelines to be hardened are constrained by (4-6) and (4-7). Constraint 

(4-8) means the total hardening investment cannot exceed the maximum monetary 

budget.  

∑ℎ𝑖𝑗
 

𝑖,𝑗∈𝐼

≤ 𝐸𝐿ℎ (4-6) 

∑ ℎ𝑚𝑛
 

𝑚,𝑛∈𝑀

≤ 𝑃𝐿ℎ (4-7) 

∑ℎ𝑖𝑗
 𝜋𝑖𝑗

𝑖,𝑗∈𝐼

+ ∑ ℎ𝑚𝑛
 𝜋𝑚𝑛

𝑚,𝑛∈𝑀

≤ 𝐼𝐶𝑚𝑎𝑥 (4-8) 

4.6.3. Emergency Response 

    Seismic events can have disruptive damage on power lines and gas pipelines, where 

the damages are considered as uncertainty, represented by binary variables 𝑑𝑖𝑗
  and 𝑑𝑚𝑛

 . 

In the second stage of DR-SIP, to mitigate the loss of seismic events, electricity and gas 
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load shedding is identified and implemented accordingly to keep the system balance. 

The sub-objective is to minimize the cost of load shedding and generation as an 

emergency response. When considering the effects of hardening strategies against 

seismic damage, the availability of lines needs to be identified and multiplied with the 

power and gas flow. Reference [76] considers the availability as 1 − 𝜉 + 𝜉ℎ 
 , but the 

term 𝜉ℎ 
 is nonlinear. This paper presents the availability as 𝜉 + ℎ 

  in (4-14) and (4-15), 

which is linear but may cause  𝜉 + ℎ 
 =2 and thus leads to overloading on power lines.  

For instance, in (4-14), (𝜉𝑖𝑗
 + ℎ𝑖𝑗

 )𝑓𝑖𝑗,𝑚𝑎𝑥  can be 2𝑓𝑖𝑗,𝑚𝑎𝑥 . Accordingly, additional 

constraints are added to ensure the original limits, i.e., −𝑓𝑖𝑗,𝑚𝑎𝑥 ≤ 𝑓𝑖𝑗,𝑡 ≤ 𝑓𝑖𝑗,𝑚𝑎𝑥. 

The DC linearized power flow and Weymouth gas flow are utilized for modelling 

power flow and gas flow respectively, which are shown in (4-9) and (4-10).  

𝑥𝑖𝑗𝑓𝑖𝑗,𝑡 = (𝜃𝑖,𝑡 − 𝜃𝑗,𝑡) (4-9) 

𝑓𝑚𝑛,𝑡|𝑓𝑚𝑛,𝑡| =  𝛾𝑚𝑛(𝑃𝑟𝑚,𝑡
2 − 𝑃𝑟𝑛,𝑡

2) (4-10) 

However, this paper considers the availability of asset that will inevitably lead to the 

nonlinear term (𝜉 + ℎ)(𝜃𝑖,𝑡 − 𝜃𝑗,𝑡) and (𝜉 + ℎ)(𝑃𝑟𝑚,𝑡
2 − 𝑃𝑟𝑛,𝑡

2). This nonlinearity is 

linearized based on sufficiently large constants 𝑀𝑖𝑗 and 𝑀𝑚𝑛. Thus, the linearized DC 

power flow and Weymouth gas flow constraints are used in (4-11)-(4-12) and (4-22)-

(4-23).  

The constraints of electricity and gas-fired generation output are in (4-16) and (4-17). 

Equations (4-18) and (4-19) show the constraints for electricity and gas load shedding. 

Equation (4-20) shows the upper and lower bounds for the pressure square of pipelines. 

Weymouth gas flow is presented in (4-21) and (4-22). The power and gas balance 

constraints are in (4-23) and (4-24).  

𝑥𝑖𝑗𝑓𝑖𝑗,𝑡 ≤ (𝜃𝑖,𝑡 − 𝜃𝑗,𝑡) + (1 − 𝜉𝑖𝑗
 − ℎ𝑖𝑗

 )𝑀𝑖𝑗 (4-11) 

𝑥𝑖𝑗𝑓𝑖𝑗,𝑡 ≥ (𝜃𝑖,𝑡 − 𝜃𝑗,𝑡) − (1 − 𝜉𝑖𝑗
 − ℎ𝑖𝑗

 )𝑀𝑖𝑗 (4-12) 

−𝜋 ≤ 𝜃𝑖/𝑗,𝑡 ≤ 𝜋 (4-13) 

−(𝜉𝑖𝑗
 + ℎ𝑖𝑗

 )𝑓𝑖𝑗,𝑚𝑎𝑥 ≤ 𝑓𝑖𝑗,𝑡 ≤ (𝜉𝑖𝑗
 + ℎ𝑖𝑗

 )𝑓𝑖𝑗,𝑚𝑎𝑥 (4-14) 

0 ≤ 𝑓𝑚𝑛,𝑡 ≤ (𝜉𝑚𝑛
 + ℎ𝑚𝑛

 )𝑓𝑚𝑛,𝑚𝑎𝑥 (4-15) 
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𝑃𝑔𝑒,𝑚𝑖𝑛 ≤ 𝑃𝑔𝑒,𝑡 ≤ 𝑃𝑔𝑒,𝑚𝑎𝑥 (4-16) 

𝑃𝑔𝑔,𝑚𝑖𝑛 ≤ 𝑃𝑔𝑔,𝑡 ≤ 𝑃𝑔𝑔,𝑚𝑎𝑥 (4-17) 

0 ≤ 𝛿𝑑𝑒,𝑡 ≤ 𝛿𝑑𝑒,𝑚𝑎𝑥 (4-18) 

0 ≤ 𝛿𝑑𝑔,𝑡 ≤ 𝛿𝑑𝑔,𝑚𝑎𝑥 (4-19) 

𝑃𝑟𝑚𝑖𝑛
2 ≤ 𝑃𝑟𝑡

2 ≤ 𝑃𝑟𝑚𝑎𝑥
2 (4-20) 

𝑓𝑚𝑛,𝑡 ≤ 𝛾𝑚𝑛 ((𝑃𝑟𝑚,𝑡
2 − 𝑃𝑟𝑛,𝑡

2) + (1 − 𝜉𝑚𝑛
 − ℎ𝑚𝑛

 )𝑀𝑚𝑛) (4-21) 

𝑓𝑚𝑛,𝑡 ≥ 𝛾𝑚𝑛 ((𝑃𝑟𝑚,𝑡
2 − 𝑃𝑟𝑛,𝑡

2) − (1 − 𝜉𝑚𝑛
 − ℎ𝑚𝑛

 )𝑀𝑚𝑛) (4-22) 

∑ 𝑃𝑑𝑒,𝑡
𝑑𝑒∈𝐷𝐸

− 𝛿𝑑𝑒,𝑡 = ∑ 𝑃𝑔𝑒,𝑡 + ∑ 𝑓𝑖𝑗,𝑡
𝑖𝑗∈𝐼(𝑡𝑒𝑟)

− ∑ 𝑓𝑖𝑗,𝑡
𝑖𝑗∈𝐼(𝑖𝑛𝑖)𝑔𝑒∈𝐺𝐸

 
(4-23) 

∑ 𝑃𝑑𝑔,𝑡
𝑑𝑔∈𝐷𝐺

− 𝛿𝑑𝑔,𝑡 + ∑ 𝑃𝑔𝑔,𝑡
𝑔𝑔∈𝐺𝐺

= 

∑ 𝑓𝑚𝑛,𝑡 −

𝑚𝑛∈𝑀(𝑡𝑒𝑟)

∑ 𝑓𝑚𝑛,𝑡
𝑔∈𝑀(𝑖𝑛𝑖)

 

 

 

(4-24) 

The Weymouth gas flow is nonlinear, but 𝑃𝑟𝑡
2 is modelled in the squared form in 

this paper, which does not require linearization. The nonlinear term 𝑓𝑚𝑛,𝑡
2

 can be 

linearized by piecewise linear approximation to convert DR-SIP into a MILP problem 

[23], which is presented as follows. ℎ(𝑓𝑚𝑛,𝑡) represents the nonlinear function, ∆𝑓𝑚𝑛,𝑘 

is the segment of gas pipeline mn, and 𝜒𝑚𝑛,𝑡,𝑘 is the auxiliary continuous variable.  

ℎ(𝑓𝑚𝑛,𝑡) ≈ ℎ(∆𝑓𝑚𝑛,1) 

+∑(ℎ(∆𝑓𝑚𝑛,𝑘+1) − ℎ(∆𝑓𝑚𝑛,𝑘)) 𝜒𝑚𝑛,𝑡,𝑘
𝑘∈𝐾

 

 

(4-25) 

𝑓,𝑡 = ∆𝑓𝑚𝑛,1 +∑(∆𝑓𝑚𝑛,𝑘+1 − ∆𝑓𝑚𝑛,𝑘)𝜒𝑚𝑛,𝑡,𝑘
𝑘∈𝐾

 (4-26) 

0 ≤ 𝜒𝑚𝑛,𝑡,𝑘 ≤ 1 (4-27) 

4.7 Case Studies 

    This section presents the numerical case studies of the proposed DR-SIP on an 

integrated electricity and gas system. The IES consists of the standard IEEE 30 busbars 
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electricity system and a 6-node gas network, shown in Fig. 4-3 [57]. The gas network 

includes a gas-fired generator, 4 gas demands and 7 pipelines. A gas turbine is 

connected between bus 2 of the electricity network and bus 6 of the gas network. Three 

cases are performed to optimize DR-SIP. The only difference between cases 2 and 1 is 

the addition of the planning stage before the seismic attacks. 

▪ Case 1: Single-stage emergency response without considering hardening 

investment for IES. 

▪ Case 2: Two-stage model including resilience enhancement planning and 

emergency response for IES. 

▪ Case 3: Two-stage model for IEEE 30-bus system.  

    Section 4.7.1 presents comparisons of each case. Sections 4.7.2 and 4.7.3 illustrate 

the optimal hardening plan and computational results for case 2. Section 4.7.4 compares 

 

 

 

 

Fig. 4-3. Proposed test system.  

 

 

TABLE 4-5  Optimal hardening plan under different planning budget 
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the numerical performance of case 2 between DRO and RO. Section 4.7.5 highlights 

the merits of the proposed model.  

4.7.1 Case Comparisons  

TABLE 4-3 shows the operation and total cost for cases 1 and 2 with the increasing 

seismic intensity level. For case 1, without hardening investment, the total cost is the 

same as the operation cost. For case 2, the total cost is the sum of operation and 

investment cost. The predefined investment budget for case 2 is 10 lines. When the 

intensity level is under level Ⅲ, the expected line damage obtained from seismic risk 

assessment model is around 0, thus the operation cost for both case 1 and 2 is the same 

as generation cost. When the intensity level is above Ⅲ, operation cost increases since 

more load shedding is conducted. The investment cost of case 2 also increases from 

332×103$ to 795×103$ even though the investment budget is fixed. The reason is that 

when more lines are damaged, DR-SIP invests on more important lines, which causes 

TABLE 4-3  OPTIMAL HARDENING PLAN UNDER DIFFERENT PLANNING BUDGET 
 

 Case 1 Case 2 

Intensity level 

Expected 

operation  

cost (103$) 

Total  

cost (103$) 

Expected 

operation  

cost (103$) 

Total 

cost (103$) 

Ⅰ 30 30 30 362 

Ⅱ~Ⅲ 30 30 30 362 

Ⅳ 33 33 30 362 

Ⅴ 43 43 38 370 

Ⅵ 56 56 42 374 

Ⅶ 71 71 54 448 

Ⅷ 263 263 77 872 

Ⅸ 402 402 125 920 

 

TABLE 4-4  OPTIMAL HARDENING PLAN UNDER DIFFERENT PLANNING BUDGET 

 

Planning 

budget 
Optimal hardening plan 

1 1-2 

2 1-2, 1-3 

3 1-3, 3-4, 2-6 

4 1-2, 2-4, 2-5, 6-9 

5 1-2, 2-5, 2-6, 12-13, 12-15 

6 1-2, 2-4, 4-12, 12-13, 12-15, 25-27 

7 1-2, 2-4, 4-12, 12-13, 12-15, 25-27, 2-g1 

8 1-2, 2-4, 2-5, 5-7, 4-12, 12-13, 12-15, 8-28 

9 1-2, 2-4, 2-5, 5-7, 4-12, 12-13, 12-15, 8-28, 2-g1 

10 1-2, 2-4, 2-5, 5-7, 4-12, 12-13, 12-15, 8-28, 2-g1, g1-g4  

15 1-2, 2-4, 2-5, 5-7, 4-12, 12-13, 12-15, 12-16, 16-17, 10-17, 

10-21, 27-30, 8-28, 2-g1, g1-g4 

20 1-2, 2-5, 2-6, 4-6, 6-7, 6-10, 4-12, 12-13, 12-15, 10-21, 10-

22, 15-23, 22-24, 23-24, 28-27, 8-28, 6-28, 2-g1, g1-g4 

 

 

 



Chapter 4                    Resilience Enhancement of IEGS against Seismic Attacks 

 

81 

 

139% increase of investment cost when intensity is up to level Ⅸ. When the intensity 

is above level Ⅶ, the investment cost remains constant as the 10 most vital lines to be 

hardened are found.  

It is to be noted that the operation cost in case 1 is always higher than that in case 2, 

i.e., the gap is from 10% under level Ⅳ to 220% under level Ⅸ, since more load 

shedding is made without hardening investment to protect lines. With the increasing 

intensity level, the total cost of case 1 is increasing faster than that of case 2. When the 

intensity level is Ⅰ, the total cost of case 1 is only 8% of case 2, which reflects that only 

implementing load shedding without hardening investment is much more economical. 

However, under level Ⅸ, the ratio is up to 44%, which shows that emergency response 

under seismic attacks without hardening planning causes huge economic loss.  

When generation cannot satisfy all original load due to broken lines caused by 

seismic attacks, load shedding is made to maintain the system balance, which inevitably 

 

 

Fig. 4-4. Load shedding cost of three cases. 

 

Fig. 4-5. Frequency of line hardened. 

 

 

 

 

 

Fig. 4-4. Load shedding cost of three cases. 
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leads to huge load shedding cost. Fig. 4-4 depicts the load shedding cost for three cases 

under different seismic intensity levels. Higher load shedding cost is regarded as the 

system is more vulnerable when facing seismic attacks. It shows that case 1 yields the 

highest load shedding cost in all intensity levels, which reaches 350×103$. This figure 

also shows that case 2 requires less load shedding than case 3, with the cost in case 

3:169×103$ and in case 2: 90×103$. The potential reason is that: i). Gas-fired generators 

provide more supplies to the IES; ii) The IES network is more complex that can defend 

more severe seismic attacks; iii) Underground pipelines are more reliable than power 

lines, which is pre-set in the mean value vector in ambiguity set. 

With increasing intensity level,  the cost difference between each case is becoming 

larger. When intensity level is Ⅸ, the cost of case 2 and 3 are only 26% and 48% of 

case 1 respectively. Overall, it can be observed that the integration of electricity and 

gas networks makes the system more reliable against seismic attacks.  

 

4.7.2 Optimal Hardening Plan 

The impact of increasing the budget on both planning and operation is given in 

TABLE 4-4 and the intensity level is set as level Ⅴ. However, when a large number of 

damaged lines with few hardening lines considered, e.g., budget=1, may probably cause 

an infeasible solution. Since there are still many lines damaged without previously 

hardened, causing the congestion and unbalance among transmission lines. Line 1-2 is 

 

 
 

Fig. 4-6. Electricity and gas load shedding under different investment cost. 

 

 

 

 
 

Fig. 4-7. Electricity and gas load shedding under different investment cost. 
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almost considered in all the budget ranges since both buses 1 and 2 contain the two 

largest generators and the power can be transmitted to buses 3, 5, 6 and gas bus 1. Line 

2-4 is the second most frequent line to harden as the second largest generation of bus 2 

needs to be securely transmitted to bus 4, which is connected with buses 3, 6 and 12.  

Fig. 4-5 shows the times for most frequent lines being hardened when planning budget 

is under 20. It is concluded that buses 2 and 12 are the most significant buses that 

involved most frequently. As observed in Fig. 4-3, bus 2 connects with 5 buses with a 

generator and load. Bus 12 connects with 5 buses with a load.  

4.7.3 Computational Results Under Different Planning Budgets 

    In TABLE 4-5, it shows that a larger planning budget directly leads to more 

investment cost, but also improves the resilience and accordingly reduces load shedding 

cost. When the budget increases from 1 to 2, the investment cost increases dramatically 

by 66×103$. The reason is that when the budget is extremely insufficient, e.g., budget=1 

or 2, the two most important line 1-2 and 1-3 are chosen. Lines 1-2 and 1-3 are not only 

connected with large generators but also have large line ratings, and thus the hardening 

 

TABLE 4-5 COMPUTATIONAL RESULTS UNDER DIFFERENT PLANNING BUDGET 

 

Planning 

Budget 

Investment 

cost (103$) 

Expected 

operation 

cost (103$) 

Electricity 

load shedding 

(MWh) 

Gas load 

shedding 

(Sm3) 
 

1 50 132 3800 35  

2 116 72 813 25  

3 125 72 787 24  

4 141 72 779 23  

5 158 72 763 23  

6 191 71 752 21  

7 224 71 727 20  

8 257 71 684 17  

9 285 65 640 17  

10 314 65 612 16  

15 446 62 429 12  

20 587 55 315 9  
 

 

TABLE 4-6 COMPARISON WITH ROBUST OPTIMIZATION 

 

 
Robust optimization 

Distributionally robust 

optimization 

Case 

Expected 

operation 

cost (103$) 

Total 

cost (103$) 

Expected 

operation 

cost (103$) 

Total 

cost (103$) 

1 90 90 71 71 

2 72 495 54 448 

3 102 544 95 516 
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Planning 

Budget 

Investment 

cost (103$) 

Expected 

operation 

cost (103$) 

Electricity 

load shedding 

(MWh) 

Gas load 

shedding 

(Sm3) 
 

1 50 132 3800 35  

2 116 72 813 25  

3 125 72 787 24  

4 141 72 779 23  

5 158 72 763 23  

6 191 71 752 21  

7 224 71 727 20  

8 257 71 684 17  

9 285 65 640 17  

10 314 65 612 16  

15 446 62 429 12  

20 587 55 315 9  
 

 

TABLE 4-7 COMPARISON WITH ROBUST OPTIMIZATION 

 

 
Robust optimization 

Distributionally robust 

optimization 

Case 

Expected 

operation 

cost (103$) 

Total 

cost (103$) 

Expected 

operation 

cost (103$) 

Total 

cost (103$) 

1 90 90 71 71 

2 72 495 54 448 

3 102 544 95 516 
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cost is high. Due to the hardening of line 1-3, it survives from seismic attack by 

protecting 2980MWh electricity load and 10Sm3 gas load from shedding. When the 

budget increases above 2, the investment cost and load shedding change slowly. Fig. 4-

6 shows the load shedding curve for both electricity and gas with respect to different 

investment cost. When the investment cost increases, both electricity and gas load 

shedding decreases. The additional investment cost increasing from 50×103$ to 

116×103$ helps to prevent load shedding greatly for both electricity and gas network.  

When the investment cost is above 116×103$, the impact on load shedding is less 

effective.  

4.7.4 Comparison with Robust Optimization 

RO as a benchmark method is compared with the proposed DRO method in terms of 

mathematical performance in cases 1, 2 and 3. From TABLE 4-6, it can be observed 

that RO yields higher costs in all the three cases. Overall, the total cost and operation 

cost of DRO are 13% and 18% less than those of RO respectively. The reason is that 

RO always considers line damages that cause the most severe load shedding. Therefore, 

in the first stage, RO makes decisions on hardening investment to protect the system 

before the potential worst damage. In the second stage, under the worst seismic attack, 

load shedding is made while the whole system flow balance is ensured.  

4.7.5 Discussion on Numerical Results 

Three cases are extensively investigated and the resulting difference shows that case 

2, i.e., the two-stage model including resilience enhancement planning and emergency 

response for IES, outperforms cases 1 and 3. Compared with case 1 which only contains 

emergency response to maintain system power balance, case 2 provides a more secure 

and reliable operation scheme with 54% less load shedding cost. In comparison with 

case 3 which is implemented on the electricity system without gas system integration, 

case 2 produces better solution with less load shedding and investment cost. Since the 

interdependency between electricity and gas systems enables coordinated energy flow 

to maintain both power and gas balance, it is effective to reduce load shedding and 

ensure the security of IES. The benefits of using the newly developed DRO over RO 

for all three cases are also analyzed, which results in reduced expected operation cost 

and total cost. The reason is that DRO captures the uncertainty of seismic attacks 

through partial distribution information of uncertainties via ambiguity sets, i.e., moment 
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information. It considers more specific uncertainty information than RO and 

accordingly produces less-conservative results.  

The extensive case study and analysis illustrate the advantages of DR-SIP, which are:  

1) DR-SIP is a hybrid optimization model containing both planning and operation 

schemes. It not only provides an optimal hardening plan to enhance resilience against 

seismic attacks but takes actions to maintain supply and demand balance via load 

shedding, ensuring the security for IES in two stages.  

2) The impact of seismic attacks on IES is assessed by considering historical data of 

seismic events in a probabilistic manner. Thus, the impact of seismic attacks can be 

easily included in the optimization model for resilience enhancement.  

3) The developed data-driven DRO method is less conservative than RO because the 

statistical information of the uncertainty of seismic attacks is utilized. 

4) This paper demonstrates that the integrated planning model can further improve the 

resilience of electricity systems, following the trend multi-vector energy system 

integration. 

4.8 Chapter Summary 

In this paper, a two-stage DRO method is developed to enhance the resilience of an 

IES under seismic attacks with combined planning and operation strategies. The 

proposed method provides optimal hardening plans for specific power lines and gas 

pipelines under different seismic intensity levels and investment budgets. Through 

extensive case study demonstrations, the key findings are as follows: i) In the first stage, 

DR-SIP effectively determines the most vital lines to harden. In the second stage, DR-

SIP optimally shed loads in order to keep system balance and minimize the system 

operation cost; ii) With RO that considers the most extreme event and serious damage, 

the proposed DRO provides less conservative results for both planning and operation 

stages with 13% less cost; iii) Investment plan with higher budget is more likely to yield 

a reliable IES with high resilient performance; iv) The optimal hardening plan is 

effective for protecting transmission lines and loads and IES is more resilient than 

electricity network against seismic attacks. This method can help system operators to 

make economical hardening and operation strategies to improve the resilience of 

integrated energy system under seismic attacks. 

 



Chapter 5                                Risk Mitigation of IEGS under False Data Injections 

86 

 

 

Chapter 5  

Two-Stage 
Coordinated Risk 

Mitigation Strategy for 

Integrated Electricity 

and Gas Systems under 

Malicious False Data 

Injections 

 

 

 

This chapter proposes to apply two-stage distributionally robust 
optimization to analyse and resolve the integrated electricity and gas 
system (IEGS) optimisation under false data injection attacks. This 
work provides system operators with a powerful model to operate the 
IEGS with enhanced cyber security and high penetrated renewable 
energy. 
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5.1 Abstract 

    The dramatic increase of cyber-attacks on energy systems can cause huge losses, which 

has drawn extensive attention due to the fast integration of information communication 

technologies (ICTs). This issue is becoming worse with the integration of electricity and 

gas systems (IEGS), facilitated by gas generation and new coupling technologies. 

    This paper investigates the risk and mitigation strategies for IEGS under false data 

injection attacks (FDIA) in a hierarchical two-stage framework. The FDIA on both 

electricity and gas systems are modelled through injecting falsified data by adversaries. 

To mitigate the adverse impacts, a novel two-stage distributionally robust optimization 

(DRO) is proposed: i) day-ahead operation to determine initial operation scheme and ii) 

real-time corrective operation with the realization of FDIA and renewable generation 

uncertainties. A semidefinite programming is formulated for the original problem and it 

is then solved by a convex optimization-based algorithm. A typical IEGS is used for case 

demonstration, which shows that the proposed model is effective in mitigating the risks 

caused by potential FDIA and renewable uncertainties, by optimal coordinating energy 

infrastructures and load shedding.  This work provides system operators with a powerful 

model to operate the IEGS with enhanced cyber security and high penetrated renewable 

energy. It can be easily extended to mitigate other natural and malicious attacks for IEGS. 

