16,610 research outputs found

    Multiple Objective Fitness Functions for Cognitive Radio Adaptation

    Get PDF
    This thesis explores genetic algorithm and rule-based optimization techniques used by cognitive radios to make operating parameter decisions. Cognitive radios take advantage of intelligent control methods by using sensed information to determine the optimal set of transmission parameters for a given situation. We have chosen to explore and compare two control methods. A biologically-inspired genetic algorithm (GA) and a rule-based expert system are proposed, analyzed and tested using simulations. We define a common set of eight transmission parameters and six environment parameters used by cognitive radios, and develop a set of preliminary fitness functions that encompass the relationships between a small set of these input and output parameters. Five primary communication objectives are also defined and used in conjunction with the fitness functions to direct the cognitive radio to a solution. These fitness functions are used to implement the two cognitive control methods selected. The hardware resources needed to practically implement each technique are studied. It is observed, through simulations, that several trade offs exist between both the accuracy and speed of the final decision and the size of the parameter sets used to determine the decision. Sensitivity analysis is done on each parameter in order to determine the impact on the decision making process each parameter has on the cognitive engine. This analysis quantifies the usefulness of each parameter

    Communication Subsystems for Emerging Wireless Technologies

    Get PDF
    The paper describes a multi-disciplinary design of modern communication systems. The design starts with the analysis of a system in order to define requirements on its individual components. The design exploits proper models of communication channels to adapt the systems to expected transmission conditions. Input filtering of signals both in the frequency domain and in the spatial domain is ensured by a properly designed antenna. Further signal processing (amplification and further filtering) is done by electronics circuits. Finally, signal processing techniques are applied to yield information about current properties of frequency spectrum and to distribute the transmission over free subcarrier channels

    DYNAMIC SMART GRID COMMUNICATION PARAMETERS BASED COGNITIVE RADIO NETWORK

    Get PDF
    The demand for more spectrums in a smart grid communication network is a significant challenge in originally scarce spectrum resources. Cognitive radio (CR) is a powerful technique for solving the spectrum scarcity problem by adapting the transmission parameters according to predefined objectives in an active wireless communication network. This paper presents a cognitive radio decision engine that dynamically selects optimal radio transmission parameters for wireless home area networks (HAN) of smart grid applications via the multi-objective differential evolution (MODE) optimization method. The proposed system helps to drive optimal communication parameters to realize power saving, maximum throughput and minimum bit error rate communication modes. A differential evolution algorithm is used to select the optimal transmission parameters for given communication modes based on a fitness function that combines multiple objectives based on appropriate weights. Simulation results highlight the superiority of the proposed system in terms of accuracy and convergence as compared with other evolution algorithms (genetic optimization, particle swarm optimization, and ant colony optimization) for different communication modes (power saving mode, high throughput mode, emergency communication mode, and balanced mode)

    Population adaptation for genetic algorithm-based cognitive radios

    Get PDF
    Abstract — Genetic algorithms are best suited for optimization problems involving large search spaces. The problem space encountered when optimizing the transmission parameters of an agile or cognitive radio for a given wireless environment and set of performance objectives can become prohibitively large due to the high number of parameters and their many possible values. Recent research has demonstrated that genetic algorithms are a viable implementation technique for cognitive radio engines. However, the time required for the genetic algorithms to come to a solution substantionally increases as the system complexity grows. In this paper, we present a population adaptation technique for genetic algorithms that takes advantage of the information from previous cognition cycles in order to reduce the time required to reach an optimal decision. Our simulation results demonstrate that the amount of information from the previous cognition cycle can be determined from the environmental variation factor (EVF), which represents the amount of change in the environment parameters since the previous cognition cycle. I
    corecore