5.2 Nomenclature 

A. Indices and sets 

t, T Index and set for time periods.  

𝑏 , 𝐵  Index and set for electricity buses. 

𝑖𝑒, 𝐼𝑒 Index and set for electricity generators. 

𝑖𝑔, 𝐼𝑔 Index and set for gas wells. 

GT Index for gas turbine. 

j,  J Index and set for renewable generators.  

𝑙𝑒, 𝐿𝑒 Index and set for power lines. 

𝑙𝑔, 𝐿𝑔 Index and set for gas pipelines. 

𝑘𝑒, 𝐾𝑒 Index and set for electric loads. 

𝑘𝑔, 𝐾𝑔 Index and set for gas loads. 

B. Parameters  

AIL Attack injection level for FDIA. 
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𝜆𝑖𝑒
𝑎 , 𝜆𝑖𝑒

𝑏 , 𝜆𝑖𝑒
𝑐  Cost coefficients for of electricity generator 𝑖𝑒.  

𝜆𝑖𝑔 Cost coefficient for gas well 𝑖𝑔. 

𝜆𝑖𝑒
+ , 𝜆𝑖𝑒

−  Cost coefficient for up and down reserve of electricity 

generator 𝑖𝑒. 

𝜆𝑖𝑒
𝑟𝑒, 𝜆𝑗

𝑟𝑒 Regulation cost coefficient for electricity generator 𝑖𝑒  and 

renewable generator j. 

𝜆𝑘𝑒
𝑙𝑠 , 𝜆𝑘𝑔

𝑙𝑠  Penalty cost coefficient for electricity and gas load shedding.  

𝜔𝑗
𝑠(𝑡) Forecasted output of renewable generator j at time t. 

𝑅𝑖𝑒
+ , 𝑅𝑖𝑒

−  Maximum up and down reserve capacity of electricity 

generator 𝑖𝑒 at time t. 

𝑅𝐺𝑇
+ , 𝑅𝐺𝑇

−  Maximum up and down reserve capacity of gas turbine GT at 

time t. 

𝑃𝑖𝑒,𝑚𝑎𝑥, 𝑃𝑖𝑒,𝑚𝑖𝑛 Maximum and minimum output of electricity generator 𝑖𝑒.   

𝑃𝑖𝑔,𝑚𝑎𝑥, 𝑃𝑖𝑔,𝑚𝑖𝑛 Maximum and minimum output of gas well 𝑖𝑔.   

𝑃𝐺𝑇,𝑚𝑎𝑥, 𝑃𝐺𝑇,𝑚𝑖𝑛 Maximum and minimum output of gas turbine GT.   

𝑥𝑙𝑒  Resistance of power line 𝑙𝑒. 

𝑓𝑙𝑒,𝑚𝑎𝑥 Maximum power flow of line 𝑙𝑒. 

𝑓𝑙𝑔,𝑚𝑎𝑥 Maximum gas flow of line 𝑙𝑔. 

𝜔𝑗,𝑡
𝑠  Forecasted renewable generation at time t. 

𝑃𝑟𝑙𝑔,𝑚𝑎𝑥, 

𝑃𝑟𝑙𝑔,𝑚𝑖𝑛 

Maximum and minimum gas pressure of gas pipeline 𝑙𝑔.  

𝛾𝑙𝑔 Coefficient for Weymouth equation. 

𝐷𝑙𝑔
 , 𝐿𝑙𝑔  Diameter and length of pipeline 𝑙𝑔.  

𝐹𝑙𝑔  Pipeline friction coefficient.  

𝑅 Specific gas constant. 

𝑍 Compression factor of pipeline 𝑙𝑔. 

𝜌𝑙𝑔
  Gas density.  

𝑇𝑒𝑚𝑝 Temperature.  

𝑃𝑘𝑒,𝑡, 𝑃𝑘𝑔,𝑡 Electricity and gas load at time t. 

𝑃𝑘𝑒,𝑚𝑎𝑥
𝑙𝑠 , 𝑃𝑘𝑔,𝑚𝑎𝑥

𝑙𝑠  Maximum electricity and gas load shedding at time t. 
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𝜂𝑖𝑒,𝑡, 𝜂𝐺𝑇,𝑡 Participation factor for reserves of electricity generator and gas 

turbine at time t.  

 

C. Variables and functions 

𝑃𝑖𝑒,𝑡
𝑠 ,𝑃𝑖𝑒,𝑡

𝑟𝑒  Scheduled and regulated output of electricity generator 𝑖𝑒  at 

time t. 

𝑃𝑖𝑔,𝑡
𝑠 ,𝑃𝑖𝑔,𝑡

𝑟𝑒  Scheduled and regulated output of gas well 𝑖𝑔 at time t. 

𝑃𝐺𝑇,𝑡
 𝑠 , 𝑃𝐺𝑇,𝑡

 𝑟𝑒  Scheduled and regulated output of gas turbine GT at time t. 

𝑟𝑖𝑒,𝑡
+ , 𝑟𝑖𝑒,𝑡

−  Up and down reserve of electricity generator 𝑖𝑒 at time t. 

𝑟𝐺𝑇,𝑡
+ , 𝑟𝐺𝑇,𝑡

−  Up and down reserve of gas turbine GT at time t. 

𝑓𝑙𝑒,𝑡
𝑠 , 𝑓𝑙𝑒,𝑡

𝑟𝑒   Scheduled and regulated power flow.  

𝑓𝑙𝑔,𝑡
𝑠 , 𝑓𝑙𝑔,𝑡

𝑟𝑒  Scheduled and regulated gas flow. 

𝑓𝑙𝑔,𝑡
𝑖𝑛𝑖, 𝑓𝑙𝑔,𝑡

𝑡𝑒𝑟 Gas flow from initial node and to terminal node of pipeline 𝑙𝑔 

at time t. 

𝑃𝑟𝑙𝑔,𝑡
𝑠 , 𝑃𝑟𝑙𝑔,𝑡

𝑟𝑒  Scheduled and regulated gas pressure of gas pipeline 𝑙𝑔 at time 

t.  

𝑃𝑟𝑙𝑔,𝑡
𝑠,𝑖𝑛𝑖 

,𝑃𝑟𝑙𝑔,𝑡
𝑠,𝑡𝑒𝑟 

 Scheduled gas pressure of initial and terminal nodes of pipeline 

𝑙𝑔 at time t. 

𝑃𝑟𝑙𝑔,𝑡
𝑟𝑒,𝑖𝑛𝑖 

,𝑃𝑟𝑙𝑔,𝑡
𝑟𝑒,𝑡𝑒𝑟 

 Regulated gas pressure of initial and terminal nodes of pipeline 

𝑙𝑔 at time t. 

𝑃𝑘𝑒,𝑡
𝑙𝑠  Electricity load shedding at time t. 

𝑃𝑘𝑔,𝑡
𝑙𝑠  Gas load shedding at time t. 

x, y  Vectors of first and second stage variables. 

𝑃𝑓( ) Probability function. 

𝐸𝑃[ ] Expectation over distribution.  

〈 〉 Trace of matrix.  

𝜓0,𝜓𝑗 , 𝛹𝑗𝑘 , 𝜏 Dual variables.  

D. Uncertainty  

𝜉𝑗,𝑡 Real-time renewable power output of j at time t.  

Δ𝑃𝑘𝑒,𝑡, Δ𝑃𝑘𝑔,𝑡, 𝜌𝑙𝑔
𝐹  FDIA on electricity load, gas load and gas density at time t. 

𝐷  Ambiguity set for FDIA and renewable uncertainty. 
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𝜇 , Σ  Mean vector and covariance matrix for FDIA and renewable 

uncertainty. 

𝛩 Second moment matrix. 

𝑉𝑆 Polyhedral set of extreme points. 

 

5.3 Introduction  

Power systems have evolved to be more intelligent, efficient and reliable with the 

increasing dependence on data communication infrastructures [87]. The information 

and communication technology (ICT) supports bidirectional information flows and thus 

enhances the optimal control of the physical power system with better observability and 

controllability. However, high integration and modernization of ICT can naturally raise 

threats to power system security [88]. The adversary can launch false data injection 

attacks (FDIA) to tamper critical data and inject falsified data, which brings serious 

challenges to state estimators, indirectly affecting system operation and control. In 2015, 

three Ukrainian regional power distribution companies were attacked by FDIA which 

caused power outages for 225,000 customers [89].  

    Existing research of FDIA most focuses on investigating i) maximally launching 

FDIA to cause damages, ii) detection algorithm against FDIA and iii) mitigation and 

protection schemes against FDIA. As for attack modelling and detection, paper [90] 

models how an adversary can trigger sequential outages on targeted branches by 

identifying critical branches. A stochastic model is proposed to design FDIA that affects 

electricity market by adopting imperfect grid information [91]. Paper [92] proposes an 

FDIA that can be launched through the approximation on system states based on 

injection measurements. An online anomaly detection algorithm is used to detect FDIA 

based on load forecasting and generation scheduling [93], where the minimum attack 

magnitudes and detection thresholds are determined. A detection and isolation scheme 

is proposed in [94]  by using interval observer based on the physical dynamics of grids.  

State estimation is of significance in FDIA detection. However, malicious FDIA can be 

masked and hidden through judiciously designing residue of bad data detection [95, 96]. 

Therefore, mitigation strategy is the final barrier for protecting power systems provided 

that detection is failed. A corrective scheme is proposed to address overloading and 

uneconomic dispatch in [97] against the worst-case FDIA. Paper [98] proposes a unit 

commitment model by using a trilevel optimization model, which is converted into a 
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bilevel mixed integer programming problem.  

    The increasing demand growth of both power and gas systems, low price of natural 

gas resources, and conversion technologies between the two systems, e.g., gas-fired 

units and power-to-gas facilities, have promoted the interdependency between power 

and gas systems. Consequently, modelling and optimizing the two independent systems 

as an entity can facilitate the economy and security for both systems. Integrated 

electricity and gas systems (IEGS) realizes the coordination between energy 

infrastructures in both power and gas systems.   

    The electricity and natural gas systems are increasingly independent, interconnected 

by many coupling technologies to form IEGS. Conversion technologies between the 

two systems include gas-fired units and power-to-gas facilities. Combined heat and 

power (CHP) enables the conversion of gas to both heat and electricity [99, 100]. 

Power-to-gas (P2G) facilities can convert excessive renewable energy to synthetic 

natural gas [21, 29]. The conversion from gas to power is mainly realized by utilizing 

gas turbines [101, 102]. In some compressor stations of natural gas systems, electricity 

is used to drive compressors. The interdependency produces many benefits, including 

enhanced security of supply, more absorption of renewable energy, but there are also 

many adverse impacts. Cascading failures in one system can propagate to the other and 

the cyber- attacks on one system can affect the security of the other.  

    Existing IEGS literatures on making use of its unique interdependency generally 

concentrates on i) operation under normal conditions, ii) security-based operation under 

reliability issues and iii) resilience enhancement and operation strategies under natural 

disasters. Paper [24] proposes an optimal operation scheme for IEGS considering 

electricity demand response and the impact on the entire system is profound due to the 

strong interdependency of power and gas systems. A-low carbon IEGS community with 

heat delivery system is proposed in [103], where the uncertainties of renewable 

generation and demand are handled by stochastic optimization (SO). Paper [104] 

models a security-constrained unit commitment against N - k outages by using robust 

optimization (RO). Nonlinear gas flow is relaxed into a second-order cone problem for 

convexity. To enhance the resilience of IEGS, a robust network hardening strategy is 

proposed in [76], considering the uncertainties of natural disasters. Paper [105] 

proposes a minimax-regret robust unit commitment model for enhancing the resilience 

of IEGS against the extreme weather obtained by spatial dynamic method.  

    Leveraging between RO and SO, distributionally robust optimization (DRO) is 
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widely applied in power systems to handle uncertainties [56, 57, 64, 106, 107]. SO 

either assumes specific knowledge of probability distributions or requires a large 

number of uncertainty samples, which is not always practical and can cause high 

computational burden. RO accommodates uncertainties in predefined uncertainty sets 

and considers the worst-case scenario, which could have extremely low probability and 

thus produces over-conservative results. DRO, taking the advantage of distributional 

information, e.g., moment information, deals with uncertainties within a feasible set, 

called ambiguity set. Therefore, compared with RO, DRO determines expected results 

over all possible distributions, which are less-conservative. Compared with SO, DRO 

avoids intensive computation, thus improving calculation efficiency. Paper [56] applies 

DRO to a risk-based optimal gas-power flow. An optimal scheduling of IEGS 

considering electricity and gas load uncertainties is proposed in [57].  

    Due to the strong interdependency between electricity and gas systems in IEGS, the 

FDIA on either electricity or gas system can propagate to each other. The adverse 

impact can be exaggerated when there is large volume of uncertain renewables in the 

electricity system. But limited effort is dedicated to studying the impact of FDIA on 

IEGS. This paper proposes a two-stage risk mitigation strategy to address the 

uneconomic operation of IEGS under FDIA considering renewable generation 

uncertainties. FDIA is assumed to attack both electricity and gas meter readings, 

including i) load measurement of electricity and gas systems and ii) gas density 

measurement. In the first stage, the day-ahead optimization determines an optimal IEGS 

scheduling scheme based on forecasted renewable generation without considering 

potential FDIA. In the second stage, both FDIA and renewable uncertainties are 

revealed, a real-time corrective optimization is built to minimize the attack impacts 

through load shedding and adjusting generation output. The original problem is 

converted into equivalent semidefinite programming (SDP) and a constraint generation 

algorithm (CGA) is adopted to solve the SDP problem. For conciseness and simplicity, 

the proposed distributionally robust FDIA mitigation scheme is represented by DR-

FMS.  

    The major contribution of this paper is as follows:  

1) It models FDIA in an IEGS for the first time, particularly on natural gas load 

and density measurement, where existing research only focuses on FDIA on 

electricity systems.  
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2) Uncertainties of renewable resources are considered in the proposed model as 

they can worsen system operation conditions during FDIA, compared to 

existing FDIA papers that ignore the impact of renewable uncertainties.  

3) Compared to SO and RO for modelling FDIA, the ambiguous distribution of 

DRO developed in this paper, which is less data-dependent and conservative, 

can better characterize uncertain variables.  

4) A two-stage FDIA mitigation scheme is proposed for the first time to conduct 

the day-ahead and real-time operation, which is more powerful and convenient 

to be used by system operators to ensure the efficiency and security of the 

IEGS.  

    The rest of this paper is organized as follows. Section 5.4 models FDIA for both 

electricity and gas sides. Section 5.5 presents problem formulation of the DR-FMS. The 

DRO methodology regarding and associated reformulations are given in Section 2.1.2. 

Section 5.6 demonstrates case studies and performance of the DR-FMS. Finally, the 

conclusion is given in Section 5.7.   

 

 

5.4 Attack Modelling  

This section presents the attack modelling for electricity and gas system. State 

estimation is a powerful tool to detect FDIA by processing raw data measurements, but 

a successful FDIA can be undetectable by adversary’s stealthy design.  

5.4.1 Attacks on Electricity System 

The nonlinear relationship between state variable 𝑥 and measurement 𝑧 is given in 

(5-1), where ℎ(𝑥)  denotes the nonlinear vector function of 𝑥  and 𝑒  is the error 

measurement. Based on DC state estimation, equation (5-1) can be transformed into   

(5-2), where 𝐻 represents the Jacobian matrix.  

𝑧 = ℎ(𝑥) + 𝑒  (5-1) 

𝑧 = 𝐻𝑥 + 𝑒  (5-2) 

    After the realization of FDIA, the measurement vector 𝑧 becomes 𝑧𝑏𝑎𝑑 = 𝑧 + 𝑎, and 

the estimated state vector can be represented as  𝑥̂𝑏𝑎𝑑 = 𝑥̂ + 𝑐 where 𝑎 is attack vector 
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and 𝑐  is the resulted deviation vector of state variable after FDIA. Accordingly, to 

determine the estimated state variable, 𝑥̂𝑏𝑎𝑑 can be formulated as: 

𝑥̂𝑏𝑎𝑑 = (𝐻′𝑊𝐻)−1𝐻′𝑊𝑧𝑏𝑎𝑑  (5-3) 

    The largest normalized residual (LNR) can be used to detect and identify 

measurement errors by (5-4). If the residual is less than a threshold 𝜀, then the state 

estimate is valid without FDIA.  

𝐿𝑁𝑅 = ‖𝑧 − 𝐻𝑥̂ ‖ ≤ 𝜀  (5-4) 

    Then, equation (5-5) representing LNR is given based on (5-3) and (5-4). Finally, 

equation (5-6) is obtained.  

𝐿𝑁𝑅 = ‖𝑧 + 𝑎 − 𝐻((𝐻′𝑊𝐻)−1𝐻′𝑊𝑧𝑏𝑎𝑑)‖  (5-5) 

𝐿𝑁𝑅 = ‖𝑧 − 𝐻𝑥̂ + (𝑎 − 𝐻𝑐)‖  (5-6) 

    If 𝑎 is the linear combination of 𝐻 and 𝑐, i.e., 𝑎 = 𝐻𝑐, then 𝐿𝑁𝑅 = ‖𝑧 − 𝐻𝑥̂‖ has 

no change of residual. Therefore, a successful FDIA is launched which can evade 

detection. As a special case of FDIA, load measurement can be attacked according to 

[95, 96] by enforcing the sum of load attack vector to be zero in (5-7). For simplicity, 

the FDIA on electricity load is represented by EL-FDIA. Equation (5-8) constraints the 

attack deviation by attack injection level (AIL).  

∑Δ𝑃𝑘𝑒,𝑡
 

= 0 
(5-7) 

−𝐴𝐼𝐿𝑘𝑒𝑃𝑘𝑒,𝑡 ≤ Δ𝑃𝑘𝑒,𝑡 ≤ 𝐴𝐼𝐿𝑘𝑒𝑃𝑘𝑒,𝑡 (5-8) 

5.4.2 Attack on Gas System 

The FDIA on a gas system is considered on both gas load and density measurement. 

Similar to FDIA on electricity load measurement, the FDIA on gas load measurement 

and density are given in (5-9) and (5-10), namely GL-FDIA and GD-FDIA. The 

changed gas density measurement results in a change of Weymouth coefficient 𝛾𝑙𝑔 . 

Accordingly, the initial coefficient in (5-11) is changed to (5-12) under FDIA.  

0 ≤ Δ𝑃𝑘𝑔,𝑡 ≤ 𝐴𝐼𝐿𝑘𝑔𝑃𝑘𝑔,𝑡  (5-9) 

𝜌𝑙𝑔 ≤ 𝜌𝑙𝑔
𝐹 ≤ (1 + 𝛽𝑑)𝜌𝑙𝑔  (5-10) 
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𝛾𝑙𝑔 = (
𝜋

4
)
2 𝛼2𝐷𝑙𝑔

5

𝐿𝑙𝑔𝐹𝑙𝑔𝑅𝑍𝜌𝑙𝑔
2𝑇𝑒𝑚𝑝

 
(5-11) 

𝛾𝑙𝑔
𝐹 = (

𝜋

4
)
2 𝛼2𝐷𝑙𝑔

5

𝐿𝑙𝑔𝐹𝑙𝑔𝑅𝑍𝜌𝑙𝑔
𝐹 2𝑇𝑒𝑚𝑝

 
(5-12) 

5.5 Two-Stage Risk Mitigation Scheme 

The risk mitigation for IEGS under potential FDIA consists of: i) day-ahead 

operation without considering FDIA or renewable uncertainties and ii) real-time 

operation actions for a corrective mitigation scheme under potential FDIA with the 

realization of renewable uncertainties. The objective functions and associated 

constraints are presented in this section.  

5.5.1 DR-FMS Objective Function 

    A summary of decision variables, objective functions and uncertainty modelled in 

the two stages is presented in TABLE 5-1. Equation (5-13) presents the day-ahead 

operation objective function in the first stage. The first four terms represent the 

generation cost of electricity and gas respectively. Reserve costs of electricity 

generators are shown in the rest. It is noted that the reserve capacity is prepared for 

FDIA and uncertainties from renewable resources.  

𝛤1 = min ∑ 𝜆𝑖𝑒
𝑎

𝑖𝑒∈𝐼𝑒,𝑖𝑔∈𝐼𝑔,𝑡∈𝑇

𝑃𝑖𝑒,𝑡
𝑠 2

+ 𝜆𝑖𝑒
𝑏 𝑃𝑖𝑒,𝑡

𝑠 + 𝜆𝑖𝑒
𝑐 + 𝜆𝑖𝑔𝑃𝑖𝑔,𝑡

𝑠 + 𝜆𝑖𝑒
+𝑟𝑖𝑒,𝑡

+ + 𝜆𝑖𝑒
−𝑟𝑖𝑒,𝑡

−   (5-13) 

    The real-time objective function in the second stage is given in (5-14), which 

mitigates the impact against the presence of FDIA and renewable uncertainty. The first 

three terms represent the penalty cost for renewable generators, electricity generators 

and gas wells when regulated generation deviates from scheduled generation. The final 

two terms represent electricity and gas load shedding cost.  

TABLE 5-1 TWO-STAGE MITIGATION FRAMEWORK 

 

 Decision variables Objective Uncertainty treatment 

Stage Ⅰ 
𝑃𝑖𝑒,𝑡
𝑠 , 𝑃𝑖𝑔,𝑡

𝑠 , 𝑃𝐺𝑇,𝑡
𝑠 , 𝑟𝑖𝑒,𝑡

+ , 𝑟𝑖𝑒,𝑡
− , 𝑟𝐺𝑇,𝑡

+ , 𝑟𝐺𝑇,𝑡
− , 

𝜃𝑙𝑒,𝑡
𝑠,𝑖𝑛𝑖 , 𝜃𝑙𝑒,𝑡

𝑠,𝑡𝑒𝑟 , 𝑓𝑙𝑒,𝑡
 𝑠 , 𝑃𝑟𝑙𝑔,𝑡

𝑠2 , 𝑓𝑙𝑔,𝑡
 𝑠  

Generation and reserve 

cost for electricity 

generators and gas 

turbine 

Renewable generation 

forecast 

Stage Ⅱ 
𝑃𝑖𝑒,𝑡
𝑟𝑒 , 𝑃𝑖𝑔,𝑡

𝑟𝑒 , 𝑃𝐺𝑇,𝑡
𝑟𝑒 , 𝑃𝑘𝑒,𝑡

𝑙𝑠 , 𝑃𝑘𝑔,𝑡
𝑙𝑠 , 𝜃𝑙𝑒,𝑡

𝑟𝑒,𝑖𝑛𝑖 , 

𝜃𝑙𝑒,𝑡
𝑟𝑒,𝑡𝑒𝑟 , 𝑓𝑙𝑒,𝑡

 𝑟𝑒 , 𝑃𝑟𝑙𝑔,𝑡
𝑟𝑒2 , 𝑓𝑙𝑔,𝑡

 𝑟𝑒 ,   

Penalty cost for 

deviation of renewable, 

electricity and gas wells 

Load shedding cost 

Uncertain renewable 

generation, FDIA on 

electricity load, gas load and 

gas density based on 

moment information 

 

 

 

TABLE 5-2 TWO-STAGE MITIGATION FRAMEWORK 

 

 Decision variables Objective Uncertainty treatment 

Stage Ⅰ 
𝑃𝑖𝑒,𝑡
𝑠 , 𝑃𝑖𝑔,𝑡

𝑠 , 𝑃𝐺𝑇,𝑡
𝑠 , 𝑟𝑖𝑒,𝑡

+ , 𝑟𝑖𝑒,𝑡
− , 𝑟𝐺𝑇,𝑡

+ , 𝑟𝐺𝑇,𝑡
− , 

𝜃𝑙𝑒,𝑡
𝑠,𝑖𝑛𝑖 , 𝜃𝑙𝑒,𝑡

𝑠,𝑡𝑒𝑟 , 𝑓𝑙𝑒,𝑡
 𝑠 , 𝑃𝑟𝑙𝑔,𝑡

𝑠2 , 𝑓𝑙𝑔,𝑡
 𝑠  

Generation and reserve 

cost for electricity 

generators and gas 

turbine 

Renewable generation 

forecast 

Stage Ⅱ 
𝑃𝑖𝑒,𝑡
𝑟𝑒 , 𝑃𝑖𝑔,𝑡

𝑟𝑒 , 𝑃𝐺𝑇,𝑡
𝑟𝑒 , 𝑃𝑘𝑒,𝑡

𝑙𝑠 , 𝑃𝑘𝑔,𝑡
𝑙𝑠 , 𝜃𝑙𝑒,𝑡

𝑟𝑒,𝑖𝑛𝑖 , 

𝜃𝑙𝑒,𝑡
𝑟𝑒,𝑡𝑒𝑟 , 𝑓𝑙𝑒,𝑡

 𝑟𝑒 , 𝑃𝑟𝑙𝑔,𝑡
𝑟𝑒2 , 𝑓𝑙𝑔,𝑡

 𝑟𝑒 ,   

Penalty cost for 

deviation of renewable, 

electricity and gas wells 

Load shedding cost 

Uncertain renewable 

generation, FDIA on 

electricity load, gas load and 

gas density based on 

moment information 
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𝛤2 = min ∑ +𝜆𝑗
𝑟𝑒|𝜔𝑗,𝑡

𝑠 − 𝜉𝑗,𝑡| + 𝜆𝑖𝑒
𝑟𝑒|𝑃𝑖𝑒,𝑡

𝑠 − 𝑃𝑖𝑒,𝑡
𝑟𝑒 |

𝑖𝑒∈𝐼𝑒,𝑖𝑔∈𝐼𝑔,𝑡∈𝑇,𝑘𝑒∈𝐾𝑒,𝑘𝑔∈𝐾𝑔

+𝜆𝑖𝑔
𝑟𝑒 |𝑃𝑖𝑔,𝑡

𝑠 − 𝑃𝑖𝑔,𝑡
𝑟𝑒 |

+ 𝜆𝑘𝑒
𝑙𝑠 𝑃𝑘𝑒,𝑡

𝑙𝑠 + 𝜆𝑘𝑔
𝑙𝑠 𝑃𝑘𝑔,𝑡

𝑙𝑠  

 

(5-14) 

5.5.2 Proposed Coordinated Modelling of IEGS 

    The IEGS is a tight coupling entity due to the strong interdependency between 

electricity and gas systems. Accordingly, the two systems should be modelled together 

by one decision maker. The modelling of IEGS in the existing literatures can be 

generally categorized into three types: i) Modelling from the perspective of electricity 

system operators, which overlooks the operational and security constraints of gas 

system [108, 109]. This ignorance will cause the physical gas flow violation due to the 

renewable power fluctuation and load variability; ii) Sequential optimization for IEGS 

[110, 111], which firstly solves the power system model for determining the optimal 

schedule for generators while neglects the operational constraints of gas system. Based 

on the obtained solution from power system, the gas system model can be solved and 

iii) Co-optimization for IEGS which optimizes the comprehensive objective for both 

electricity and gas systems simultaneously. Consequently, the optimal solution for the 

entire IEGS can be obtained.  

    This paper provides a simultaneous coordinated model for the electricity and gas 

systems. Due to the different characteristics of electricity and gas systems, the 

operational constraints of two systems are nonrelevant. However, the two systems are 

solved interdependently with the gas turbine interconnected between the two systems. 

The gas flow through the gas turbine can be used to generate power flow, which is 

considered as the supplement for electricity system.  

5.5.3 Day-ahead Operation  

    The day-ahead operation scheme is implemented based on renewable generation 

forecast without considering FDIA risks, whose constraints are shown in (5-15)-(5-28). 

Constraint (5-15) and (5-16) limit the reserve capacity for electricity generators and gas 

turbine. The scheduled output of electricity generators and gas turbine are enforced 

within limits in (5-17) and (5-18). The linearized DC power flow is given in (5-19) and 

(5-20). Constraint (5-21) ensures the power balance. Gas well output is limited in          

(5-22). Gas pressure is limited in (5-23). Constraint (5-24) means the pressure at the 

initial node is larger than the terminal node since the proposed gas system has a radial 
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topology. Weymouth gas equation for describing gas flow is shown in (5-25) and          

(5-26), where the coefficient is defined in (5-11). Gas turbine connects two 

interdependent systems as a coupled infrastructure. Constraint (5-27) presents the 

transformation from gas flow injection to power generation. The gas balancing 

condition is given in (5-28).  

0 ≤ 𝑟{∙},𝑡
+ ≤ 𝑅{∙}

+ , {∙} = 𝑖𝑒 , 𝐺𝑇 (5-15) 

0 ≤ 𝑟{∙},𝑡
− ≤ 𝑅{∙}

− , {∙} = 𝑖𝑒 , 𝐺𝑇 (5-16) 

𝑃{∙},𝑡
𝑠 + 𝑟{∙},𝑡

+ ≤ 𝑃{∙},𝑚𝑎𝑥, {∙} = 𝑖𝑒 , 𝐺𝑇 (5-17) 

𝑃{∙},𝑚𝑖𝑛 ≤ 𝑃{∙},𝑡
𝑠 − 𝑟{∙},𝑡

− , {∙} = 𝑖𝑒 , 𝐺𝑇 (5-18) 

𝑥𝑙𝑓𝑙𝑒,𝑡
 𝑠 = (𝜃𝑙𝑒,𝑡

𝑠,𝑖𝑛𝑖 − 𝜃𝑙𝑒,𝑡
𝑠,𝑡𝑒𝑟) (5-19) 

−𝑓𝑙𝑒,𝑚𝑎𝑥
𝑠 ≤ 𝑓𝑙𝑒,𝑡

 𝑠 ≤ 𝑓𝑙𝑒,𝑚𝑎𝑥
𝑠  (5-20) 

∑ 𝑃𝑖𝑒,𝑡
𝑠 +𝑃𝐺𝑇,𝑡

 𝑠 +
𝑖𝑒∈𝐼𝑒

∑𝜔𝑗,𝑡
𝑠 + ∑ 𝑓𝑙𝑒,𝑡

𝑠,𝑖𝑛𝑖 −

𝑙𝑒∈𝐿𝑒

∑ 𝑓𝑙𝑒,𝑡
𝑠,𝑡𝑒𝑟

𝑙𝑒∈𝐿𝑒

=

𝑗∈𝐽

∑ 𝑃𝑘𝑒,𝑡
𝑘𝑒∈𝐾𝑒

 (5-21) 

𝑃𝑖𝑔,𝑚𝑖𝑛 ≤ 𝑃𝑖𝑔,𝑡
𝑠 ≤ 𝑃𝑖𝑔,𝑚𝑎𝑥  (5-22) 

𝑃𝑟𝑙𝑔,𝑚𝑖𝑛
2   

≤ 𝑃𝑟𝑙𝑔,𝑡
𝑠2 ≤ 𝑃𝑟𝑙𝑔,𝑚𝑎𝑥

 2  (5-23) 

𝑃𝑟𝑙𝑔,𝑡
𝑠,𝑖𝑛𝑖 ≥ 𝑃𝑟𝑙𝑔,𝑡

𝑠,𝑡𝑒𝑟  
 (5-24) 

𝑓𝑙𝑔,𝑡
 𝑠 2

= 𝛾𝑙𝑔 (𝑃𝑟𝑙𝑔,𝑡
𝑠,𝑖𝑛𝑖2 − 𝑃𝑟𝑙𝑔,𝑡

𝑠,𝑡𝑒𝑟2
 

) (5-25) 

0 ≤ 𝑓𝑙𝑔,𝑡
 𝑠 ≤ 𝑓𝑙𝑔,𝑚𝑎𝑥

 𝑠  (5-26) 

𝑃𝐺𝑇,𝑡
 𝑠 = 𝑐𝐺𝑇𝑓𝑙𝑔,𝐺𝑇

 𝑠  (5-27) 

∑ 𝑃𝑖𝑔,𝑡
𝑠

𝑖𝑔∈𝐼𝑔

+ ∑ 𝑓𝑙𝑔,𝑡
𝑠,𝑖𝑛𝑖

−
𝑙𝑔∈𝐿𝑔

∑ 𝑓𝑙𝑔,𝑡
𝑠,𝑡𝑒𝑟  

𝑙𝑔∈𝐿𝑔

= ∑ 𝑃𝑘𝑔,𝑡
𝑘𝑔∈𝐾𝑔

 (5-28) 

5.5.4 Real-time Risk Mitigation 

    Considering potential FDIA and uncertainties of renewable resources, real-time risk 

mitigation is presented in the second stage to mitigate uneconomic dispatch. The 

approach is distributionally robust against FDIA and renewable uncertainty. The 

regulated generator and gas turbine output are shown in (5-29). Constraint (5-30) 

represents the electricity and gas load shedding limits. The limits considered in the 
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model is based on the existing research [112]. The regulated power flow is constrained 

in (5-31) and (5-32). Constraint (5-33) presents the limits for gas wells. The regulated 

gas pressure and flow are limited in (5-34)-(5-37). Based on (5-12), the new Weymouth 

coefficient 𝛾𝑙𝑔
𝐹  influenced by the attacked gas density is applied. Constraint (5-38)-(5-

40) show that the power imbalance caused by renewable uncertainties should be offset 

by adjusting the reserves of generators and gas turbine. Specifically, constraint (5-38) 

ensures the deviation of renewable generation is within the range of up and down 

reserve limits. In (5-39) and (5-40), the adjustment factor 𝜂𝑖𝑒,𝑡  and 𝜂𝑖𝑔,𝑡  are the 

regulation commitment from generators and gas turbine to mitigate renewable 

uncertainties. Constraint (5-41) presents the regulated power generation of gas turbine. 

Constraint (5-42) and (5-43) ensure power and gas balance in the second stage.  

𝑃{∙},𝑡
𝑟𝑒 − 𝑟{∙},𝑡

− ≤ 𝑃{∙},𝑡
𝑟𝑒 ≤ 𝑃{∙},𝑡

𝑟𝑒 + 𝑟{∙},𝑡
+ , {∙} = 𝑖𝑒 , 𝐺𝑇 (5-29) 

0 ≤ 𝑃{∙},𝑡
𝑙𝑠 ≤ 𝑃{∙},𝑚𝑎𝑥

𝑙𝑠 , {∙} = 𝑘𝑒 , 𝑘𝑔 (5-30) 

𝑥𝑙𝑓𝑙𝑒,𝑡
 𝑟𝑒 = (𝜃𝑙𝑒,𝑡

𝑟𝑒,𝑖𝑛𝑖 − 𝜃𝑙𝑒,𝑡
𝑟𝑒,𝑡𝑒𝑟) (5-31) 

−𝑓𝑙𝑒,𝑚𝑎𝑥
 𝑟𝑒 ≤ 𝑓𝑙𝑒,𝑡

 𝑟𝑒 ≤ 𝑓𝑙𝑒,𝑚𝑎𝑥
 𝑟𝑒   (5-32) 

𝑃𝑖𝑔,𝑚𝑖𝑛 ≤ 𝑃𝑖𝑔,𝑡
𝑟𝑒 ≤ 𝑃𝑖𝑔,𝑚𝑎𝑥 (5-33) 

𝑃𝑟𝑙𝑔,𝑚𝑖𝑛
2   

≤ 𝑃𝑟𝑙𝑔,𝑡
𝑟𝑒2 ≤ 𝑃𝑟𝑙𝑔,𝑚𝑎𝑥

 2  (5-34) 

𝑃𝑟𝑙𝑔,𝑡
𝑟𝑒,𝑖𝑛𝑖 ≥ 𝑃𝑟𝑙𝑔,𝑡

𝑟𝑒,𝑡𝑒𝑟  
 (5-35) 

𝑓𝑙𝑔,𝑡
𝑟𝑒 2 = 𝛾𝑙𝑔

𝐹 (𝑃𝑟𝑙𝑔,𝑡
𝑟𝑒,𝑖𝑛𝑖2 − 𝑃𝑟𝑙𝑔,𝑡

𝑟𝑒,𝑡𝑒𝑟2
 
) (5-36) 

0 ≤ 𝑓𝑙𝑔,𝑡
𝑟𝑒 ≤ 𝑓𝑙𝑔,𝑚𝑎𝑥

  (5-37) 

𝑟{∙},𝑡
− ≤ 𝜂{∙},𝑡 ∑ (𝜔𝑗,𝑡

𝑠 − 𝜉𝑗,𝑡)𝑗∈𝐽 ≤ 𝑟{∙},𝑡
+ , {∙} = 𝑖𝑒 , 𝐺𝑇 (5-38) 

0 ≤ 𝜂{∙},𝑡 ≤ 1, {∙} = 𝑖𝑒 , 𝐺𝑇 (5-39) 

∑ 𝜂𝑖𝑒,𝑡 +

𝑖𝑒∈𝐼𝑒

∑ 𝜂𝑖𝑔,𝑡
𝐺𝑇

 
=

𝑖𝑔∈𝐼𝑔

1 
(5-40) 

𝑃𝐺𝑇,𝑡
 𝑟𝑒 = 𝑐𝐺𝑇𝑓𝑙𝑔,𝐺𝑇

 𝑟𝑒  (5-41) 
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∑𝑃𝑖𝑒,𝑡
𝑟𝑒 +

𝑖𝑒∈𝐼𝑒

∑𝜉𝑗,𝑡+𝑃𝐺𝑇,𝑡
 𝑟𝑒 =

𝑗∈𝐽

∑ 𝑃𝑘𝑒,𝑡 + Δ𝑃𝑘𝑒,𝑡 − 𝑃𝑘𝑒,𝑡
𝑙𝑠

 

𝑘𝑒∈𝐾𝑒

 
 

(5-42) 

∑ 𝑃𝑖𝑔,𝑡
𝑟𝑒

𝑖𝑔∈𝐼𝑔

+ ∑ 𝑓𝑙𝑔,𝑡
𝑟𝑒,𝑖𝑛𝑖 −

𝑙𝑔∈𝐿𝑔

∑ 𝑓𝑙𝑔,𝑡
𝑟𝑒,𝑡𝑒𝑟  

𝑙𝑔∈𝐿𝑔

= ∑ 𝑃𝑘𝑔,𝑡
𝑘𝑔∈𝐾𝑔

+ Δ𝑃𝑘𝑔,𝑡 − 𝑃𝑘𝑔,𝑡
𝑙𝑠  

(5-43) 

Constraint (5-25) contains one nonlinear term, i.e., ‘𝑓𝑙𝑔,𝑡
 𝑠 2

’ and constraint (5-36) 

contains two nonlinear terms, i.e., ‘𝑓𝑙𝑔,𝑡
 𝑟𝑒2’ and ‘𝛾𝑙𝑔

𝐹 (𝑃𝑟𝑙𝑔,𝑡
𝑖𝑛𝑖2 − 𝑃𝑟𝑙𝑔,𝑡

𝑡𝑒𝑟2
 
)’. They need to be 

linearized for obtaining convex functions and guaranteeing global optimal solutions. A 

sufficiently large constant 𝑀𝑙𝑔  can be used to linearize ‘𝛾𝑙𝑔
𝐹 (𝑃𝑟𝑙𝑔,𝑡

𝑖𝑛𝑖2 − 𝑃𝑟𝑙𝑔,𝑡
𝑡𝑒𝑟2

 
)’, shown 

in (5-44) and (5-45). The bilinear term ‘𝑓𝑙𝑔,𝑡
 𝑠 2

’ can be linearized by piecewise linear 

approximation by separating nonlinear function into pieces.  Readers are referred to [23] 

for details. It should be noted that ‘𝑃𝑟𝑙𝑔,𝑡
𝑖𝑛𝑖2’ does not require linearization since it is 

regarded as squared form throughout the paper.  

𝑓𝑙𝑔,𝑡
 𝑟𝑒2 ≤ (𝑃𝑟𝑙𝑔,𝑡

𝑟𝑒,𝑖𝑛𝑖2 − 𝑃𝑟𝑙𝑔,𝑡
𝑟𝑒,𝑡𝑒𝑟2) + (1 − 𝛾𝑙𝑔

𝐹 )𝑀𝑙𝑔 (5-44) 

𝑓𝑙𝑔,𝑡
 𝑟𝑒2 ≥ (𝑃𝑟𝑙𝑔,𝑡

𝑟𝑒,𝑖𝑛𝑖2 − 𝑃𝑟𝑙𝑔,𝑡
𝑟𝑒,𝑡𝑒𝑟2) + (1 − 𝛾𝑙𝑔

𝐹 )𝑀𝑙𝑔 (5-45) 

5.6 Case Studies 

    A combined IEEE 30-bus electricity system and a 6-node gas system is used to test 

the effectiveness of the DR-FMS through the extensive case studies [57]. In the case 

studies, three types of FDIA are considered, namely EL-FDIA, GL-FDIA and GD-

FDIA, which represent FDIA on electricity load, gas load and gas density, respectively. 

For EL-FDIA, the total load is unchanged, which is the fundamental condition of FDIA 
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for evading the detection. The modelling of EL-FDIA can be also found in [95, 97, 113]. 

The following 10 cases are considered:  

Case 1: Single-stage deterministic optimization for IEGS without considering FDIA 

or renewable uncertainty. 

Case 2: RO based FMS with three types of FDIA (AIL =5%). 

 

TABLE 5-2 PARAMETERS OF GAS WELLS 

 

Node No. Pig,max (kcf/h) Pig,min (kcf/h) λig 

4  35 10 2.2 

6 70 20 2 

 

TABLE 5-3 GENERATOR PARAMETERS 

 

Bus 

No. 

Pie,min 

(MW) 

Pie,max 

(MW) 

Rie
+ , Rie

−  

(MW) 
aie bie cie 

1 50 200 20 0.004 2 6 

2 20 80 16 0.002 2 6 

5 15 50 10 0.006 1 8 

8 10 35 7 0.008 3 10 

11 10 30 10 0.025 3 18 

13 12 40 16 0.025 3 18 

 

 

 
Fig. 5-1.  Modified IEEE 30-bus system. 

 

 

TABLE 5-3 PARAMETERS OF GAS WELLS 

 

Node No. Pig,max (kcf/h) Pig,min (kcf/h) λig 

4  35 10 2.2 

6 70 20 2 

 

TABLE 5-4 GENERATOR PARAMETERS 

 

Bus 

No. 

Pie,min 

(MW) 

Pie,max 

(MW) 

Rie
+ , Rie

−  

(MW) 
aie bie cie 

1 50 200 20 0.004 2 6 
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Case 3: Case 2 considering renewable uncertainty (AIL =5%). 

Case 4: Two-stage DR-FMS considering FDIA on electricity load (AIL =5%). 

Case 5: Case 4 considering FDIA on both gas and electricity load (AIL =5%). 

Case 6: Case 5 considering FDIA on gas density (AIL =5%). 

Case 7: Case 6 considering renewable uncertainty (AIL =5%). 

Case 8-10: Case 7 with AIL =10%, 15% and 20%. 

In case 3 and 7, the addition of renewable uncertainty is considered and the AIL is 

still 5% as case 2 and 4. The proposed test network is shown in Fig. 5-1, which contains 

30 buses, 6 electricity generators, 2 renewable generators, 2 gas wells, 21 electricity 

loads and 3 gas loads.  The renewable generators are connected to bus 22 and 25 with 

60MW for each output. Parameters of electricity generators, gas wells are given in 

TABLEs 5-2 and 5-3, which can be found in [66].  

The deterministic method for case 1 is a deterministic global optimization algorithm 

for solving linear programming. The reasons for not using metaheuristic optimization  

methods are: i) The deterministic linear programming problem solved by deterministic 

global optimization and metaheuristic optimization methods have similar results [114-

116]; ii) The focus of this paper is to address FDIA and design mitigation schemes. The 

deterministic optimization method in case 1 is only used for comparison; iii) In practice, 

system operators implement economic dispatch after the data-filtering by state 

estimators,  which requires high computational efficiency;; and iv) Metaheuristic 

methods, such as genetic algorithm and particle swarm optimization, easily converge 

prematurely and could be trapped into a local minimum, particularly with complex 

problems [117].  

It should be noted that the DR-FMS considers the worst-case uncertainty distribution 

for both FDIA and renewable energy from all candidate distributions. Based on the 

partial distributional information, i.e., mean value vector and covariance matrix, DR-

FMS can test all possible distributions modelled by moment information. Accordingly, 

this worst-distribution oriented mitigation scheme is a data-driven approach and 

actually tests a variety of scenarios.  
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5.6.1 Studies on Economic Performance  

Firstly, the economic performance for all 10 cases under different combinations of 

uncertainties is shown in TABLE 5-4. Case 10 has the highest total cost, i.e., $132000, 

which is 21% higher than that of case 1, since EL-FDIA and GD-FDIA are 

comprehensively considered with the highest AIL. Case 1 has the lowest economic 

result since the deterministic model is applied. When considering the FDIA handled by 

RO in case 2 and DRO in case 6, the total cost increases by 11% and 10% respectively. 

In addition to the only consideration of FDIA by case 2, in case 3, when renewable 

 

            
 
Fig. 5-2.  Electricity load shedding under EL-FDIA and GD-FDIA.                           

                   
Fig. 5-3.  Gas load shedding under EL-FDIA and GL-FDIA.                                      
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uncertainty is further considered, the expected total cost increases by 4%. The total 

economic cost of case 3 is $13080, higher than that in case 4. The main reasons are: i) 

case 3 considers all three types of FDIA while case 4 only considers EL-FDIA; ii) case 

3 considers renewable uncertainty while case 4 does not, iii) case 3 is implemented 

under RO, which provides more conservative solutions even in the single-stage 

framework. For case 4, the second stage of DR-FMS considers corrective actions for 

the day-ahead operation, which accounts for a small portion of the total cost. The big 

portion of cost is from the first stage, because generation costs for electricity generators 

and gas wells are considered; and iv) the two-stage framework is a combination of 

stochastic programming, which derives more flexible second-stage decisions to adjust 

first-stage decisions and hedges against uncertain FDIA and renewable generation after 

their realization in the second stage [118, 119]. From case 4 to 10, two-stage DRO is 

applied, where different types of FDIA are considered in cases 4-7 and sensitivity 

analysis is studied for cases 7-10. Both the first-stage and second-stage expected costs 

are increasing for cases 4-7 from only considering EL-FDIA to considering all three 

types of FDIA with renewable uncertainties. It can be found that GL-FDIA has the 

largest impact on economic performance, i.e., the total cost of case 5 has 4.7% more 

cost than case 4. On the contrary, GD-FDIA has the least impact on economic 

performance with a 1.4% rise of total cost from case 5 to case 6. From case 7 to 10, 15% 

more AIL causes an increase of total cost from $124252 to $132000. It should be noted 

that although EL-FDIA does not increase the overall load increase since some loads are 

increasing while the rest are decreasing, FDIA aims at attacking critical loads for 

causing economic losses. Accordingly, under these three types of FDIA with high risks, 

DR-FMS is more suitable for risk assessment and mitigation considering the worst-

distribution. This advantage with less-conservative solutions is reflected in the 

comparison between cases 2 and 6 as wells as cases 3 and 7, where cases 6 and 7 reduce 

$1215 and $1558 compared with cases 2 and 3, respectively.  

TABLE 5-4 ECONOMIC PERFORMANCE FOR CASES 1-10 

 

Economic 

result 
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10 

First-stage 
cost ($) 

108930 120955 125810 108835 113922 115465 119250 120880 122140 123480 

Expected 

Second-

stage cost 

($) 

0 0 0 3895 4132 4275 5292 7862 8043 8520 

Total cost 

($) 
108930 120955 125810 112730 118054 119740 124252 128742 130183 132000 
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5.6.2 Studies on Load Shedding 

To maintain the feasibility of optimization and system balance under FDIA and 

renewable uncertainty, it is necessary to implement load shedding. The electricity load 

shedding (ELS) and gas load shedding (GLS) for 24 hours under FDIA are given in 

Figs. 5-2 and 5-3. In Fig. 5-2, ELS is up to 140MWh when EL-FDIA and GL-FDIA are 

both 20%. ELS is not sensitive to increase when only increasing GL-FDIA level, but 

sensitive when increasing EL-FDIA. The reason is that the scale of electricity load is 

much larger than the gas load. Therefore, the GL-FDIA has a minor effect on ELS. In 

 

            

 
  Fig. 5-4.  Electricity load shedding under EL-FDIA and GD-FDIA.

                   
Fig. 5-5.  Gas load shedding under EL-FDIA and GD-FDIA.                                                 

 
 

 

 

 

TABLE 5-5  FCR FOR CASE 4-10 

 

FCR Line 1-2 Line 6-7 Line 27-28 

Case 4 56% 56% 45% 

Case 5 57% 69% 50% 

Case 6 59% 78% 54% 

Case 7 76% 87% 62% 

Case 8 89% 93% 65% 

Case 9 100% 95% 80% 

Case 10 100% 96% 83% 

FCR 
Pipeline  

N4-N3 

Pipeline  

N6-N5 

Pipeline  

N1-2 
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Fig. 5-3, GLS reaches up to 4.7kcf when FDIA is at the maximum level. GLS increases 

smoothly when AIL of EL-FDIA is under 17% while increases significantly when it is 

over 17%.  

The ELS and GLS under EL-FDIA and GD-FDIA are shown in Fig. 5-4 and Fig. 5-

5. Compared with GL-FDIA in Fig. 5-2,  84 MWh more ELS is made when considering 

the GD-FDIA. Since the wrong gas density can directly influence the gas flow. When 

there is no EL-FDIA, ELS caused by GD-FDIA can still reach up to 3MWh. In Fig. 5-

5, GLS reaches 13kcf at the maximum AIL compared with the 4.7kcf in Fig. 5-3, which 

again proves the significant impact of gas density on GLS. EL-FDIA and GL-FDIA 

show the similar impact on GLS, i.e., GLS increases by 10kcf when fixing GL-FDIA 

and increasing EL-FDIA while GLS increases by 13kcf when fixing EL-FDIA  and 

only increasing GL-FDIA. Since as observed from Fig. 5-2, the scale magnitude of 

electricity load is much larger than gas load, which largely influences on both ELS and 

GLS.  

As observed from Figs. 5-4 and 5-6, the impact of GL-FDIA and GD-FDIA on ELS 

is minor when EL-FDIA is 0%. It shows that when one type of FDIA is manipulated, 

the impact on ELS is minor. However, when multiple types of FDIA are conducted in, 

TABLE 5-5  FCR FOR CASE 4-10 

 

FCR Line 1-2 Line 6-7 Line 27-28 

Case 4 56% 56% 45% 

Case 5 57% 69% 50% 

Case 6 59% 78% 54% 

Case 7 76% 87% 62% 

Case 8 89% 93% 65% 

Case 9 100% 95% 80% 

Case 10 100% 96% 83% 

FCR 
Pipeline  

N4-N3 

Pipeline  

N6-N5 

Pipeline  

N1-2 

Case 4 53% 63% 64% 

Case 5 66% 65% 65% 

Case 6 77% 66% 67% 

Case 7 86% 66% 90% 

Case 8 97% 68% 93% 

Case 9 100% 68% 97% 

Case 10 100% 69% 100% 

 

 

 

TABLE 5-6 EL-FDIA ON GAS LOAD SHEDDINGTABLE 5-7  FCR FOR CASE 4-10 

 

FCR Line 1-2 Line 6-7 Line 27-28 

Case 4 56% 56% 45% 

Case 5 57% 69% 50% 

Case 6 59% 78% 54% 

Case 7 76% 87% 62% 

Case 8 89% 93% 65% 

Case 9 100% 95% 80% 

Case 10 100% 96% 83% 

FCR 
Pipeline  

N4-N3 

Pipeline  

N6-N5 

Pipeline  

N1-2 

Case 4 53% 63% 64% 

Case 5 66% 65% 65% 

Case 6 77% 66% 67% 

Case 7 86% 66% 90% 

Case 8 97% 68% 93% 

Case 9 100% 68% 97% 

Case 10 100% 69% 100% 
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the impact on ELS could be large. In Fig. 5-2, with the AIL increase of both GL-FDIA 

and EL-FDIA, the ELS is massive, which is 99MWh when the AIL of GL-FDIA is 0% 

and 139MWh when AIL of GL-FDIA is 20%. The EL-FDIA is fixed but there is a 

40MWh increase of GLS. In Fig. 5-5, GLS under EL-FDIA and GD-FDIA is given. 

When GD-FDIA is 0%, EL-FDIA has a low impact on GLS even when the AIL is 20%. 

However, when AIL of GD-FDIA is at 20%, GLS ranges from 4.7kcf to 13kcf, and 

when AIL of GD-FDIA is at 20%, GLS ranges from 4.7kcf to 13kcf. This indicates that 

the security interdependency between electricity and gas systems is minor when 

attackers only conduct one type of FDIA, but when multiple types of FDIA is attacking 

the IEGS, it will lead to massive load shedding. 

5.6.3 Studies on Flow-Capacity Ratio  

To study the FDIA impact on power and gas flow, in TABLE 5-5, flow-capacity ratio 

(FCR) for three power lines and three gas pipelines at the peak load time period are 

studied, which is defined as the percentage of flow divided by the line capacity. The 

FCR of line N1-N2 and pipeline N4- N3 and N1-2 all reach 100% when maximum AIL 

is considered since these three lines play vital parts for interconnecting buses and 

transmitting flow. From cases 4 to 7, there is a general increase for FCR of power lines 

and gas pipelines since types of FDIA are gradually incorporated. From cases 7 to 10, 

the FCR still monotonically increases when AIL is increasing from 5% to 20%. It should 

be noted that line 1-2 and line 27-28 are more sensitive to increase of AIL with a 24% 

and 21% increase respectively. Compared to pipeline N4-N3 which is prone to 

TABLE 5-6 EL-FDIA ON GAS LOAD SHEDDING 

 

AIL 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20% 

GLS 

(kcf) 
1.46 1.67 1.88 2.09 2.30 2.53 2.84 3.19 3.62 4.08 4.54 

 

TABLE 5-7 GL-FDIA ON ELECTRICITY LOAD SHEDDING 

 

AIL 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20% 

ELS 

(MWh) 
34.3 36.8 39.8 39.9 41.1 41.4 42.3 42.9 43.7 48.0 48.53 

 

TABLE 5-8 GD-FDIA ON ELECTRICITY LOAD SHEDDING 

 

AIL 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20% 

ELS 

(MWh) 
34.5 48.7 48.7 48.7 48.7 48.7 48.7 48.7 50.0 78.0 111.7 

 

 
 

 

 

 

TABLE 5-8 EL-FDIA ON GAS LOAD SHEDDING 

 

AIL 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20% 

GLS 

(kcf) 
1.46 1.67 1.88 2.09 2.30 2.53 2.84 3.19 3.62 4.08 4.54 

 

TABLE 5-9 GL-FDIA ON ELECTRICITY LOAD SHEDDING 

 

AIL 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20% 

ELS 

(MWh) 
34.3 36.8 39.8 39.9 41.1 41.4 42.3 42.9 43.7 48.0 48.53 

 

TABLE 5-10 GD-FDIA ON ELECTRICITY LOAD SHEDDING 

 

AIL 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20% 

ELS 

(MWh) 
34.5 48.7 48.7 48.7 48.7 48.7 48.7 48.7 50.0 78.0 111.7 
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overloading, the FCR of pipeline N6-N5 ranges only reaches 69%, indicating that gas 

flow is mainly sourced from the gas well connected to node 4.  

5.6.4 Discussion on System Interdependency under FDIA 

The interdependency between electricity and gas systems worsen the system security, 

i.e., the FDIA on electricity system has adverse impact on gas system and vice versa. 

TABLE 5-6, 5-7 and 5-8 present the impact of EL-FDIA on GLS, GL-FDIA on ELS 

and GD-FDIA on ELS, respectively. The EL-FDIA has minor impact on gas system 

compared with GL-FDIA on gas system and GL-FDIA or GD-FDIA have also minor 

impact on electricity system compared with EL-FDIA on electricity system. In order to 

observe a more obvious result, TABLE 5-6 is under the fixed 10% of GD-FDIA and 

TABLEs 5-7 and 5-8 are under the fixed 10% of EL-FDIA.  

 

 
Fig. 5-6.  FCR for power lines and gas pipelines at peak load period. 

 

 
Fig. 5-7.  FCR for power lines and gas pipelines at lowest load period. 

 

 
 

 

 

 

 
Fig. 5-6.  FCR for power lines and gas pipelines at peak load period. 
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A smooth increase of GLS is shown in TABLE 5-6, i.e., the increase of GLS with 

the 20% increase of EL-FDIA is only 3kcf. The GLS accounts for 1% when EL-FDIA 

is at 20%. The potential reasons for this result are i) the electricity system is resilient 

enough based on multiple electricity generators and renewable generators which does 

not require massive supply from gas system and ii) the overall operation cost and load 

shedding of IEGS will increase significantly provided that gas system provides more 

supply to electricity system while implements more GLS. In TABLE 5-7, GL-FDIA 

causes 48.5MWh ELS when AIL is at 20%. The result is on the contrary of TABLE 5-

6 since GL-FDIA causes gas wells supply more on gas system itself, which can be also 

viewed from Fig. 5-3. The increase of GL-FDIA does not result in significant increase 

of GLS, which indicates that there is far less gas to power flow. In TABLE 5-8, GD-

FDIA shows a more severe impact on ELS. The ELS when GD-FDIA is 0% is only 

34.5MWh while it increases dramatically and reaches 111.7 when GD-FDIA is 20%. 

The reason is that GD-FDIA directly increases the gas density, which accordingly limits 

the gas flow and the gas turbine production is restricted.  

5.6.5 Comparison with RO Based Mitigation Scheme  

State estimation calculates the states of all buses and filters raw measurements based 

on the data from the SCADA system. Then reliable measurement will be provided to 

system operators to conduct system operation, e.g., economic dispatch, optimal power 

flow and contingency analysis, etc. In practice, there are three possible scenarios under 

FDIA: i) FDIA is detected by state estimator, thus launched unsuccessfully; ii) FDIA is 

launched successfully and the system operator takes immediate corrective measures 

according to the falsified measurements; iii) FDIA is launched successfully but the risk 

mitigation scheme proposed in this paper can be deployed. 

The first scenario can be handled by deterministic optimization shown in case 1 based 

on the ‘clean’ load measurement with false data filtered out. The second scenario needs 

to be modelled with the expectation of optimization solutions. The realization for the 

second scenario requires huge computational burden since the computational dimension 

is large, i.e., i) EL-FDIA can be manipulated on 20 electricity loads, ii) GL-FDIA can 

be manipulated on 3 gas loads, iii) GD-FDIA can be manipulated on 4 gas pipelines 

and iv) this mitigation scheme considers 24 time periods. For the sake of computational 

efficiency, the mitigation scheme based on scenario approach is ignored in this study. 

The third scenario is computational efficient and can be modelled by either DR-FMS 
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or robust optimization based FDIA mitigation scheme (R-FMS). Furthermore, the real-

time mitigation can be implemented prior to the real attacks by considering reasonable 

and relatively reliable attack scenarios. Note that the FDIA includes EL-FDIA, GL-

FDIA and GD-FDIA. DR-FMS which mimics moderate-conservative FDIA scenarios 

is compared with R-FMS representing the worst-case FDIA scenario on the system.  

The comparison made between DR-FMS and R-FMS is in Figs. 5-8 and 5-9. In 

general, the (flow-capacity ratio) FCR from R-FMS is higher than that from DR-FMS 

for all power lines and gas pipelines. In Fig. 5-6, the FCR in pipeline N1-2 has the 

highest level. The FCR solved by DR-FMS is 90% and 98% by R-FMS. Pipeline N4-

N3 has the second-highest FCR and the difference between DR-FMS and R-FMS is 9%. 

Fig. 5-7 depicts the FCR at the lowest load period, which shows lower FCR for all 

power lines and gas pipelines. The largest FCR difference from DR-FMS and R-FMS 

is for line 27-28, which is 13%. For line 6-7, the FCR difference modelled by two 

schemes is the lowest for both peak and lowest load period. To summarize, DR-FMS 

not only provide more economic operation scheme but yields lower FCR since the 

FDIA is considered in a moderate robust manner. 

5.7 Chapter Summary 

    A risk mitigation scheme for IEGS against FDIA is proposed in this paper with a 

two-stage DRO model. The hierarchical two-stage framework is able to determine both 

day-ahead and real-time system optimal operation schemes considering the impact of 

FDIA and renewable uncertainties on electricity load, gas load and gas density. A 

tractable SDP formulation is built for the original DR-FMS, which is solved by CGA 

in an iterative manner. Through the extensive case studies, the key findings are listed 

below: 

▪ Considering all three types of FDIA, i.e., EL-FDIA, GL-FDIA and GD-FDIA, 

leads to higher economic results and more load shedding than considering two types or 

one type of FDIA. 

▪ Load shedding is more sensitive to EL-FDIA than GD-FDIA or GL-FDIA.   

▪ DRO provides less-conservative results than RO in terms of economic 

performance and load shedding.  

▪ Renewable generation uncertainty is necessary to consider, which leads to 3.7% 

more operation cost.  
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The proposed DR-FMS ensures the economic performance of IEGS by providing a two-

stage risk mitigation scheme via implementing efficient load shedding under FDIA and 

renewable uncertainty. The beneficiaries of this work inlcude: network operators can 

have powerful operation models, end customers will enjoy better supply security, and 

renewable can penetrate to the maximum level without much curtailment.  
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This chapter investigates the volt-VAR optimization within the 
integrated electricity and gas systems. The optimal voltage management 
is achieved through efficiently coordinating the operation of on-load tap 
changers, photovoltaic systems, and shunt capacitor banks 
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6.1 Abstract 

    Volt/VAR optimization (VVO) is one important operation in distribution systems to 

maintain acceptable voltage profiles. However, the high penetration of renewable 

generation poses severe challenges to VVO, leading to voltage deviation and 

fluctuation. This is further complicated by the growing coupling between electricity and 

natural gas systems. To resolve unacceptable voltage deviation under energy system 

interdependency, this paper proposes a co-optimization of VVO for an integrated 

electricity and gas system (IEGS) with uncertain renewable generation. A two-stage 

data-driven distributionally robust optimization (DRO) is developed to model the 

coordinated optimization problem, which determines two-stage VVO and operation 

schemes with dispatch and corrective adjustment through active power regulation and 

reactive power support in both day-ahead and real-time stage. A semidefinite 

programming is reformulated to ensure the tractability and the proposed problem is 

solved by a constraint generation framework. Simulation studies are conducted on a 33-

bus-6-node and a 69-bus-20-node IEGS. Case studies demonstrate that the 

interdependency between electricity and gas systems reduces 4.7% of operation cost 

and a significant rise in the voltage profile. 

 

6.2 Nomenclature 

Indices and sets 

t, T Index and set for time periods.  

𝑏 , 𝐵  Index and set for electricity buses. 

𝑖𝑒, 𝐼𝑒 Index and set for traditional distributed generators (DG). 

𝑖𝑔, 𝐼𝑔 Index and set for natural gas sources. 

gt,GT Index and set for gas turbines. 

j,  J Index and set for renewable power generators.  

𝑙𝑒, 𝐿𝑒 Index and set for power lines. 

𝑙𝑔, 𝐿𝑔 Index and set for gas pipelines. 

𝑘𝑒, 𝐾𝑒 Index and set for electric loads. 

𝑘𝑔, 𝐾𝑔 Index and set for gas loads. 

Parameters  
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𝑤1
𝑉, 𝑤1

𝐸 Weighting coefficients for voltage regulation and 

economic dispatch oriented sub-objectives in the first 

stage. 

𝑤2
𝑉, 𝑤2

𝐸 Weighting coefficients for voltage regulation and 

economic dispatch oriented sub-objectives in the second 

stage. 

𝜋𝑣 the penalty cost coefficient for penalizing the voltage 

deviation. 

𝑉𝑏
𝑟𝑒𝑓

 Nominal voltage magnitude. 

𝜆𝑠𝑢𝑏
𝑎 , 𝜆𝑠𝑢𝑏

𝑟  Unit cost for active and reactive power supplied from 

upper market.  

𝜆𝑖𝑒
𝑎 , 𝜆𝑖𝑒

𝑏 , 𝜆𝑖𝑒
𝑐  Cost coefficients for generation of traditional DG 𝑖𝑒.  

𝜆𝑖𝑔 Cost coefficient for generation of natural gas source 𝑖𝑔. 

𝜆𝑖𝑒
+ , 𝜆𝑖𝑒

−  Cost coefficient for up and down reserve of traditional DG 

𝑖𝑒. 

𝜆𝑖𝑒
𝑟𝑒, 𝜆𝑗

𝑟𝑒 Regulation cost coefficient for traditional DG 𝑖𝑒  and 

renewable power generator j. 

𝜆𝑘𝑒
𝑙𝑠 , 𝜆𝑘𝑔

𝑙𝑠  Penalty cost coefficient for electricity and gas load 

shedding.  

𝑃𝑠𝑢𝑏,𝑚𝑎𝑥 Maximum active power transfer of substation. 

𝑅𝑖𝑒
+ , 𝑅𝑖𝑒

−  Maximum up and down reserve capacity of traditional DG 

𝑖𝑒 at time t. 

𝑅𝑔𝑡
+ , 𝑅𝑔𝑡

−  Maximum up and down reserve capacity of gas turbine gt 

at time t. 

𝑃𝑖𝑒,𝑚𝑎𝑥, 𝑃𝑖𝑒,𝑚𝑖𝑛 Maximum and minimum output of tradiational DG 𝑖𝑒.   

𝑃𝑖𝑔,𝑚𝑎𝑥, 𝑃𝑖𝑔,𝑚𝑖𝑛 Maximum and minimum output of natural gas source 𝑖𝑔.   

𝑃𝑔𝑡,𝑚𝑎𝑥, 𝑃𝑔𝑡,𝑚𝑖𝑛 Maximum and minimum output of gas turbine gt.   

𝑉𝑏,𝑚𝑎𝑥
 , 𝑉𝑏,𝑚𝑖𝑛

  Maximum and minimum voltage limit. 

𝛿𝑂𝐿𝑇𝐶 Size of change for each step in OLTC tap position. 

𝑛𝑇𝑃𝑚𝑎𝑥
𝑂𝐿𝑇𝐶 Maximum allowed number of switching operations of 

OLTC.  

𝜔𝑗,𝑡
𝑃,𝑠

 Forecasted active power output of renewable power 

generator j at time t. 
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𝑢𝑃𝑉
  Associated coefficient for connecting active and reactive 

PV power.  

𝑃𝐹𝑝𝑣,𝑚𝑖𝑛
  Minimum power factor of PV system pv. 

𝑄𝑐𝑏
𝑐𝑎𝑝

 Reactive power capability for capacitor bank cb.  

𝑉0 Reference voltage magnitude. 

𝑓𝑙𝑒,𝑚𝑎𝑥
𝑎,

, 𝑓𝑙𝑒,𝑚𝑎𝑥
𝑟,

 Maximum active and reactive power flow of line 𝑙𝑒.  

𝑃𝑘𝑒,𝑡, 𝑄𝑘𝑒,𝑡, 𝑃𝑘𝑔,𝑡 Active and reactive electricity load and gas load at time t. 

𝑃𝑟𝑙𝑔,𝑚𝑎𝑥, 𝑃𝑟𝑙𝑔,𝑚𝑖𝑛 Maximum and minimum gas pressure of gas pipeline 𝑙𝑔.  

𝛾𝑙𝑔 Coefficient for Weymouth equation. 

𝑓𝑙𝑔,𝑚𝑎𝑥
   Maximum gas flow of pipeline 𝑙𝑔. 

𝑃𝑘𝑒,𝑚𝑎𝑥
𝑙𝑠 , 𝑃𝑘𝑔,𝑚𝑎𝑥

𝑙𝑠  Maximum electricity and gas load shedding at time t. 

𝜂𝑖𝑒,𝑡, 𝜂𝑔𝑡,𝑡
  Participation factor for reserves of traditional DG 𝑖𝑒 and 

gas turbine gt at time t.  

Variables and functions 

𝑃𝑠𝑢𝑏,𝑡
𝑠 ,𝑄𝑠𝑢𝑏,𝑡

𝑠  Scheduled active and reactive power supply from upper 

market. 

𝑃𝑠𝑢𝑏,𝑡
𝑟𝑒 ,𝑄𝑠𝑢𝑏,𝑡

𝑟𝑒  Regulated active and reactive power supply from upper 

market. 

𝑃𝑖𝑒,𝑡
𝑠 ,𝑃𝑖𝑒,𝑡

𝑟𝑒  Scheduled and regulated output of traditional DG 𝑖𝑒  at 

time t. 

𝑃𝑖𝑔,𝑡
𝑠 ,𝑃𝑖𝑔,𝑡

𝑟𝑒  Scheduled and regulated output of natural gas source 𝑖𝑔 at 

time t. 

𝑟𝑖𝑒,𝑡
+ , 𝑟𝑖𝑒,𝑡

−  Up and down reserve of traditional DG 𝑖𝑒 at time t. 

𝑟𝑔𝑡,𝑡
+ , 𝑟𝑔𝑡,𝑡

−  Up and down reserve of gas turbine gt at time t. 

𝑉𝑏,𝑡
𝑠 , 𝑉𝑏,𝑡

𝑟𝑒 Scheduled and regulated voltage of bus b at time t. 

𝑉𝑠𝑢𝑏,𝑡
𝑠 , 𝑉𝑠𝑢𝑏,𝑡

𝑟𝑒  Scheduled and regulated voltage of substation at time t. 

𝑇𝑃𝑡
𝑠,𝑂𝐿𝑇𝐶 , 𝑇𝑃𝑡

𝑟𝑒,𝑂𝐿𝑇𝐶
 Scheduled and regulated tap position of OLTC at time t. 

𝜔𝑗,𝑡
𝑄,𝑠, 𝜔𝑗,𝑡

𝑄,𝑟𝑒  Scheduled and regulated reactive power output of 

renewable power generator j at time t. 

𝑢𝑐𝑏,𝑡
𝑠 , 𝑢𝑐𝑏,𝑡

𝑟𝑒  Scheduled and regulated switch status for capacitor bank 

cb at time t. 
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𝑄𝑐𝑏,𝑡
𝑠 , 𝑄𝑐𝑏,𝑡

𝑟𝑒  Scheduled and regulated reactive power output for 

capacitor bank cb at time t. 

𝑉𝑏,𝑡
𝑠,𝑖𝑛𝑖

, 𝑉𝑏,𝑡
𝑠,𝑡𝑒𝑟

 Scheduled voltage magnitude for initial and terminal 

nodes. 

𝑉𝑏,𝑡
𝑟𝑒,𝑖𝑛𝑖

, 𝑉𝑏,𝑡
𝑟𝑒,𝑡𝑒𝑟

 Regulated voltage magnitude for initial and terminal 

nodes. 

𝑓𝑙𝑒,𝑡
𝑎,𝑠

, 𝑓𝑙𝑒,𝑡
𝑟,𝑠

 Scheduled active and reactive power flow at time t.  

𝑓𝑙𝑒,𝑡
𝑎,𝑟𝑒

, 𝑓𝑙𝑒,𝑡
𝑟,𝑟𝑒

 Regulated active and reactive power flow at time t.  

𝑓𝑙𝑔,𝑡
𝑖𝑛𝑖, 𝑓𝑙𝑔,𝑡

𝑡𝑒𝑟 Gas flow from initial node and to terminal node of pipeline 

𝑙𝑔 at time t. 

𝑃𝑟𝑙𝑔,𝑡
𝑠 , 𝑃𝑟𝑙𝑔,𝑡

𝑟𝑒  Scheduled and regulated gas pressure of gas pipeline 𝑙𝑔 at 

time t.  

𝑃𝑟𝑙𝑔,𝑡
𝑠,𝑖𝑛𝑖 

,𝑃𝑟𝑙𝑔,𝑡
𝑠,𝑡𝑒𝑟 

 Scheduled gas pressure of initial and terminal nodes of 

pipeline 𝑙𝑔 at time t. 

𝑃𝑟𝑙𝑔,𝑡
𝑟𝑒,𝑖𝑛𝑖 

,𝑃𝑟𝑙𝑔,𝑡
𝑟𝑒,𝑡𝑒𝑟 

 Regulated gas pressure of initial and terminal nodes of 

pipeline 𝑙𝑔 at time t. 

𝑃𝑘𝑒,𝑡
𝑙𝑠 , 𝑃𝑘𝑔,𝑡

𝑙𝑠  Electricity and gas load shedding at time t. 

x, y  Vectors of first and second stage variables. 

Uncertainty  

𝜉𝑗,𝑡 Uncertainty of renewable power forecast of j at time t.  

𝐷𝜉𝑗,𝑡  Ambiguity set for renewable power uncertainty. 

𝜇𝜉𝑗,𝑡 , Σ𝜉𝑗,𝑡  Mean vector and covariance matrix for renewable forecast 

uncertainty. 

𝛩 Second moment matrix. 

𝑉𝑆 Polyhedral set of extreme points. 

 

6.3 Introduction 

Volt-VAR optimization (VVO) is one primary function in the distribution 

management system to maintain voltage in an acceptable range by optimally 

coordinating equipment, e.g., capacitor banks, on-load tap changers (OLTC) and 

voltage regulators [120-130]. Paper [121] proposes a deterministic VVO as mixed-

integer quadratic programming to control voltage and VAR devices for day-ahead 

operation. Considerable loss reduction and total demand reduction are achieved through 
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the proposed VVO. To achieve energy savings and peak demand reduction through 

voltage reduction, a multi-objective VVO is proposed in [122] using a nondominated 

sorting genetic algorithm. Paper [123] proposes a three-phase distribution system 

considering unbalancing with battery storage providing reactive power. Both power 

loss and energy purchase cost are minimized. In [124], to extend the life of distribution 

system transformers, a detailed model of life loss is proposed to estimate the ageing 

reduction of transformers under VVO.  

The penetration of renewable energy has dramatically increased over the past decade.  

However, due to its variable and intermittent nature, it poses operational and security 

challenges to VVO by affecting normal operations of OLTCs and capacity banks [127, 

131, 132]. Existing literature has considered renewable power uncertainties in 

designing economic and reliable periodical equipment scheduling plans. A two-stage 

chance-constrained VVO is employed to handle the uncertainties of distributed 

generation and load demand [127]. Paper [131] proposes a chance-constrained 

optimization to model the randomness of renewable energy and minimize feeder power 

losses while avoiding voltage violations, solved by a gradient descent based algorithm. 

A hierarchical robust optimization (RO) is adopted for coordinating reactive 

compensators to guarantee voltage magnitudes [132]. This reactive power optimization 

is formulated to a mixed-integer convex-based programming based on the conic 

relaxation of the branch flow. And a modified column-and-constraint generation 

algorithm based on the second-order cone programming is employed to solve the 

problem. 

    The interdependency of multi-energy systems, electricity, natural gas, and 

heating/cooling, is also becoming markedly common, which has many implications for 

VVO. Research on integrated electricity and gas systems (IEGS) is widely investigated 

in traditional problems, e.g., modelling, operation and planning [133-135]. However, 

high renewable integration brings security and operational challenges to managing 

IEGS, particularly to system voltage, due to intermittency and fluctuation, [104, 110, 

135]. To hedge against renewable power uncertainty in IEGS, deterministic 

optimization, two-stage and multi-stage stochastic optimization (SO) have been widely 

used [110]. For example, paper [104] proposes a robust security-constrained unit 

commitment in IEGS considering distributed natural gas storage to enhance operational 

reliability.  
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    Overall, RO and SO are the two main approaches to handle uncertainties from 

growing renewable energy resources for both VVO and IEGS operation problems. As 

for SO, it either assumes an explicit distribution for random variable or requires a large 

number of data samples. It is prone to causing errors when the historical data is not 

adequately sufficient to represent true distributions and inevitably leads to high 

computational burden if a large number of data samples are used. As for RO, it does 

not require an exact probability distribution but constrains uncertain variables in a 

predefined uncertainty set. RO considers the worst-case scenario against all realizations 

characterized by uncertainty sets, which could have extremely low probability and thus 

produces over-conservative results. In practice, it is rare that the uncertainty realization 

appears on the bounds of uncertainty set. The interval-based RO strictly ensures that 

the optimization is feasible even considering the worst-case solution. The uncertainty 

is treated as variables bounded within the predetermined set without the association 

with any probability distribution. 

    Therefore, it is of necessity to handle the uncertainty through a relative less 

conservative optimization technique without requiring large datasets. As a promising 

optimization method to handle uncertainties, distributionally robust optimization (DRO) 

inherits the advantages of both RO and SO, overcoming the explicit assumptions on 

probability distributions of SO and over-conservatism of RO [65, 136-138]. For DRO, 

the ambiguity set is constructed by statistical information, such as moment, to 

restricting possible distributions. Based on more valuable distribution information,  

research finds that the best estimate of the distribution can be obtained through the 

statistical fitting. Accordingly, statistical distance information can be added in the 

ambiguity set and thus the size of the ambiguity set can be controlled. In addition, 

compared with RO, DRO determines expected results over all possible distributions, 

which are less-conservative. 

    Paper [78] proposes a risk-based optimal gas power flow by using DRO. It considers 

the zonal linepack and linepack reserve to distinguish fuel suppliers and ensure the 

security of gas systems. A security-constrained two-stage ED with renewable power 

uncertainty modelled by DRO is designed in [64]. The segregated linear decision rule 

is used to affinely approximate the decision variables after the first time period which 

reduces the computational burden. Paper [57] investigates a DRO for IEGS considering 

the uncertainties of electricity and gas loads. Price-Based demand response is 
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considered to improve energy efficiency and economic benefits. DRO can provide a 

less conservative solution for VVO problem when capturing renewable uncertainties 

and thus mitigate the impact on voltage deviations caused by renewable uncertainties. 

In addition, the two-stage framework contains both day-ahead and real-time framework, 

which provides flexible measures for system operators with adjustment capability.  

    This paper proposes a novel coordinated two-stage multi-objective optimization for 

voltage control in economic dispatch (ED), considering uncertain renewable generation 

and multi-vector energy system integration. The two-stage voltage constrained 

optimization is referred to as TS-VCO for simplicity. The optimal voltage is achieved 

through efficiently coordinating the operation of OLTCs, photovoltaic (PV) systems, 

and shunt capacitor banks. In the first stage, based on historical PV output, an initial 

day-ahead operation plan for traditional DGs, natural gas sources, OLTCs and capacitor 

banks is produced to maintain voltage and minimize daily operation cost. In the second 

stage, after the realization of uncertain PV output, the recourse action is developed to 

control voltage controlling those devices, meanwhile minimizing system operation cost 

in real time. The original TS-VCO is transformed into a conic tractable form with the 

dual formulation and solved by constraint generation algorithm (CGA). Case studies 

demonstrate that voltage control devices and dispatchable generators can be optimally 

controlled and coordinated to realise the designed objectives. 

    The main contributions of this paper are as follows:  

1) To the best of authors’ knowledge, none existing work has investigated VVO 

in an IEGS, where this paper is the first such effort to fill the research gap. The 

strong coupling of power and gas infrastructure and tight interdependency 

between two systems are considered. 

2) It develops a multi-objective coordinated optimization for maintaining 

acceptable voltage while considering system operation cost of IEGS, which 

ensures system security and economic performance. 

3) The two-stage DRO approach is first applied in VVO, which provides less-

conservative results using RO and requires fewer data samples. It can handle 

renewable uncertainties effectively, providing flexible measures for IEGS 

operators.  

The rest of this paper is organized as follows. Section 6.4 presents objective function 

and system constraints of TS-VCO. The DRO method and associated reformulations 

are presented in section 2.1.2. Section 6.5 demonstrates case studies and the 
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performance of the TS-VCO. Section 6.6 concludes this paper.  

6.4 Problem formulation  

The proposed TS-VCO contains i) day-ahead co-optimization that restricts voltages 

for all buses while scheduling traditional DGs and natural gas sources, and ii) real-time 

recourse action that regulates voltage and redispatches generators considering PV 

output uncertainty. When implementing economic operation in distribution systems, 

the voltage profile of each bus can also be improved by optimally coordinating voltage 

regulating equipment [139-142]. In this paper, maintaining the voltage deviation within 

an acceptable range is considered as voltage profile improvement. 

6.4.1 TS-VCO Objective Function 

    The first-stage problem in (6-1) is to simultaneously minimize i) the voltage 

deviation for all buses, 𝛤1
𝑉 in (6-2) and ii) the cost of generation and reserve capacity, 

𝛤1
𝐸 in (6-3), respectively. 𝛤1

𝑉 represents the total voltage deviation for all buses in the 

entire time horizon. 𝛤1
𝐸 includes i) generation cost of traditional DGs and natural gas 

sources and ii) reserve cost of traditional DGs. The generation cost function of 

traditional DGs is quadratic with coefficients 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖. The weighting coefficients 

𝑤1
𝑉 and 𝑤1

𝐸 represent the priorities that TS-VCO have on 𝛤1
𝑉 and 𝛤1

𝐸, respectively. It 

should be noted that the penalty cost coefficient 𝜋𝑣 is applied for penalizing the voltage 

deviation on each bus. The penalty cost coefficient enables to transform voltage 

deviation to monetary lost which can be combined with operation cost. 

𝛤1 = min𝑤1
𝑉 𝜋𝑣𝛤1

𝑉 + 𝑤1
𝐸𝛤1

𝐸 (6-1) 

𝛤1
𝑉 = min ∑ |𝑉𝑏,𝑡

𝑠 − 𝑉𝑏
𝑟𝑒𝑓
|

𝑏∈𝐵,𝑡∈𝑇

 
(6-2) 

𝛤1
𝐸 = min ∑ 𝜆𝑠𝑢𝑏

𝑎 𝑃𝑠𝑢𝑏,𝑡
𝑠 + 𝜆𝑠𝑢𝑏

𝑟 𝑄𝑠𝑢𝑏,𝑡
𝑠 + 𝜆𝑖𝑒

𝑎

𝑖𝑒∈𝐼𝑒,𝑖𝑔∈𝐼𝑔,𝑡∈𝑇

𝑃𝑖𝑒,𝑡
𝑠 2

+ 𝜆𝑖𝑒
𝑏 𝑃𝑖𝑒,𝑡

𝑠

+ 𝜆𝑖𝑒
𝑐 + 𝜆𝑖𝑔𝑃𝑖𝑔,𝑡

𝑠 + 𝜆𝑖𝑒
+ 𝑟𝑖𝑒,𝑡

+ + 𝜆𝑖𝑒
− 𝑟𝑖𝑒,𝑡

−  

 

(6-3) 

    Similar to (6-1)-(6-3), (6-4)-(6-6) are the second-stage overall objective and sub-

objectives. The second-stage optimization considers load shedding to keep the system 

balance under fluctuation caused by renewable uncertainties. It should be noted that 𝛤2
𝐸 

contains i) the penalty cost for PV curtailment, ii) regulated generation cost of 

traditional DGs and natural gas sources and iii) electricity and gas load shedding cost. 
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𝛤2 = min𝑤2
𝑉𝜋𝑣 𝛤2

𝑉 + (1 − 𝑤2
𝑉)𝛤2

𝐸 (6-4) 

𝛤2
𝑉 = min ∑ |𝑉𝑏,𝑡

𝑟𝑒 − 𝑉𝑏
𝑟𝑒𝑓
|

𝑏∈𝐵,𝑡∈𝑇

 
(6-5) 

𝛤2
𝐸 = min ∑ 𝜆𝑠𝑢𝑏

𝑎 𝑃𝑠𝑢𝑏,𝑡
𝑟𝑒 + 𝜆𝑠𝑢𝑏

𝑟 𝑄𝑠𝑢𝑏,𝑡
𝑟𝑒

𝑖𝑒∈𝐼𝑒,𝑖𝑔∈𝐼𝑔,𝑡∈𝑇,𝑘𝑒∈𝐾𝑒,𝑘𝑔∈𝐾𝑔

+ 𝜆𝑗
𝑟𝑒|𝜔𝑗,𝑡

𝑠 − 𝜉𝑗,𝑡| + 𝜆𝑖𝑒
𝑟𝑒|𝑃𝑖𝑒,𝑡

𝑠 − 𝑃𝑖𝑒,𝑡
𝑟𝑒 | +𝜆𝑖𝑒

𝑟𝑒 |𝑃𝑖𝑔,𝑡
𝑠 − 𝑃𝑖𝑔,𝑡

𝑟𝑒 |

+ 𝜆𝑘𝑒
𝑙𝑠 𝑃𝑘𝑒,𝑡

𝑙𝑠 + 𝜆𝑘𝑔
𝑙𝑠 𝑃𝑘𝑔,𝑡

𝑙𝑠  

 

(6-6) 

6.4.2 Day-ahead VVO 

    In the first stage, the day-ahead optimization is based on the forecasted renewable 

output before its uncertainty realised. Equations (6-7)-(6-29) represent the first-stage 

constraints. The active and reactive power for substation injected from the upper level 

is limited in (6-7) and (6-8). The up and down reserve capacity for traditional DGs and 

gas turbines is constrained in (6-9) and (6-10). In the distribution network, the proposed 

day-ahead reserve capacity is for compromising the real-time renewable power 

uncertainties. Constraints (6-11)-(6-12) ensure the generation of traditional DGs and 

gas turbines within the predefined limits considering reserve capacity. The voltage 

magnitude for all buses is regulated in (6-13) by setting minimum and maximum limits. 

In (6-14), the substation voltage can be determined by OLTC tap position and the step 

size of each tap position. Constraint (6-15) regulates the total operation number of  

OLTC tap since too many operations will accelerate the wear process of the transformer 

[128, 143, 144]. In (6-16), the reactive power of PV is described by the forecasted active 

PV power output and the power factor as defined in (6-17). The reactive power from 

capacity banks is given in (6-18). The linearized DistFlow for distribution systems is 

presented in (6-19) and (6-20). The power balance constraints for active and reactive 

power are in (6-21) and (6-22). The output of natural gas sources is constrained in         

(6-23). Equations (6-24) and (6-25) are the constraints on gas pressure, where, in 

distribution systems, the pressure of initial nodes is always higher than terminal nodes. 

In (6-26), Weymouth equation is used to characterize the relationship between gas flow 

and pressure. The gas flow is constrained in (6-27). The relationship between the gas 

turbine output and injected gas flow is given in (6-28). And equation (6-29) models 

nodal gas balancing. 
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0 ≤ 𝑃𝑠𝑢𝑏,𝑡
𝑠 ≤ 𝑃𝑠𝑢𝑏,𝑚𝑎𝑥 (6-7) 

0 ≤ 𝑄𝑠𝑢𝑏,𝑡
𝑠 ≤ 𝑄𝑠𝑢𝑏,𝑚𝑎𝑥 (6-8) 

0 ≤ 𝑟{∙},𝑡
+ ≤ 𝑅{∙}

+ , {∙} = 𝑖𝑒 , 𝑔𝑡 (6-9) 

0 ≤ 𝑟{∙},𝑡
− ≤ 𝑅{∙}

− , {∙} = 𝑖𝑒 , 𝑔𝑡 (6-10) 

𝑃{∙},𝑡
𝑠 + 𝑟{∙},𝑡

+ ≤ 𝑃{∙},𝑚𝑎𝑥, {∙} = 𝑖𝑒 , 𝑔𝑡 (6-11) 

𝑃{∙},𝑚𝑖𝑛 ≤ 𝑃{∙},𝑡
𝑠 − 𝑟{∙},𝑡

− , {∙} = 𝑖𝑒 , 𝑔𝑡 (6-12) 

𝑉𝑏,𝑚𝑖𝑛
 ≤ 𝑉𝑏,𝑡

𝑠 ≤ 𝑉𝑏,𝑚𝑎𝑥
  (6-13) 

𝑉𝑠𝑢𝑏,𝑡
𝑠 = 𝑉𝑠𝑢𝑏

𝑟𝑒𝑓
+ 𝛿𝑂𝐿𝑇𝐶𝑇𝑃𝑡

𝑠,𝑂𝐿𝑇𝐶
 (6-14) 

∑|𝑇𝑃𝑡
𝑠,𝑂𝐿𝑇𝐶 − 𝑇𝑃𝑡−1,

𝑠,𝑂𝐿𝑇𝐶|

𝑡∈𝑇

≤ 𝑛𝑇𝑃𝑚𝑎𝑥
𝑂𝐿𝑇𝐶 

(6-15) 

0 ≤ 𝜔𝑗,𝑡
𝑄,𝑠 ≤ 𝑢𝑃𝑉

 𝜔𝑗,𝑡
𝑃,𝑠

 (6-16) 

𝑢𝑃𝑉
 = √

1 − 𝑃𝐹𝑃𝑉,𝑚𝑖𝑛
2

𝑃𝐹𝑃𝑉,𝑚𝑖𝑛
2  

 

(6-17) 

𝑄𝑐𝑏,𝑡
𝑠 = 𝑢𝑐𝑏,𝑡

𝑠 𝑄𝑐𝑏
𝑐𝑎𝑝

 (6-18) 

𝑉𝑏,𝑡
𝑠,𝑖𝑛𝑖 − 𝑉𝑏,𝑡

𝑠,𝑡𝑒𝑟 = (𝑓𝑙𝑒,𝑡
𝑎,𝑠𝑟𝑙𝑒 + 𝑓𝑙𝑒,𝑡

𝑟,𝑠𝑥𝑙𝑒)/𝑉0 (6-19) 

0 ≤ 𝑓𝑙𝑒,𝑡
{∙},𝑠 ≤ 𝑓𝑙𝑒,𝑚𝑎𝑥

{∙},𝑠 , {∙} = 𝑎, 𝑟 (6-20) 

∑ 𝑃𝑖𝑒,𝑡
𝑠 +

𝑖𝑒∈𝐼𝑒

∑𝜔𝑗,𝑡
𝑃,𝑠 + ∑ 𝑓𝑙𝑒,𝑡

𝑎,𝑠,𝑖𝑛𝑖 −

𝑙𝑒∈𝐿𝑒𝑗∈𝐽

 
 

∑ 𝑓𝑙𝑒,𝑡
𝑎,𝑠,𝑡𝑒𝑟 + ∑ 𝑃𝑔𝑡,𝑡

 𝑠

𝑔𝑡∈𝐺𝑇𝑙𝑒∈𝐿𝑒

= ∑ 𝑃𝑘𝑒,𝑡
𝑘𝑒∈𝐾𝑒

 
(6-21) 

∑ 𝑄𝑖𝑒,𝑡
𝑠 +

𝑖𝑒∈𝐼𝑒

∑𝜔𝑗,𝑡
𝑄,𝑠 + ∑ 𝑄𝑐𝑏,𝑡

𝑠

𝑐𝑏∈𝐶𝐵

+ ∑ 𝑓𝑙𝑒,𝑡
𝑟,𝑠,𝑖𝑛𝑖

𝑙𝑒∈𝐿𝑒𝑗∈𝐽

 
 

− ∑ 𝑓𝑙𝑒,𝑡
𝑟,𝑠,𝑡𝑒𝑟

𝑙𝑒∈𝐿𝑒

= ∑ 𝑄𝑘𝑒,𝑡
𝑘𝑒∈𝐾𝑒

 
(6-22) 

 

𝑃𝑖𝑔,𝑚𝑖𝑛 ≤ 𝑃𝑖𝑔,𝑡
𝑠 ≤ 𝑃𝑖𝑔,𝑚𝑎𝑥 (6-23) 
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𝑃𝑟𝑙𝑔,𝑚𝑖𝑛
2   

≤ 𝑃𝑟𝑙𝑔,𝑡
𝑠2 ≤ 𝑃𝑟𝑙𝑔,𝑚𝑎𝑥

 2  (6-24) 

𝑃𝑟𝑙𝑔,𝑡
𝑠,𝑖𝑛𝑖 ≥ 𝑃𝑟𝑙𝑔,𝑡

𝑠,𝑡𝑒𝑟  
 (6-25) 

𝑓𝑙𝑔,𝑡
 𝑠 2

= 𝛾𝑙𝑔 (𝑃𝑟𝑙𝑔,𝑡
𝑠,𝑖𝑛𝑖2 − 𝑃𝑟𝑙𝑔,𝑡

𝑠,𝑡𝑒𝑟2
 

) (6-26) 

0 ≤ 𝑓𝑙𝑔,𝑡
 𝑠 ≤ 𝑓𝑙𝑔,𝑚𝑎𝑥

   (6-27) 

𝑃𝑔𝑡,𝑡
 𝑠 = 𝑐𝑔𝑡𝑓𝑙𝑔,𝑔𝑡

 𝑠  (6-28) 

∑ 𝑃𝑖𝑔,𝑡
𝑠

𝑖𝑔∈𝐼𝑔

+ ∑ 𝑓𝑙𝑔,𝑡
𝑠,𝑖𝑛𝑖 −

𝑙𝑔∈𝐿𝑔

∑ 𝑓𝑙𝑔,𝑡
𝑠,𝑡𝑒𝑟  

𝑙𝑔∈𝐿𝑔

= ∑ 𝑃𝑘𝑔,𝑡 +

𝑘𝑔∈𝐾𝑔

∑ 𝑃𝑔𝑡,𝑡
 𝑠

𝑔𝑡∈𝐺𝑇

 
(6-29) 

6.4.3 Real-time VVO 

    The real-time corrective dispatch is in the second stage considering renewable power 

uncertainty, which regulates voltage and generation output of traditional DGs and 

natural gas sources. Equations (6-30) and (6-31) limit the power transfer of substations. 

The regulated output of traditional DGs and gas turbines is given in (6-32). Electricity 

and gas load shedding constraint is in (6-33). Equation (6-34) is the constraint for 

voltages for all buses.  The substation voltage is defined in (6-35). In (6-36), the 

regulated total operation number of OLTC tap is constrained. The reactive power of PV 

generators and capacity banks are ensured in (6-37) and (6-38). DistFlow is applied 

again in the second stage describing power flow in (6-39) and (6-40). The active and 

reactive power balance constraints are in (6-41) and (6-42), respectively. The regulated 

output of natural gas sources is given in (6-43). For modelling gas flow, the Weymouth 

equation is presented from (6-44)-(6-47) with gas pressure constrained. Constraint      

(6-48) describes the relationship between the gas flow injection and gas turbine output. 

The aim of the regulation of traditional DGs and natural gas sources is to mitigate 

adverse effects from renewable output deviation, which is achieved by adjusting 

reserves for power capacity from (6-49) to (6-51). In (6-49), renewable output deviation 

should be within the up and down reserve limits. To address renewable power 

uncertainty, the participation factors 𝜂𝑖𝑒,𝑡 and 𝜂𝑖𝑔,𝑡 are defined in (6-50) and (6-51) to 

represent the regulation commitment by traditional DGs and natural gas sources. 

Finally, (6-52) presents the balancing condition of the gas system.  
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0 ≤ 𝑃𝑠𝑢𝑏,𝑡
𝑟𝑒 ≤ 𝑃𝑠𝑢𝑏,𝑚𝑎𝑥 (6-30) 

0 ≤ 𝑄𝑠𝑢𝑏,𝑡
𝑟𝑒 ≤ 𝑄𝑠𝑢𝑏,𝑚𝑎𝑥 (6-31) 

𝑃{∙},𝑡
𝑟𝑒 − 𝑟{∙},𝑡

− ≤ 𝑃{∙},𝑡
𝑟𝑒 ≤ 𝑃{∙},𝑡

𝑟𝑒 + 𝑟{∙},𝑡
+ , {∙} = 𝑖𝑒 , 𝑔𝑡 (6-32) 

0 ≤ 𝑃{∙},𝑡
𝑙𝑠 ≤ 𝑃{∙},𝑚𝑎𝑥

𝑙𝑠 , {∙} = 𝑘𝑒 , 𝑘𝑔 (6-33) 

𝑉𝑏,𝑚𝑖𝑛
 ≤ 𝑉𝑏,𝑡

𝑟𝑒 ≤ 𝑉𝑏,𝑚𝑎𝑥
  (6-34) 

𝑉𝑠𝑢𝑏,𝑡
𝑟𝑒 = 𝑉𝑠𝑢𝑏

𝑟𝑒𝑓
+ 𝛿𝑂𝐿𝑇𝐶𝑇𝑃𝑡

𝑟𝑒,𝑂𝐿𝑇𝐶
 (6-35) 

∑|𝑇𝑃𝑡
𝑟𝑒,𝑂𝐿𝑇𝐶 − 𝑇𝑃𝑡−1,

𝑟𝑒,𝑂𝐿𝑇𝐶|

𝑡∈𝑇

≤ 𝑛𝑇𝑃𝑚𝑎𝑥
𝑂𝐿𝑇𝐶 

(6-36) 

0 ≤ 𝜔𝑗,𝑡
𝑄,𝑟𝑒 ≤ 𝑢𝑃𝑉

 𝜔𝑗,𝑡
𝑃,𝑟𝑒

 (6-37) 

𝑄𝑐𝑏,𝑡
𝑟𝑒 = 𝑢𝑐𝑏,𝑡

𝑟𝑒 𝑄𝑐𝑏,𝑡
𝑟𝑒𝑓

 (6-38) 

𝑉𝑏
𝑟𝑒,𝑖𝑛𝑖 − 𝑉𝑏

𝑟𝑒,𝑡𝑒𝑟 = (𝑓𝑙𝑒,𝑡
𝑎,𝑟𝑒𝑟𝑙𝑒 + 𝑓𝑙𝑒,𝑡

𝑟,𝑟𝑒𝑥𝑙𝑒)/𝑉0 (6-39) 

0 ≤ 𝑓𝑙𝑒,𝑡
{∙},𝑟𝑒 ≤ 𝑓𝑙𝑒,𝑚𝑎𝑥

{∙} , {∙} = 𝑎, 𝑟 (6-40) 

∑ 𝑃𝑖𝑒,𝑡
𝑟𝑒 +

𝑖𝑒∈𝐼𝑒

∑𝜉𝑗,𝑡 + ∑ 𝑃𝑔𝑡,𝑡
 𝑠

𝑔𝑡∈𝐺𝑇

=

𝑗∈𝐽

∑ 𝑃𝑘𝑒,𝑡 + Δ𝑃𝑘𝑒,𝑡 − 𝑃𝑘𝑒,𝑡
𝑙𝑠

 

𝑘𝑒∈𝐾𝑒

 
 

(6-41) 

∑ 𝑄𝑖𝑒,𝑡
𝑠 +

𝑖𝑒∈𝐼𝑒

∑𝜔𝑗,𝑡
𝑄,𝑠 + ∑ 𝑄𝑐𝑏,𝑡

𝑠

𝑐𝑏∈𝐶𝐵

+ ∑ 𝑓𝑙𝑒,𝑡
𝑟,𝑠,𝑖𝑛𝑖 −

𝑙𝑒∈𝐿𝑒

∑ 𝑓𝑙𝑒,𝑡
𝑟,𝑠,𝑡𝑒𝑟

𝑙𝑒∈𝐿𝑒𝑗∈𝐽

= ∑ 𝑄𝑘𝑒,𝑡
𝑘𝑒∈𝐾𝑒

 

(6-42) 

 

𝑃𝑖𝑔,𝑚𝑖𝑛 ≤ 𝑃𝑖𝑔,𝑡
𝑟𝑒 ≤ 𝑃𝑖𝑔,𝑚𝑎𝑥 (6-43) 

𝑃𝑟𝑙𝑔,𝑚𝑖𝑛
2   

≤ 𝑃𝑟𝑙𝑔,𝑡
𝑟𝑒2 ≤ 𝑃𝑟𝑙𝑔,𝑚𝑎𝑥

 2  (6-44) 

𝑃𝑟𝑙𝑔,𝑡
𝑟𝑒,𝑖𝑛𝑖 ≥ 𝑃𝑟𝑙𝑔,𝑡

𝑟𝑒,𝑡𝑒𝑟  
 (6-45) 

𝑓𝑙𝑔,𝑡
𝑟𝑒 |𝑓𝑙𝑔,𝑡

𝑟𝑒 | =  𝛾𝑙𝑔 (𝑃𝑟𝑙𝑔,𝑡
𝑟𝑒,𝑖𝑛𝑖2 − 𝑃𝑟𝑙𝑔,𝑡

𝑟𝑒,𝑡𝑒𝑟2
 
) (6-46) 

0 ≤ 𝑓𝑙𝑔,𝑡
𝑟𝑒 ≤ 𝑓𝑙𝑔,𝑚𝑎𝑥

  (6-47) 

𝑃𝑔𝑡,𝑡
 𝑟𝑒 = 𝑐𝑔𝑡𝑓𝑙𝑔,𝑔𝑡

 𝑟𝑒  (6-48) 
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𝑟𝑖𝑒,𝑡
− ≤ 𝜂𝑖𝑒,𝑡∑(𝜔𝑗,𝑡

𝑠 − 𝜉𝑗,𝑡)

𝑗∈𝐽

≤ 𝑟𝑖𝑒,𝑡
+ , {∙} = 𝑖𝑒 , 𝑔𝑡 

(6-49) 

0 ≤ 𝜂{∙},𝑡 ≤ 1, {∙} = 𝑖𝑒 , 𝑔𝑡 (6-50) 

∑ 𝜂𝑖𝑒,𝑡 +

𝑖𝑒∈𝐼𝑒

∑ 𝜂𝑖𝑔,𝑡
𝑔𝑡

=

𝑔𝑡∈𝐺𝑇

1 
(6-51) 

∑ 𝑃𝑖𝑔,𝑡
𝑟𝑒

𝑖𝑔∈𝐼𝑔

+ ∑ 𝑓𝑙𝑔,𝑡
𝑟𝑒,𝑖𝑛𝑖 −

𝑙𝑔∈𝐿𝑔

∑ 𝑓𝑙𝑔,𝑡
𝑟𝑒,𝑡𝑒𝑟  

𝑙𝑔∈𝐿𝑔

= ∑ 𝑃𝑘𝑔,𝑡 + ∑ 𝑃𝑔𝑡,𝑡
 𝑟𝑒

𝑔𝑡∈𝐺𝑇𝑘𝑔∈𝐾𝑔

− 𝑃𝑘𝑔,𝑡
𝑙𝑠  

(6-52) 

 

6.5 Case Studies 

As shown in Fig. 6-1, the proposed TS-VCO and CGA are firstly verified on a 

modified IEEE 33-bus system connected with a 6-node gas system in radial topology 

from [145] and [66]. A gas turbine connects the two separated systems, which generates 

electricity using natural gas. To testify the effectiveness of the TS-VCO in different 

conditions, comparison between  8 scenarios is considered and the details are given in 

 
Fig. 6-1.  A modified IEEE 33-bus system and a 6-node gas system. 
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TABLE 6-1. Cases 1-3 are used to compare mathematical performance of different 

optimization methods. Cases 3-5 compare the impact of varying optimization priorities 

on voltage deviation and economic performance. The impact of PV penetration and 

capacitor bank capacity are analysed in cases 3, 6 and 7. Case 8 studies the scenario 

without natural gas connection.  In addition, a modified IEEE 69-bus system with a 20-

node gas system is used for the test with 8 cases.  

6.5.1 Studies on The 33-bus-6-node IEGS 

In the electricity system shown in Fig. 6-1, it contains i) 3 traditional DGs connected 

with bus 13, 21 and 28, ii) 3 PV systems connected with bus 11, 16 and 22 with each 

capacity of 200kVA, and iii) 7 capacitor banks which have the same capacity of 30kVar. 

The substation transformer has 32 tap positions with a step size of  0.003 which ranges 

from -16 to 16. The maximum allowed operation number between two continuous-time 

slots for OLTC is set as 3. The voltage limit on each bus is set between 0.95 p.u. and 

1.05 p.u.. The gas system has 6 nodes, containing 2 natural gas sources and 3 gas loads. 

The conversion factor 3.313 is used to convert $/kcf to $/MWh when simultaneously 

considering electricity and gas load shedding in IEGS. This paper uses 100$/MWh and 

120$/kcf (400$/MWh) as the shedding cost for electricity and gas load, respectively. 

The detailed parameters of natural gas sources and traditional DGs are given in 

TABLEs 6-2 and 6-3.   

 

TABLE 6-1 CASE ILLUSTRATION  

Case     
No. 

Weighting 
coefficients 

Optimization 
method 

PV system 
capacity 
(kVA) 

Connected to   
gas system 

1 w 
V = 0.5  Deterministic 200 Yes 

2 w 
V = 0.5  Robust 200 Yes 

3 w 
V = 0.5  DRO 200 Yes 

4 w 
V = 0.25  DRO 200 Yes 

5 w 
V = 0.75  DRO 200 Yes 

6 w 
V = 0.5  DRO 400 Yes 

7 w 
V = 0.5  DRO 800 Yes 

8 w 
V = 0.5 DRO 200 No 
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A. Studies on Economic Performance 

    The economic performance for all cases is analysed first, presented in TABLE 6-4. 

The cost of the first and second stages are presented in TABLE 6-4. Case 5 has the 

highest total cost ($30111) while case 4 has the lowest cost ($25398) since the 

optimization priority of case 5 focuses on minimizing the voltage deviation while gives 

less focus on economic performance. Case 4 considers 75% of objective weighting on 

economic performance, which leads to $4713 less total cost than case 5. Cases 1-3 have 

the same optimization priority on sub-objectives and the same IEGS configuration. 

Case 1 provides a total cost of $27343, which is 5.8%  and 2.8% less than case 2 and 3. 

The advantage of DRO  is the less conservatism when modelling PV output uncertainty 

compared with RO, which is reflected in the 2.9% less cost of case 3 compared with 

case 2. Compared with case 3, the PV capacity is doubled and quadrupled in cases 6 

and 7, which address the high generation of traditional DGs and natural gas sources. 

However, compared with case 3, case 6 and 7 cause higher second-stage cost due to the 

penalty cost of PV output deviation in the first and second stage. Without support from 

the gas system, case 8 yields 4.7% more cost than case 3. It is because the generation 

cost from natural gas sources is lower than that of traditional DGs and the pipeline 

capacity is set enough for large gas flow.   

     

 

TABLE 6-2 PARAMETERS OF NATURAL GAS SOURCES 

 

Node 

No. 

𝑃𝑖𝑔,𝑚𝑖𝑛 

(kcf/h) 

𝑃𝑖𝑔,𝑚𝑎𝑥  

(kcf/h) 

𝜆𝑖𝑔  

($/kcf) 

4 1000 6000 2.2 

6 1000 3000 2 

 

TABLE 6-3  GENERATOR PARAMETERS 
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B. Studies on Voltage Profile  

    The voltage profiles of 33 buses in 24 time periods for cases 3, 6 and 7 with different 

capacity of PV systems are shown in Fig. 6-2. The red dotted curve is the mean voltage 

profile among all buses for clearer presentation and comparison. In case 3, with the 

 

 

Fig. 6-2. Expected real-time voltage profiles for case 3. 

 

Fig. 6-3. Expected real-time profiles for case 6. 

 

Fig. 6-4. Expected real-time profiles for case 7. 
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least PV capacity connected, the voltage level ranges  from 0.963 p.u. to 1.016 p.u.. 

With the higher PV connection in case 6, i.e., 200kVA more capacity of each PV, the 

voltage profile has been improved by 1%. In case 7, the voltage level reaches up to 

1.032 p.u. when the PV capacity is 800kVA, which causes voltage improvement by 1.5% 

compared with case 3. The comparison between cases 3, 6 and 7 shows the increase of 

voltage level for all buses with the increasing PV penetration. The PV systems not only 

provide active power support but reactive power support, which will lead to the 

reduction of power losses in the real world. In Fig. 6-5, without connecting the gas 

system, the voltage profile of case 8 ranges between 0.96 p.u. and 1.00 p.u., which is 

lower than in case 3.  

Cases 3, 6, 7 and 8 are used to study the impact of PV uncertainty on voltage deviations 

with different methods. In Fig. 6-6, voltage profile from the deterministic optimization 

is the highest, whilst that from RO is the lowest. The voltage difference is 

approximately 0.01 p.u., i.e., 0.13kV. Compared with the deterministic approach, DRO 

  

Fig. 6-5. Expected real-time voltage profiles for case 8. 

 

Fig. 6-6. Voltage profiles for case 1,2 and 3 at 20th time period. 

 

 

 

 

 

  

Fig. 6-5. Expected real-time voltage profiles for case 8. 
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leads to a more conservative result. Compared with RO, DRO mitigates the 

conservatism by 0.008 p.u., which considers the worst uncertainty distribution instead 

of the worst-case PV uncertainty of RO.  

C. Studies on OLTC 

    The OLTC tap position for 24 time periods is given in Fig. 6-7. With the highest PV 

capacity connected, the OLTC tap position remains the highest in case 7, which starts 

from +10 position and maintains at +11 position from the 8th hour to 24th hour. With 

lower PV capacity, OLTC tap position in cases 3 and 6 are at relatively lower level 

since the system voltage level is low and can be maintained in an acceptable range 

without a large deviation from nominal voltage. In case 8, the tap position ranges from 

+1 to +3 and the maximum tap position deviation is 1, i.e., from +1 to +2 or +2 to +3. 

The reason is without the gas system connected, there is no power support converted 

from the gas flow, which will not raise the voltage level.  

6.5.2 Studies on the 69-bus-20-node IEGS 

    The scalability study is conducted in the modified IEEE 69-bus system as given in 

Fig. 6-8. There are 6 PV systems connected at buses 9, 23, 26, 34, 44 and 58, 

respectively. The 12 capacitor banks and transformer are used to compensate the 

reactive power. The 20-node gas system contains two natural gas sources and two gas 

turbines, which are connected between the gas and electricity system.  

A. Studies on Voltage Profile 

    In Fig. 6-9, the voltage profiles of cases 1, 6 and 8 are studied to investigate the 

impact from gas system connection. In case 1, it can be seen that the voltage level is 

decreasing along the main branch from bus 5 to bus 28. And the voltage level remains 

approximately the same value between bus 28 and bus 50 at 1.02 p.u.. With two gas 

turbines connected, the voltage level ranges from 0.952 p.u. to 1.020 p.u.. With only 

one connection with gas system, the voltage level is lower than that of case 1, which 

ranges from 0.952 p.u. to 1.007 p.u.. Compared with case 1, when no gas turbines 

equipped, the voltage profile decreases by 0.8% in case 8. The comparison between 

cases 1, 6 and 8 shows the increase of the voltage level for all buses with the addition 

of gas system connection.  
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B. Studies on Reactive Power Compensators  

    This subsection studies the scheduling and impact of capacitor banks and PV systems 

when regulating the voltage magnitude through reactive power support. The reactive 

power output of capacitor banks in cases 1, 4, 5 and 8 on selected buses is given in Fig. 

6-10. The reactive power of case 4 is the highest since the capacity of capacitor banks 

 

Fig. 6-7.  OLTC tap position for cases 3,6,7 and 8. 

 

 

Fig. 6-8.  A modified IEEE 69-bus system with a 20-node gas system. 

 

Fig. 6-9. Expected real-time voltage profile s for cases 1, 6 and 8. 

 

 

 

 

Fig. 6-7.  OLTC tap position for cases 3,6,7 and 8. 
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is twice compared with case 1. At buses 25, 29, 34, 39 and 42, the reactive power output 

is scheduled in the relatively low level. Since the load level is low with the less 

requirement of voltage regulation. 

    The reactive power output of PV systems is given in Figs. 6-11 - 6-14. Overall, the 

total PV reactive power output follows the trend of the reactive power load curve, where 

it peaks at 20:00 and the lowest level occurs at 4:00. The reactive power output from 

PV at bus 23 contributes the most while the PV at bus 34 contributes the least. The 

potential reason is that bus 34 is connected to both a PV system and a capacitor bank. 

Accordingly, the requirement of reactive power from PV system is not much. Case 5 

has the highest level of PV reactive power output due to the case setting. The reactive 

power output ranges from 0.14MVar to 0.21MVar. By contrast, the reactive power 

output from PV systems in case 4 is the lowest since the total capacity of capactor banks 

is the highest in all cases, which reduces the reactive power support from PV systems.  

6.6 Chapter Summary 

This paper proposes a multi-objective optimization for minimizing both operation 

cost and voltage deviation of IES considering renewable power uncertainty. A two-

stage data-driven DRO approach is used to solve the TS-VCO with dual and SDP 

formulations to ensure computational tractability. The reformulated TS-VCO is solved 

by CGA with master and subproblems. The key findings from the case studies are :  

▪ Based on a large amount of moment information, DRO produces less 

conservative results compared with RO, more effective for maintaining voltage 

deviation and reducing operation cost considering renewable power uncertainty.  

▪ The interdependency between electricity and gas systems reduces 4.7% of 

operation cost and a significant rise in the voltage profile.  

▪ The proposed TS-VCO is effective in maintaining voltage and saving operation 

cost considering PV uncertainty. 

This work can benefit integrated system operators with powerful operation tool to 

manage the systems with fewer costs but integrate more renewable energy.  
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7.1 Abstract 

Power-to-gas (P2G) can convert excessive renewable energy into hydrogen via 

electrolysis, which can then be transported by natural gas systems to bypass constrained 

electricity systems. However, the injection of hydrogen could impact gas quality since 

gas composition fundamentally changes, adversely affecting the combustion, safety and 

lifespan of appliances.  

This paper develops a new gas quality management scheme for hydrogen injection into 

natural gas systems produced from excessive wind power. It introduces four gas quality 

indices for the integrated electricity and gas system (IEGS) measuring gas quality, 

considering the coordinated operation of tightly coupled infrastructures. To maintain gas 

quality under an acceptable range, the gas mixture of nitrogen and liquid petroleum gas 

with hydrogen is adopted to address the gas quality violation caused by hydrogen 

injection. A distributionally robust optimization (DRO) modelled by Kullback-Leibler 

(KL) divergence-based ambiguity set is applied to flexibly control the robustness to 

capture wind uncertainty. The KL divergence-based ambiguity set defines the 

uncertainties within a measured space which limits the shape of probability distributions.  

Case studies demonstrate that wind power is maximally utilized and gas mixture is 

effectively managed, thus improving both gas quality and performance of IEGS. The 

work can benefit system operators with i) ensured gas quality under hydrogen injection 

ii) low system operation cost and iii) high renewable energy penetration.  

7.2 Nomenclature 

Indices and sets 

t, T Index and set for time periods.  

n, 𝑁  Index and set for nodes in gas system. 

𝑖𝑒, 𝐼𝑒 Index and set for traditional distributed generators (DG). 

𝑖𝑔, 𝐼𝑔 Index and set for natural gas sources. 

j,  J Index and set for wind turbines.  

𝑙𝑒, 𝐿𝑒 Index and set for power lines. 

𝑙𝑔, 𝐿𝑔 Index and set for gas pipelines. 

𝑘𝑒, 𝐾𝑒 Index and set for electric loads. 

𝑘𝑔, 𝐾𝑔 Index and set for gas loads. 

𝑘ℎ, 𝐾ℎ Index and set for heating loads. 
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Parameters  

𝜂𝑒 Electrical efficiency for electrolyser.  

𝜂ℎ𝑦−𝑐𝑎, 𝜂ℎ𝑦−𝑚𝑒 Reaction coefficients for required carbon dioxide and 

methanation output. 

𝐺𝑖𝑔,𝑚𝑎𝑥
 , 𝐺𝑖𝑔,𝑚𝑖𝑛

  Maximum and minimum output of natural gas source 𝑖𝑔 

at time t.  

𝑃𝑟𝑙𝑔,𝑚𝑎𝑥, 𝑃𝑟𝑙𝑔,𝑚𝑖𝑛 Maximum and minimum gas pressure of gas pipeline 𝑙𝑔.  

𝛾𝑙𝑔 Weymouth constant for pipeline 𝑙𝑔. 

𝑓𝑙𝑔,𝑚𝑎𝑥
  Maximum gas flow of pipeline 𝑙𝑔. 

𝐶𝐹𝑙𝑔 Compressor’s compression factor at pipeline 𝑙𝑔. 

𝜂𝐺𝑇 Conversion efficiency of gas turbine.  

𝛺ℎ𝑦,𝛺𝐿𝑃𝐺,𝛺𝑛𝑖,𝛺𝑚𝑒, 

𝛺𝑚𝑖𝑥 

Gross calorific value (GCV) for hydrogen, liquid 

petroleum gas (LPG), nitrogen, methane and mixed 

natural gas. 

𝜌ℎ𝑦,𝜌𝐿𝑃𝐺,𝜌𝑛𝑖,𝜌𝑚𝑒  Gas density of hydrogen, liquid petroleum gas, nitrogen 

and methane. 

𝐸ℎ𝑦,𝐸𝐿𝑃𝐺,𝐸𝑛𝑖,𝐸𝑚𝑒  Combustion potential index (CPI) of hydrogen, liquid 

petroleum gas, nitrogen and methane. 

𝑂𝑖 Oxygen index. 

𝛺𝑚𝑎𝑥
𝑚𝑖𝑥 , 𝑆𝐺𝑚𝑎𝑥

𝑚𝑖𝑥 , 

𝑊𝐼𝑚𝑎𝑥
𝑚𝑖𝑥 , 𝐶𝑃𝑚𝑎𝑥

𝑚𝑖𝑥 

Maximum limit for GCV, specific gravity, wobbe index 

(WI) and Combustion Potential (CP) of mixed gas. 

𝛺𝑚𝑖𝑛
𝑚𝑖𝑥, 𝑆𝐺𝑚𝑖𝑛

𝑚𝑖𝑥, 

𝑊𝐼𝑚𝑖𝑛
𝑚𝑖𝑥, 𝐶𝑃𝑚𝑖𝑛

𝑚𝑖𝑥 

Minimum limit for GCV, specific gravity (SG), WI and 

CP of mixed gas. 

∆𝜑𝑛,𝑚𝑎𝑥
ℎ𝑦_𝑚𝑒

, ∆𝜑𝑛,𝑚𝑎𝑥
ℎ𝑦_𝑑

, 

∆𝜑𝑛,𝑚𝑎𝑥
𝐿𝑃𝐺 , ∆𝜑𝑛,𝑚𝑎𝑥

𝑛𝑖 , 

∆𝜑𝑛,𝑚𝑎𝑥
𝑚𝑒  

Maximum volume deviation for hydrogen producing 

methane, direct used hydrogen, LPG, nitrogen and 

methane. 

𝜑𝑛,𝑚𝑎𝑥
𝑚𝑖𝑥 , 𝜑𝑛,𝑚𝑖𝑛

𝑚𝑖𝑥  Maximum and minimum volume for mixed gas at node n. 

Θ Constant in Boyle’s law. 

𝐺𝑘𝑔,𝑡, 𝐺𝑘ℎ,𝑡 Gas and heating load at time t. 

𝑃𝑠𝑢𝑏,𝑚𝑎𝑥, 𝑄𝑠𝑢𝑏,𝑚𝑎𝑥 Maximum active and reactive power injection at 

substation from upper level market. 

𝑃𝑖𝑒,𝑚𝑎𝑥, 𝑃𝑖𝑒,𝑚𝑖𝑛 Maximum and minimum output of traditional DG 𝑖𝑒.   

𝑥𝑙𝑒 , 𝑟𝑙𝑒 Resistance and reactance of power line 𝑙𝑒. 

𝑓𝑙𝑒,𝑚𝑎𝑥
𝑎 , 𝑓𝑙𝑒,𝑚𝑎𝑥

𝑟  Maximum active and reactive power flow of power line 

𝑙𝑒. 

𝑃𝑘𝑒,𝑡, 𝑃𝑘𝑔,𝑡 Power and gas load at time t. 

𝜆𝑖𝑒
𝑎 , 𝜆𝑖𝑒

𝑏 , 𝜆𝑖𝑒
𝑐  Cost coefficients for of traditional DG 𝑖𝑒.  

𝜆𝑠𝑢𝑏 , 𝜆𝑖𝑔 Cost coefficients for electricity purchase at substation and 

natural gas source 𝑖𝑔. 

𝜆𝑁 , 𝜆𝐿𝑃𝐺 Cost coefficients for nitrogen and liquid petroleum gas. 
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𝜔𝑗,𝑡
𝑓

 Forecasted output of wind turbine j at time t. 

Variables 

𝑃𝑛,𝑡
𝑃2𝐺  Power consumed by the electrolyser. 

𝐺𝑛,𝑡
ℎ𝑦 

, 𝐺𝑛,𝑡
ℎ𝑦_𝑚𝑒 

,

 𝐺𝑛,𝑡
ℎ𝑦_𝑑 

, 𝐺𝑛,𝑡
𝑚𝑒  

Gas output for overall P2G process, direct hydrogen 

injection, hydrogen during methanation process and 

methanation.  

𝐺𝑛,𝑡
𝑐𝑎  Required gas of carbon dioxide during methanation 

process. 

𝐺𝑖𝑔,𝑡
  Output of natural gas source 𝑖𝑔 at time t. 

𝑃𝑟𝑙𝑔,𝑡
𝑖𝑛𝑖  ,𝑃𝑟𝑙𝑔,𝑡

𝑡𝑒𝑟  Gas pressure of initial and terminal nodes of pipeline 𝑙𝑔 at 

time t. 

𝑓𝑙𝑔,𝑡
  Gas flow of pipeline 𝑙𝑔 at time t. 

𝑓𝑙𝑔,𝑡
𝐺𝑇,𝑖𝑛𝑖, 𝑓𝑙𝑔,𝑡

𝐺𝑇,𝑡𝑒𝑟
 Gas flow at initial and terminal nodes of gas turbine. 

𝜑𝑛,𝑡
ℎ𝑦_𝑚𝑒

,𝜑𝑛,𝑡
ℎ𝑦_𝑑

 

𝜑𝑛,𝑡
𝐿𝑃𝐺 , 𝜑𝑛,𝑡

𝑛𝑖  , 𝜑𝑛,𝑡
𝑚𝑖𝑥 

Volume for hydrogen with methanation process, direct 

use, LPG, nitrogen, methane and mixed natural gas. 

𝛺𝑛,𝑡
𝑚𝑖𝑥, 𝑆𝐺𝑛,𝑡

𝑚𝑖𝑥, 𝑊𝐼𝑛,𝑡
𝑚𝑖𝑥, 

𝐶𝑃𝑛,𝑡
𝑚𝑖𝑥 

CGV, SG, WI and CP for mixed gas of node n at time t. 

𝑓𝑙𝑔,𝑡
𝑖𝑛𝑖, 𝑓𝑙𝑔,𝑡

𝑡𝑒𝑟 Gas flow from initial node and to terminal node of 

pipeline 𝑙𝑔 at time t. 

𝑃𝑠𝑢𝑏,𝑡
 , 𝑄𝑠𝑢𝑏,𝑡

  Electricity purchase of substation at time t. 

𝑃𝑖𝑒,𝑡
 , 𝑄𝑖𝑒,𝑡

  Traditional DG active and reactive power output of 𝑖𝑒 at 

time t.  

𝑓𝑙𝑒,𝑡
𝑎 , 𝑓𝑙𝑒,𝑡

𝑟   Active and reactive power flow of power line 𝑙𝑒 at time t.   

𝑓𝑙𝑔,𝑡
𝑖𝑛𝑖, 𝑓𝑙𝑔,𝑡

𝑡𝑒𝑟 Gas flow from initial node and to terminal node of 

pipeline 𝑙𝑔 at time t. 

 

7.3 Introduction 

    The increasing penetration of renewable energy is effective for revolutionising 

energy mix and addressing the climate crisis. In the U.S., 275 TWh wind power was 

generated in 2018 while 6 TWh wind energy was curtailed and wasted [146]. The main 

reason is that i) the fluctuating and uncertain characteristics of wind power cause 

unbalancing issues and ii) wind power cannot be fully consumed in local areas but 

cannot be transported to other areas due to network constraints.  

    As a promising solution to enable excessive renewable energy integration, power-to-

gas (P2G) enables the conversion from electrical energy to hydrogen and synthetic 

natural gas. Accordingly, the bidirectional energy flow is achieved for tighter couplings 

between integrated energy systems (IES). P2G has been extensively investigated in 
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existing research, particularly in network planning and operation problems [29, 54, 55, 

147-150].  

    One major research area is P2G planning in IES. A robust co-optimization model is 

presented in [147] to determine the optimal investment plan for installing investment 

candidates including P2Gs and gas compressors. Wind uncertainties and reliability are 

considered for economic and reliable solutions. Paper [148] proposes a bi-level multi-

stage stochastic programming to minimize planning and operation cost of an integrated 

electricity and gas system (IEGS) with P2G. A real options model is designed for IEGS 

including P2Gs to determine the optimal investment timing and capacity of P2G [149]. 

The operating cost uncertainty is considered and the decision can be made immediately 

or postponed waiting for the operation opportunity based on real options.  

    P2G operation has also been well investigated to reduce operation cost and carbon 

emissions and maximise profits [29, 54, 55, 150].  Paper [54] designs a decentralized 

IEGS with P2G technologies and wind energy to save daily operation cost. A linearized 

transient-state gas flow model is developed and the alternating direction multiplier 

method is used to solve the proposed problem. A stochastic optimization (SO) based 

day-ahead economic dispatch model for IEGS considering renewable uncertainties and 

contingencies is proposed in [55]. A second-order cone relaxation is developed to 

address the nonconvexity caused by uncertain gas flow direction. Paper [29] aims to 

reduce CO2 emissions and optimally utilize surplus renewable energy. To maximize the 

expected profit of P2G facilities to a gas grid, a distributed supply coordination is 

proposed [150], which is a two-layer optimization problem and solved by a model 

predictive control method.   

    Hydrogen is produced by electrolysers of P2G and then injected into gas systems, 

which can inevitably affect gas composition. The variation in gas composition will 

impact the security of gas pipelines, gas engine performance, emissions as well as the 

gas quality of end-users [151]. The changes in the safety and performance of domestic 

gas appliances are assessed in [152] with natural gas-hydrogen mixtures. Paper [153] 

proposes a steady-state analysis method with the injection of alternative gases at 

different locations. Both centralized and decentralized injection of hydrogen and biogas 

are studied and results show that the optimal management of diversified gas 

components can help reduce carbon emissions. Paper [154] investigates the impact on 

gas quality standards in terms of heating value indices, Wobbe indices and relative gas 
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density when hydrogen is injected to gas systems with variation between 1 and 10 vol%.  

In gas distribution systems, Wobbe index (WI) is the most common parameter in the 

existing literature to measure gas quality [21, 152-156]. Paper [152] analyses gas 

interchangeability using WI on domestic appliances. The results demonstrate that WI 

associated with flashback and thermal output are important constraints to consider. A 

distributed injection of alternative gas with a steady-state method is presented in [153] 

and the paper also assesses the impact of utilizing various gas supply sources by WI. A 

small-scale renewable hydro methane production system is designed in [155] 

considering WI as a key security index. Paper [156] investigates the effect of different 

hydrogen injection levels on gas quality based on WI for both distribution and 

transmission gas networks. Paper [21] studies P2G operation in IEGS considering using 

WI and Combustion Potential (CP). Through optimally managing gas mixture, 

hydrogen injection is maximized by using robust optimization (RO), effectively 

hedging wind power uncertainties.  

    The utilization of renewable as the source for P2G is influenced by the uncertain 

characteristics and existing research mainly uses SO [54, 55] and RO [21, 157]. SO 

assumes the decision making is either based on an explicit distribution knowledge or a 

large number of samples. The former solution is not always practical and the latter is 

prone to errors since it is difficult to estimate the accurate probability distribution when 

the dataset is not sufficiently large. Alternatively, RO finds the optimal solution under 

the worst-case scenario based on the uncertainty set, which is over-conservative. To 

overcome their shortcomings, distributionally robust optimization (DRO) is developed 

to balance the deficiencies of SO and RO with minor robustness guaranteed through 

partial distribution information. A risk-based optimal gas-power flow is presented and 

solved by DRO [56]. Paper [57] designs an economic dispatch model for IEGS 

considering renewable and load uncertainty. An IES at the building level is proposed 

considering PV output uncertainty and DRO is used to mitigate the conservatism [158]. 

In summary, existing research has extensively assessed the gas quality of hydrogen-gas 

admixture but the coordinated operation of energy infrastructures in IES is ignored. 

There is also a lack of an effective method to model renewable uncertainty.  

    Similar to the uncertainty set of RO, the ambiguity set of DRO is used to characterize 

uncertainties with certain known information of distributions. Constructing a proper 

ambiguity set is crucial to DRO, which must be sufficiently rich to accommodate the 

real distribution and small enough to exclude distributions that may cause over-
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conservatism. So far, moment-based ambiguity set is the most common type due to its 

tractability and easy second-order cone program (SOCP) or semidefinite program 

(SDP) reformulations, e.g., Markov ambiguity set and Chebyshev ambiguity set that 

depend on first and second-moment information. Nevertheless, the moment information 

is not abundant enough to shape the real distribution compared with discrepancy-based 

ambiguity set which measures the discrepancy between the candidate distribution and 

the reference distribution. The discrepancy can be controlled by the decision-maker to 

either decrease or increase the conservatism depending on the reliability requirement of 

the optimization. 

    To fill the research gap, this paper designs new co-optimization for both gas quality 

and system operation in an IEGS. Kullback-Leibler (KL) divergence is used to measure 

the distance between two distributions. Renewable uncertainty is captured by DRO 

approach with KL divergence-based ambiguity set to ensure both robustness and 

tractability. The key indices to quantify gas quality, including gross calorific value 

(GCV), specific gravity (SG), WI, and CP, are included in the model. Apart from 

ensuring standard satisfaction, the injected gas from P2G is mixed with nitrogen and 

Liquid Petroleum Gas (LPG) to maintain overall gas quality. The uncertainty of wind 

power output is handled by KL divergence-based DRO, which can be transformed into 

a tractable deterministic model.  

    The main contributions of this paper are as follows:  

1) Four key indices are used in the economic operation of IEGS to quantify the 

impact of hydrogen injection from P2G on gas quality. 

2) A novel co-optimization model is developed to both minimize system 

operation costs and maintain gas quality within an acceptable range, achieved 

by a mixture of nitrogen and LPG.   

3) A KL divergence based DRO is developed to model renewable uncertainties. 

Compared to SO and RO, it is less data-dependent and conservative. 

Compared to moment-based DRO, the robustness of the proposed ambiguity 

set can be controlled by adjusting divergence tolerance in the algorithm. 

    The remainder of this paper is organized as follows. Section 7.4 proposes the 

modelling for the gas quality indices. Section 7.5 presents the objective function and 

constraints for IEGS including P2G facility modelling and gas quality management. 

The KL divergence-based DRO methodology regarding and associated reformulations 
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are given in Section 2.2.2. Section 7.6 demonstrates case studies and performance of 

the problem. Finally, section 7.7 concludes the paper.   

7.4 Gas Quality 

    To assess gas quality, gas adaptability and interchangeability are the two most 

significant indexes. The adaptability of gas is referred to as the ability of the gas-fired 

appliances to work properly when the gas composition is changed due to gas injection. 

The gas interchangeability refers to that, during the mix of various gas compositions, 

the operational performance of gas equipment is still acceptable in terms of safety, 

efficiency and emissions. For gas turbines and pipelines, only limited change of gas 

composition is tolerated.  

Calorific value is defined as the amount of released heat during combustion. GCV 

represents the amount of released heat by unit volume of fuel when the temperature of 

the gas is equal before and after the combustion, which means the water vapour is 

entirely condensed and heat recovered during the combustion. GCV must be within a 

range which determines the available amount of energy. The GCV for hydrogen is given 

in (7-1), where Ωg and Ωhy are the GCV for the mixed gas and hydrogen and φhy is the 

volume of hydrogen. 

𝛺 = 𝛺𝑔 + (𝛺ℎ𝑦 − 𝛺𝑔)𝜑ℎ𝑦 (7-1) 

SG is the ratio of gas density to air density at the same pressure and temperature. It 

is used for limiting hydrocarbon content, which is given in (7-2), where ρg, ρhy and 

ρair denote the density of gas, hydrogen and air. A high hydrocarbon content will cause 

serious combustion problems, e.g., engine knock, carbon monoxide emissions and 

spontaneous ignition of gas turbines, etc. 

𝑆𝐺 =
𝜌𝑔 + (𝜌ℎ𝑦 − 𝜌𝑔)𝜑ℎ𝑦

𝜌𝑎𝑖𝑟
 

(7-2) 

    The WI for gas equipment can vary within a small range, which is defined by (7-3).   

𝑊𝐼 =
𝛺

√𝑆𝐺
 

(7-3) 

    The most frequent used WI in the world is set within 5-10% of the standard setpoint. 

Otherwise, non-optimal gas combustion appears, which will lead to inefficient and 

unstable equipment working conditions and high greenhouse gas emissions. A 



Chapter 7        Distributionally Robust Operation of IEGS with Hydrogen Injection 

143 

 

significant change of WI can even result in emergency shutdowns of gas turbines due 

to the adverse impact on control issues, affecting the lifespan. In addition, the 

combustion performance is also influenced by the varying gas composition, e.g., flame 

stability, ignition properties and flashback. Ensuring equal WI can obtain the same 

energy input under the same gas pressure. CP is used to measure gas combustion 

stability, which can reflect combustion characteristics, including combustion flame and 

yellow flame, etc. CP is one important index for interchangeability of gas admixture 

that requires the CPs of mixed gases are close. Equation (7-4) defines CP. 

𝐶𝑃 = 𝑂𝑖
𝜑ℎ𝑦 + 0.6(𝜑𝑐𝑚 + 𝜑ℎ𝑐) + 0.3𝜑𝑚𝑒

√𝑆𝐺
 

(7-4) 

 

Where φcm , φhc  and φme  represent the volume of carbon monoxide, hydrocarbon 

except methane and methane. 

7.5 IEGS Modelling 

This section models P2G facility and IEGS, followed by the operation objective 

function. It is assumed that the entire IEGS is owned by a single system company, who 

has the full control of DGs, power lines, wind generators, gas sources, pipelines, P2G 

facility, compressors and other equipment. 

 

7.5.1 P2G Modelling  

    P2G facility enables redundant wind power to be recovered and transported by the 

gas system. The P2G process is given in Fig. 7-1. Firstly, electrolysers split the water 

(H2O) into hydrogen (H2) and oxygen (O2) by using excessive wind power. Then with 

 
Fig. 7-1.  Flowchart of constrained generation algorithm   

 

 

 

 

 

 
Fig. 7-2.  Flowchart of constrained generation algorithm   
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the interaction with carbon dioxide (CO2), methane (CH4) can be obtained through 

methanation. Meanwhile, the produced H2 from the first step can be directly transported 

by the gas system. The relationship between the input and output of electrolyser is 

described in (7-5). According to Sabatier reaction factors [159], equations (7-6)-(7-8) 

present the requirement of CO2 and production of CH4 in the process of methanation.   

𝐺𝑛,𝑡
ℎ𝑦 

= 𝜂𝑒
𝑃𝑛,𝑡
𝑃2𝐺

𝛺ℎ𝑦
  

(7-5) 

𝐺𝑛,𝑡
ℎ𝑦_𝑚𝑒

+ 𝐺𝑛,𝑡
ℎ𝑦_𝑑

= 𝐺𝑛,𝑡
ℎ𝑦

 (7-6) 

𝐺𝑛,𝑡
𝑐𝑎 = 𝜂ℎ𝑦−𝑐𝑎𝐺𝑛,𝑡

ℎ𝑦_𝑚𝑒
  (7-7) 

𝐺𝑛,𝑡
𝑚𝑒 = 𝜂ℎ𝑦−𝑚𝑒𝐺𝑛,𝑡

ℎ𝑦_𝑚𝑒
  (7-8) 

7.5.2 Modelling of Electricity and Gas Systems  

    The modelling of natural gas system is presented from (7-9) to (7-24). Equation (7-

9) limits the gas production by natural gas source 𝑖𝑔. Gas pressure is limited in (7-10) 

and (7-11). It is noted that the pressure of initial gas nodes is always higher than that of 

terminal nodes in distribution gas systems. Weymouth gas flow equation is used to 

describe the relationship between gas pressure and flow in (7-12). Equation (7-13) 

limits gas flow. The inlet and outlet gas pressures of the compressor are constrained in 

(7-14). Equations (7-1)-(7-4) describing the gas quality with hydrogen are modified 

considering the mix of methane, LPG and nitrogen, which are given in (7-15)-(7-18). 

Equation (7-19) is used to ensure all gas quality indices are within a certain range for 

each gas node. The volume deviation between two consecutive time periods cannot be 

too big due to gas travelling speed in pipelines, which is presented in constraint (7-20). 

The total gas volume and its limit are given in (7-21) and (7-22). Constraint (7-23) 

presents the relationship between gas pressure and volume based on Boyle’s law [160]. 

The nodal gas balance constraint is presented in (7-24).  

𝐺𝑖𝑔,𝑚𝑖𝑛
  ≤ 𝐺𝑖𝑔,𝑡

 ≤ 𝐺𝑖𝑔,𝑚𝑎𝑥
  (7-9) 

𝑃𝑟𝑙𝑔,𝑚𝑖𝑛
2   

≤ 𝑃𝑟𝑙𝑔,𝑡
 2 ≤ 𝑃𝑟𝑙𝑔,𝑚𝑎𝑥

 2  (7-10) 

𝑃𝑟𝑙𝑔,𝑡
𝑖𝑛𝑖  ≥ 𝑃𝑟𝑙𝑔,𝑡

𝑡𝑒𝑟   (7-11) 
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𝑓𝑙𝑔,𝑡
 2 = 𝛾𝑙𝑔 (𝑃𝑟𝑙𝑔,𝑡

𝑖𝑛𝑖2 − 𝑃𝑟𝑙𝑔,𝑡
𝑡𝑒𝑟2

 
) (7-12) 

0 ≤ 𝑓𝑙𝑔,𝑡
  ≤ 𝑓𝑙𝑔,𝑚𝑎𝑥

   (7-13) 

𝑃𝑟𝑙𝑔,𝑡
𝑡𝑒𝑟  ≤ 𝐶𝐹𝑙𝑔𝑃𝑟𝑙𝑔,𝑡

𝑖𝑛𝑖  (7-14) 

𝛺𝑛,𝑡
𝑚𝑖𝑥 = 𝛺ℎ𝑦(𝜑𝑛,𝑡

ℎ𝑦,𝑚𝑒
+ 𝜑𝑛,𝑡

ℎ𝑦,𝑑
) + 𝛺𝐿𝑃𝐺𝜑𝑛,𝑡

𝐿𝑃𝐺 + 𝛺𝑛𝑖𝜑𝑛,𝑡
𝑛𝑖 + 𝛺𝑚𝑒𝜑𝑛,𝑡

𝑚𝑒 (7-15) 

𝑆𝐺𝑛,𝑡
𝑚𝑖𝑥 = [𝜌ℎ𝑦(𝜑𝑛,𝑡

ℎ𝑦_𝑚𝑒
+ 𝜑𝑛,𝑡

ℎ𝑦_𝑑
) + 𝜌𝐿𝑃𝐺𝜑𝑛,𝑡

𝐿𝑃𝐺 + 𝜌𝑛𝑖𝜑𝑛,𝑡
𝑛𝑖

+ 𝜌𝑚𝑒𝜑𝑛,𝑡
𝑚𝑒](𝜑𝑛,𝑡

ℎ𝑦,𝑚𝑒
+ 𝜑𝑛,𝑡

ℎ𝑦,𝑑
+ 𝜑𝑛,𝑡

𝐿𝑃𝐺 + 𝜑𝑛,𝑡
𝑛𝑖 + 𝜑𝑛,𝑡

𝑚𝑒) 

(7-16) 

𝑊𝐼𝑛,𝑡
𝑚𝑖𝑥 = 𝛺𝑛,𝑡

𝑚𝑖𝑥/√𝑆𝐺𝑛,𝑡
𝑚𝑖𝑥 

(7-17) 

𝐶𝑃𝑛,𝑡
𝑚𝑖𝑥 = 𝑂𝑖

𝐸ℎ𝑦(𝜑𝑛,𝑡
ℎ𝑦_𝑚𝑒

+ 𝜑𝑛,𝑡
ℎ𝑦_𝑑

) + 𝐸𝐿𝑃𝐺𝜑𝑛,𝑡
𝐿𝑃𝐺 + 𝐸𝑛𝑖𝜑𝑛,𝑡

𝑛𝑖 + 𝐸𝑚𝑒𝜑𝑛,𝑡
𝑚𝑒

√𝑆𝐺𝑛,𝑡
𝑚𝑖𝑥

 
(7-18) 

{∙}𝑚𝑖𝑛 ≤ {∙} ≤ {∙}𝑚𝑎𝑥, 

{∙} = 𝛺𝑛,𝑡
𝑚𝑖𝑥, 𝑆𝐺𝑛,𝑡

𝑚𝑖𝑥,𝑊𝐼𝑛,𝑡
𝑚𝑖𝑥, 𝐶𝑃𝑛,𝑡

𝑚𝑖𝑥 

(7-19) 

−∆𝜑𝑛,𝑚𝑎𝑥
{∙} ≤ 𝜑𝑛,𝑡

{∙} − 𝜑𝑛,𝑡−1
{∙} ≤ ∆𝜑𝑛,𝑚𝑎𝑥

{∙}
 

{∙} = ℎ𝑦_𝑚𝑒, ℎ𝑦_𝑑, 𝐿𝑃𝐺, 𝑛𝑖,𝑚𝑒 

(7-20) 

𝜑𝑛,𝑡
ℎ𝑦,𝑚𝑒

+𝜑𝑛,𝑡
ℎ𝑦,𝑑

+ 𝜑𝑛,𝑡
𝐿𝑃𝐺 + 𝜑𝑛,𝑡

𝑛𝑖 + 𝜑𝑛,𝑡
𝑚𝑒 = 𝜑𝑛,𝑡

𝑚𝑖𝑥 (7-21) 

𝜑𝑛,𝑚𝑖𝑛
𝑚𝑖𝑥 ≤ 𝜑𝑛,𝑡

𝑚𝑖𝑥 ≤ 𝜑𝑛,𝑚𝑎𝑥
𝑚𝑖𝑥  (7-22) 

𝜑𝑛,𝑡
𝑚𝑖𝑥 =

𝛩

𝑃𝑟𝑛,𝑡
   

(7-23) 

∑ 𝐺𝑖𝑔,𝑡
 

𝑖𝑔∈𝐼𝑔

+∑𝐺𝑛,𝑡
ℎ𝑦

𝑛∈𝑁

+ ∑ 𝑓𝑙𝑔,𝑡
𝑠,𝑖𝑛𝑖 −

𝑙𝑔∈𝐿𝑔

∑ 𝑓𝑙𝑔,𝑡
𝑠,𝑡𝑒𝑟  

𝑙𝑔∈𝐿𝑔

= ∑ 𝐺𝑘𝑔,𝑡
𝑘𝑔∈𝐾𝑔

+ ∑ 𝐺𝑘ℎ,𝑡
𝑘ℎ∈𝐾ℎ

 

(7-24) 

The electricity distribution system is modelled from (7-25) to (7-30). Equation (7-25) 

is the constraint for the active and reactive power of substations. The generation limits 

for traditional DGs are presented in (7-26). In the distribution system, the DistFlow 

equation is used with the linearization as presented from (7-27) to (7-28). In (7-29) and 
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(7-30), the power balance constraints for active and reactive power are given 

respectively.  

0 ≤ {∙}𝑠𝑢𝑏,𝑡
 ≤ {∙}𝑠𝑢𝑏,𝑚𝑎𝑥 , {∙} = 𝑃, 𝑄 (7-25) 

𝑃𝑖𝑒,𝑚𝑖𝑛 ≤ 𝑃𝑖𝑒,𝑡
 ≤ 𝑃𝑖𝑒,𝑚𝑎𝑥 (7-26) 

𝑉𝑏,𝑡
𝑖𝑛𝑖 − 𝑉𝑏,𝑡

𝑡𝑒𝑟 = (𝑓𝑙𝑒,𝑡
𝑎 𝑟𝑙𝑒 + 𝑓𝑙𝑒,𝑡

𝑟 𝑥𝑙𝑒)/𝑉0 (7-27) 

0 ≤ 𝑓𝑙𝑒,𝑡
{∙} ≤ 𝑓𝑙𝑒,𝑚𝑎𝑥

{∙} , {∙} = 𝑎, 𝑟 (7-28) 

∑ 𝑃𝑖𝑒,𝑡
 +

𝑖𝑒∈𝐼𝑒

∑𝜔𝑗,𝑡
𝑃 + ∑ 𝑓𝑙𝑒,𝑡

𝑎,𝑖𝑛𝑖 −

𝑙𝑒∈𝐿𝑒

∑ 𝑓𝑙𝑒,𝑡
𝑎,𝑡𝑒𝑟

𝑙𝑒∈𝐿𝑒

=

𝑗∈𝐽

∑ 𝑃𝑘𝑒,𝑡
𝑘𝑒∈𝐾𝑒

 
(7-29) 

∑ 𝑄𝑖𝑒,𝑡
 +

𝑖𝑒∈𝐼𝑒

∑ 𝑓𝑙𝑒,𝑡
𝑟,𝑖𝑛𝑖 −

𝑙𝑒∈𝐿𝑒

∑ 𝑓𝑙𝑒,𝑡
𝑟,𝑡𝑒𝑟

𝑙𝑒∈𝐿𝑒

= ∑ 𝑄𝑘𝑒,𝑡
𝑘𝑒∈𝐾𝑒

 
(7-30) 

 

7.5.3 Objective function  

The injection of hydrogen into natural gas pipelines will inevitably change gas 

compositions and might cause gas quality issues, such as heat value, combustion 

potential pressure. In order to maintain the 4 gas quality indices within an acceptable 

statutory range, it is required to inject other gases with hydrogen into gas pipelines. 

Accordingly, the optimal gas mixture is required to determine the proper amount and 

timing of the injection of other gases. In this paper, LPG and nitrogen are used to blend 

with hydrogen to keep a satisfied gas quality. Nevertheless, the cost of purchase and 

injection of LPG are expensive compared with nitrogen. Accordingly, the key gas 

mixture process is to use the minimum LPG with gas quality satisfied. The objective in  

(7-31) is to minimize system operation cost while ensuring gas quality, considering the 

impact of uncertain wind power output.  

𝑚𝑖𝑛  𝛤 = 𝑚𝑖𝑛 ∑ 𝜆𝑖𝑒
𝑎

𝑖𝑒∈𝐼𝑒,𝑖𝑔∈𝐼𝑔,𝑡∈𝑇

𝑃𝑖𝑒,𝑡
 2 + 𝜆𝑖𝑒

𝑏 𝑃𝑖𝑒,𝑡
 + 𝜆𝑖𝑒

𝑐 + 𝜆𝑠𝑢𝑏𝑃𝑠𝑢𝑏,𝑡
 

+ 𝜆𝑖𝑔𝑃𝑖𝑔,𝑡
 + 𝜆𝑁𝑃𝑁,𝑡

 + 𝜆𝐿𝑃𝐺𝑃𝐿𝑃𝐺,𝑡
  

 

(7-31) 

The first three terms are the cost function for traditional DGs. The fourth term 

represents electricity purchased from the upper electricity market. The gas production 

cost of natural gas sources is shown as the fifth term. The last two terms are the cost for 

purchase and injection of LPG and nitrogen during gas mixture process. 
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7.6 Case Studies 

The proposed gas quality management for IEGS is demonstrated on a modified IEEE 

33-bus system with a 10-node gas system in Fig. 7-2. The gas system data is obtained 

from [14]. The temperature and pressure in the gas pipelines are of the standard level. 

The IEGS contains three traditional DGs, three renewable DGs and two natural gas 

sources. The wind DG at bus 10 is the power supply for the P2G facility with 1MW 

capacity. The parameters for natural gas sources and DGs in TABLEs 7-1 and 7-2 

respectively. The ambiguity set is controlled by a divergence tolerance (η=2.3026 and 

β=0.1) for the DRO. The GCV and combustion potential index (CPI) for hydrogen, 

methane, LPG and nitrogen are given in TABLE 7-3. The gas composition of original 

natural gas and LPG is provided in TABLE 7-4, mainly consisting of methane, ethane, 

 
Fig. 7-2.  The proposed IEGS test system. 

TABLE 7-1 Parameters of natural gas sources 

 

Node 

No. 

Pig,min 

(kcf/h) 

Pig,max 

(kcf/h) 

λig  

($/kcf) 

1 5 20 2.2 

8 2 15 2 

 

TABLE 7-2 Generator parameters 

 

 
 

 

 

 

TABLE 7-3 GCV and CPI for different gases
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propane and butane. LPG has high GCV but low CPI, which is used to increase WI and 

decrease CP. By contrast, the GCV and CPI of nitrogen are both zero, which enables 

more flexible gas mixture. Four case studies in TABLE 7-5 are implemented based on 

optimization methods, hydrogen injection schemes, and gas mixture management 

strategies, which are presented. 

TABLE 7-3 GCV AND CPI FOR DIFFERENT GASES 

 

 H2 CH4 LPG N2 

GCV 10 40 115 0 

CPI 100 50 42 0 

 

TABLE 7-4 GAS COMPOSITION (%) 

 

 CH4 C2H6 C3H8 C4H10 CO2 Other 
Natura 

gas 
79.6 8.3 4.9 

1.4 3.4 2.4 

LPG 91.1 4.3 3.0 1.4 0 0.2 

 

TABLE 7-5 CASE ILLUSTRATION 

 

Case 
No. 

Optimization 
method 

Hydrogen 
injection 

Gas mixture 
management 

1 Robust Yes Yes 

2 DRO No Yes 

3 DRO Yes No 

4 DRO Yes Yes 

 

TABLE 7-6 Economic performance for all cases 
 

Economic result Case 1 Case 2 Case 3 Case 4 

Power system operation cost ($) 479340 329065 337044 343630 

Gas system operation cost ($) 133651 11443 845 243027 

IEGS operation cost ($) 612991 340508 337889 586657 

Purchase cost of nitrogen ($) 1266 1003 0 2424 

Purchase cost of LPG ($) 120350 9760 0 240020 

Cost for gas mixture  

management ($) 
13301 10763 0 242444 

 

TABLE 7-7  Economic performance under different confidence intervals 

 

Confidence 

interval (β) 

Divergence 

tolerance (η) 
Case 2 Case 3 Case 4 

0 1 337855 334510 583271 

0.05 2.9957 339720 337025 585084 

0.1 2.3026 340508 337889 586657 

0.5 0.6065 343700 373179 594518 

1 0.3679 345982 344221 596454 

 

 

 

TABLE 7-6 GCV AND CPI FOR DIFFERENT GASES 

 

 H2 CH4 LPG N2 

GCV 10 40 115 0 

CPI 100 50 42 0 

 

TABLE 7-7 GAS COMPOSITION (%) 

 

 CH4 C2H6 C3H8 C4H10 CO2 Other 
Natura 

gas 
79.6 8.3 4.9 

1.4 3.4 2.4 

LPG 91.1 4.3 3.0 1.4 0 0.2 

 

TABLE 7-8 CASE ILLUSTRATION 
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7.6.1 Economic Performance 

    The economic results for all cases are investigated, including operation cost and gas 

mixture management cost, as is shown in TABLE 7-6. The IEGS operation cost is the 

sum of operation cost of power system and gas system. It shows that case 1 ($601922) 

has the highest IEGS operation cost and case 3 ($337889) has the lowest. The IEGS 

operation strategy for case 1 and 4 are the same which both consider hydrogen injection 

support for the gas system and gas mixture management for maintaining gas quality. 

Case 1 derives $135710 more operation cost in the power system since RO limits the 

uncertain wind power output with a higher degree of robustness, which, yields $120445 

less gas system operation cost. The reason is that the hydrogen injection is strictly 

limited, which reduces the need for additional LPG and nitrogen to maintain acceptable 

gas quality indices. Overall, case 1 results in $15265 more IEGS operation cost 

compared with case 4.  

    Without considering hydrogen injection from the power system to the gas system, 

the two systems are operated separately in case 2. Accordingly, the power system only 

requires to supply electricity load in case 2 whose power system operation cost is 4.3% 

less than that of case 4. The purchase cost of nitrogen and LPG in case 2 are $1003 and 

$9760 respectively, which are $1421 and $230260 less than case 4. Since the original 

natural gas without hydrogen addition is more accessible to obtain acceptable gas 

quality. Due to the disconnection between power and gas systems, the overall operation 

cost of case 2 is $246149 less than case 4. In case 3, hydrogen injection is considered 

without gas mixture. The gas system operation cost, i.e., $845, is purely the generation 

cost of natural gas sources. Without the blend of LPG and nitrogen, the gas volume is 

less than case 4 and the gas pressure is higher than case 4, which reduces the hydrogen 

injection from P2G facility. Thus, the wind power provides more supply to the power 

system and the power system operation cost is reduced. 

    The divergence tolerance η is used to characterize the size of the ambiguity set which 

contains all the possible uncertainty distributions and is associated with the 

conservatism of numerical performance. According to [33], the divergence tolerance 

influences the confidence interval, i.e., ( 𝛽 = 𝑒−𝜂 ). The divergence tolerance 𝜂 

represents the radius of the ambiguity set, which affects the accuracy of estimating 

uncertainty distribution. The larger 𝜂 leads to an ambiguity set with higher robustness 
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while the smaller 𝜂 leads to less conservative numerical results. When the divergence 

tolerance is set as 0, the confidence interval turns into 100% and the candidate 

distribution is becoming the same as the reference distribution. Accordingly, the 

original DRO problem is equivalent to SO. With the variation of the confidence interval, 

the total operation cost for IEGS is depicted in TABLE 7-7. At the second column of 

the table, the divergence tolerance is determined based on selecting the confidence 

interval. Case 4 has the highest result with all the confidence intervals while case 3 

remains the lowest. With the increase of the confidence interval, the total IEGS 

operation cost increases slowly. In case 4, when β = 0, the DRO degrades to SO and 

yields $583271 total cost. The considered largest ambiguity set results in $596454 with 

β = 1, which is 2.3% higher than the cost with the smallest ambiguity set.  

7.6.2 Gas Quality Performance under Gas Quality Management 

    The resulting WI and CP with different P2G operation schemes are presented in this 

subsection. From Fig. 7-3 to Fig. 7-5, it can be seen that case 2 and 4 have a similar WI 

range and trend through the entire time period while case 3 shows a narrow range of 

WI. The WI of case 3 ranges from 32.65 to 32.75, which is 79% of the WI range of case 

4. Besides, WI in case 3 does not fluctuate much while maintaining a smooth trend 

through the entire time period. The reason is that without the gas admixture of LPG and 

nitrogen, WI cannot be ensured in an acceptable range. In comparison with case 4, there 

is no hydrogen injection in case 2. Therefore, the gas quality management is 

implemented on the original environment based on the natural gas composition 

component given in TABLE 7-4. Compared with hydrogen and methane, nitrogen and 

LPG have higher CGV, which lead to higher WI in case 2 since case 2 has no hydrogen 

injected and the other gas components contribute to a higher WI. For case 2 and 4, the 

WI remains at a high level from 7:00 to 17:00 and peak at 49 in both cases. The WI of 

N3 and N8 are maintained smoothly around 42. For N6, the WI remains around 41 

before 15:00 and then decreases dramatically.  

    The CP for all cases at 12:00 is provided in TABLE 7-8. Case 3 yields the highest 

CP and case 4 has the lowest. Since nitrogen and LPG have low CPI, which results in 

low CP. Without the blend of nitrogen and LPG, the CP in case 3 is relatively high 

considering only hydrogen and methane as the gas composition. On the contrary, 

without the hydrogen injection, case 2 has low CP. Compared with case 4, the CP of 
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N1 in case 2 is 30% less. In case 2, CP is slightly lower than case 4 when solved by RO 

since the higher degree of robustness leads to less P2G power output. Accordingly, the 

hydrogen is produced less and the resulting CP is lower.  

7.6.3 Pressure Performance under Gas Quality Management  

    The nodal gas pressure for case 2-4 is given from Fig. 7-6 to Fig. 7-8. Overall, it can 

be seen that the pressure of N1 is the highest and N6 is the lowest. When the node is 

 

 

Fig. 7-3.  Wobbe index for case 2. 

 

Fig. 7-4.  Wobbe index for case 3. 

 

Fig. 7-5.  Wobbe index for case 4. 

 

 

 

TABLE 7-11 Combustion potential for all cases 

 

Fig. 7-4.  Wobbe index for case 2. 
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close to the gas source, e.g., N1 and N6, the gas pressure is relatively high. Passing 

through the gas compressor between N2 and N3, the gas pressure of N3 is pumped up. 

As the base case with both hydrogen injection and gas mixture management considered, 

case 4 shows an increasing trend from 1:00 to 10:00 and a decrease from 11:00 to 14:00, 

followed by another pressure peak at 16:00. Connected to the main gas source, the 

pressure of N1 peaks at 1.2 Psig and the lowest is 0.6 Psig. At N3, with the hydrogen 
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injection from P2G facility and pumped pressure by from N2, the gas pressure of N3 

reaches 1.0 Psig at 10:00.  

    Compared with case 4, case 2 shows similar pressure profile. However, the average 

pressure level of N1 in case 2 is 6% higher than in case 4. The reason is that without 

the power supply by hydrogen, the natural gas source on N1 needs to provide more gas 

supply to the gas system which results in higher gas pressure. In case 3, without gas 

TABLE 7-8 Combustion potential for all cases 

Gas 

node 
Case 1 Case 2 Case 3 Case 4 

N1 50.4 49.4 75.0 50.9 

N3 54.5 52.4 75.0 55.2 

N6 56.0 55.7 75.0 57.6 

N8 56.9 55.8 75.0 57.8 

 

 

Fig. 7-6.  Gas pressure for case 2. 

 

Fig. 7-7.  Gas pressure for case 3. 

 

Fig. 7-8.  Gas pressure for case 4. 
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quality management, the gas volume is not limited. This leads to the large pressure 

deviation between nodes which are close to the sources and the nodes far from the 

sources. For instance, the average 0.4 Psig pressure deviation between N3 and N6 can 

provide large gas flow. Taking advantage of the unlimited gas quality and volume, case 

3 enables large gas flow with different gas pressure profile compared with other cases.  

 

7.7 Chapter Summary 

A coordinated optimization for gas quality management and operation of IEGS in 

the presence of wind uncertainty is proposed. The wind uncertainty is handled by DRO 

with KL divergence for controlling the conservatism of numerical performance. A 

tractable deterministic formulation is obtained and the resulted linear programming 

model can be efficiently solved. Through the extensive case studies, the key findings 

are:  

▪ Considering the four gas quality indices, i.e, GCV, SG, WI and CP, are 

necessary. The gas quality is not acceptable under the relative international standard 

without gas quality management. 

▪ The P2G facility is useful for maximally utilizing the excessive wind power and 

economically effective for reducing the operation cost of IEGS.  

▪ DRO provides less conservative results than RO in terms of economic 

performance. 

▪ Through applying KL divergence, the size of the ambiguity set can be flexibly 

controlled based on confidence interval set by decision-makers for risk concerns. 

The proposed co-optimization for IEGS ensures both the economic performance and 

gas quality via coordinating traditional DGs, natural gas resources and P2G facility, 

which can benefit system operators with economic benefits through saving operation 

cost and secure gas distribution with gas quality guaranteed. 
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This chapter summarises the thesis by outlining the major contributions 
and findings from the research. 

Conclusion 
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IEGS provides a powerful concept to advise system operators in terms of planning, 

dispatching and converting multi-energy infrastructures to achieve a coordinated 

optimal condition among power and gas systems. However, the renewable integration, 

natural disasters, cybersecurity issues, voltage fluctuation and gas quality issues have 

unignorable impacts on the secure and economic operation of IEGS. In consequence, 

this paper extensively investigates the solutions to counteract the aforementioned 

problems, which attempts to fill the research gaps of the existing literature. 

Mean-Risk Distributionally Robust Co-Optimization of 

District Integrated Electricity-Gas-Water Systems 

    A mean-risk coordinated optimization for an IES in the water-energy nexus with 

enormous interdependencies is proposed in this paper. The tight couplings and 

interactions between each subsystem enable the reliable and economic operation for the 

entire IES. Renewable uncertainty is captured by mean-risk DRO. The coherent risk 

measure, CVaR provides the trade-off to system operators with flexible alternatives on 

choosing between economic efficiency and risk. A tractable Bender’s decomposition is 

employed to solve the DR-IWENS problem.  

    Through the extensive case studies on the economic performance, scheduling of 

interdependent coupling devices and the risk management via adjusting parameters, the 

major contributions are tested: 

▪ The coordination of each subsystem with the conversion technologies enhances 

energy efficiency. 

▪ The water system is highly required to consider in the IES operation as the water 

is extensively consumed by energy conversions.   

The mean-risk DRO applied in IES operation problem provides system operators with 

not only economic but risk concerns. 

Resilience Enhancement and Emergency Response for 

Integrated Energy Systems against Seismic Attacks: A Data-

Driven Approach  

    In this paper, a two-stage DRO method is developed to enhance the resilience of an 

IES under seismic attacks with combined planning and operation strategies. The 

proposed method provides optimal hardening plans for specific power lines and gas 
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pipelines under different seismic intensity levels and investment budgets. Through 

extensive case study demonstrations, the key findings are as follows: i) In the first stage, 

DR-SIP effectively determines the most vital lines to harden. In the second stage, DR-

SIP optimally shed loads to keep system balanced and minimize the system operation 

cost; ii) With RO that considers the most extreme event and serious damage, the 

proposed DRO provides less conservative results for both planning and operation stages 

with 13% less cost; iii) Investment plan with a higher budget is more likely to yield a 

reliable IES with high resilient performance; iv) The optimal hardening plan is effective 

for protecting transmission lines and loads and IES is more resilient than electricity 

network against seismic attacks.  

    This method can help system operators to make economical hardening and operation 

strategies to improve the resilience of the integrated energy system under seismic 

attacks. 

Two-Stage Coordinated Risk Mitigation Strategy for 

Integrated Electricity and Gas Systems under Malicious False 

Data Injections 

    A risk mitigation scheme for IEGS against FDIA is proposed in this paper with a 

two-stage DRO model. The hierarchical two-stage framework can determine both day-

ahead and real-time system optimal operation schemes considering the impact of FDIA 

and renewable uncertainties on electricity load, gas load and gas density. A tractable 

SDP formulation is built for the original DR-FMS, which is solved by CGA in an 

iterative manner. Through the extensive case studies, the key findings are listed below: 

▪ Considering all three types of FDIA, i.e., EL-FDIA, GL-FDIA and GD-FDIA, 

leads to higher economic results and more load shedding than considering two types or 

one type of FDIA. 

▪ Load shedding is more sensitive to EL-FDIA than GD-FDIA or GL-FDIA.   

▪ DRO provides less-conservative results than RO in terms of economic 

performance and load shedding.  

▪ Renewable generation uncertainty is necessary to consider, which leads to 3.7% 

more operation cost.  
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The proposed DR-FMS ensures the economic performance of IEGS by providing a two-

stage risk mitigation scheme via implementing efficient load shedding under FDIA and 

renewable uncertainty. The beneficiaries of this work inlcude: network operators can 

have powerful operation models, end customers will enjoy better supply security, and 

renewable can penetrate to the maximum level without much curtailment. 

Voltage Management in Integrated Energy Systems 

Considering Interdependency and Renewable Uncertainty 

    This paper proposes a multi-objective optimization for minimizing both operation 

cost and voltage deviation of IES considering renewable power uncertainty. A two-

stage data-driven DRO approach is used to solve the TS-VCO with dual and SDP 

formulations to ensure computational tractability. The reformulated TS-VCO is solved 

by CGA with master and subproblems. The key findings from the case studies are :  

▪ Based on a large amount of moment information, DRO produces less 

conservative results compared with RO, more effective for maintaining voltage 

deviation and reducing operation cost considering renewable power uncertainty.  

▪ The interdependency between electricity and gas systems reduces 4.7% of 

operation cost and a significant rise in the voltage profile.  

▪ The proposed TS-VCO is effective in maintaining voltage and saving operation 

cost considering PV uncertainty. 

This work can benefit integrated system operators with powerful operation tool to 

manage the systems with fewer costs but integrate more renewable energy. 

Distributionally Robust Operation for Integrated Energy 

Systems with Hydrogen Injection and Gas Quality 

Improvement 

     A coordinated optimization for gas quality management and operation of IEGS in 

the presence of wind uncertainty is proposed. The wind uncertainty is handled by DRO 

with KL divergence for controlling the conservatism of numerical performance. A 

tractable deterministic formulation is obtained and the resulted linear programming 

model can be efficiently solved. Through the extensive case studies, the key findings 

are:  
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▪ Considering the four gas quality indices, i.e, GCV, SG, WI and CP, are 

necessary. The gas quality is not acceptable under the relative international standard 

without gas quality management. 

▪ The P2G facility is useful for maximally utilizing the excessive wind power and 

economically effective for reducing the operation cost of IEGS.  

▪ DRO provides less conservative results than RO in terms of economic 

performance. 

▪ Through applying KL divergence, the size of the ambiguity set can be flexibly 

controlled based on confidence interval set by decision-makers for risk concerns. 

    The proposed co-optimization for IEGS ensures both the economic performance and 

gas quality via coordinating traditional DGs, natural gas resources and P2G facility, 

which can benefit system operators with economic benefits through saving operation 

cost and secure gas distribution with gas quality guaranteed. 
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This chapter presents the potential future work to enrich the 
optimisation methodologies for multi-carrier energy system, as well as 
the interaction with other smart grid technologies or frameworks. 

Future Work 
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    Future work will continue to investigate the optimal operation of IEGS. Instead of 

progressing on the optimization approach, more effort will be made on the optimization 

scenarios and models, aiming to develop an economic, reliable and resilient IEGS 

framework. With the increasing integration of DGs, the application of microgrids and 

energy hubs are becoming wider. Accordingly, the first future work will establish a co-

optimization framework for IEGS connected with multiple energy hubs. Moreover, 

based on the existing works of VVO and gas quality management, the combination of 

them is also practical and innovative. In addition, when cyber-attacks are launched on 

IES with more energy vectors and interdependencies, the cyber-resiliency faces more 

challenges as the attack on each sub-system will propagate to other ones. Thus, it is 

critically essential to investigate the impact and mitigation scheme against cyber-

attacks in IES with more energy systems. Detailed future work is illustrated as follows. 

 

IEGS Operation with Networked Energy Hubs 

    To facilitate energy efficiency, energy interdependency and conversion are also 

essential at the customers’ side. Energy hubs feature micro-energy systems with multi-

vector energy inputs and outputs. An IEGS in distribution level networked with 

multiple energy hubs further enhances the energy efficiency and energy system 

reliability. A hierarchical optimization framework for IEGS networked with energy 

hubs will be considered. A two-stage DRO model will be utilized to handle extensive 

renewable uncertainty. This work will benefit the system operators of both IEGS and 

energy hubs on minimizing the daily operation cost with enriched energy flexibility. 

 

VVO with Gas Quality Management  

    VVO is a powerful management scheme in distribution systems to manage the 

voltage magnitudes within acceptable limits under the high renewable penetration era. 

This is further complicated by the growing interdependencies between power and gas 

systems. Meanwhile, the emerging P2G poses gas quality problems with hydrogen 

injection into gas pipelines. 

    To overcome the voltage and gas quality problems, this future work will propose a 

coordinated volt-VAR-pressure (VVP) optimization of IEGS for limiting voltage 



Chapter 9       Future Work 

 

162 

 

magnitudes and gas pressure considering renewable uncertainties. Due to the effective 

energy conversion to handle surplus renewable generation, P2G operation can be 

utilized as a mitigation strategy for VVO problems. As a consequence, the optimal set 

of management actions of voltage regulating devices and P2G facilities is determined. 

Meanwhile, the gas quality issues caused by the hydrogen injection via P2G is handled 

by the proposed gas quality management scheme. A two-stage mean-risk 

distributionally robust optimization (TSMR-DRO) is developed to model the 

coordinated optimization problem considering risk measures for the objective function. 

The proposed VVP provides a guideline to IEGS operators with an efficient and 

economic operation scheme to effectively manage the voltage profile and gas quality 

with fewer operation costs and higher integration of renewable energy.  

 

Mitigate Cyber-Attacks in IES 

    The wide implementation of ICT causes power system operations exposed to cyber-

attacks. Meanwhile, the tendency of integrated multi-energy vectors has worsened this 

issue with multiple energy coupled. 

    This future work will propose a two-stage risk-averse mitigation strategy for IES, 

incorporating power, natural gas and water systems against FDIA under water-energy 

nexus. The FDIA on individual sub-systems is modelled through hampering false data 

integrity to the systems. An innovative two-stage risk-averse distributionally robust 

optimization (RA-DRO) is proposed to mitigate uneconomic operation and provides a 

coordinated optimal load shedding scheme for the nexus system security. A coherent 

risk measure, Conditional Value-at-Risk is incorporated into the RA-DRO to model 

risk. A Benders decomposition method is used to solve the original NP-hard RA-DRO 

problem. This research provides IES operators with an economic system operation tool 

by optimally coordinating energy infrastructures and implementing reasonable load 

shedding to enhance cybersecurity. 
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