8 research outputs found

    Non-line-of-sight 2 × N indoor optical camera communications

    Get PDF
    We propose, for the first time to the best of our knowledge, a novel non-line-of-sight 2

    Non-line-of-sight 2 × N indoor optical camera communications

    Get PDF
    We propose, for the first time to the best of our knowledge, a novel non-line-of-sight 2

    Sistemas de comunicação por luz visível na segurança rodoviária

    Get PDF
    Doutoramento em MAP-TeleEsta tese apresenta um estudo exploratório sobre sistemas de comunicação por luz visível e as suas aplicações em sistemas de transporte inteligentes como forma a melhorar a segurança nas estradas. Foram desenvolvidos neste trabalho, modelos conceptuais e analíticos adequados à caracterização deste tipo de sistemas. Foi desenvolvido um protótipo de baixo custo, capaz de suportar a disseminação de informação utilizando semáforos. A sua realização carece de um estudo detalhado, nomeadamente: i) foi necessário obter modelos capazes de descrever os padrões de radiação numa área de serviço pré-definida; ii) foi necessário caracterizar o meio de comunicações; iii) foi necessário estudar o comportamento de vários esquemas de modulação de forma a optar pelo mais robusto; finalmente, iv) obter a implementação do sistema baseado em FPGA e componentes discretos. O protótipo implementado foi testado em condições reais. Os resultados alcançados mostram os méritos desta solução, chegando mesmo a encorajar a utilização desta tecnologia em outros cenários de aplicação.This thesis presents a study carried out on the exploration of visible light communication (VLC) for road safety applications in intelligent transportation systems (ITS). We developed conceptual and analytical models for the usage of VLC technologies for human safety. A low cost VLC prototype traffic broadcast system was hardware designed and implemented. In order to realize this prototype a number of exhaustive steps have been designed and implemented. An optimized illumination distribution was achieved in a defined service area from LED-based traffic lights associated with a VLC emitter. A traffic light system set-up was modeled and designed for optimum performance. The optical wireless channel was characterized and examined. Depending on the characteristics of the channel and specific applications, a robust modulation technique based on direct sequence spread spectrum using sequence inverse keying (DSSS SIK) was analyzed, developed, and implemented. The complete prototype VLC transceiver system was then implemented with field programmable gate arrays (FPGA) and discrete components. Simulation and experimental validation of system was performed in different scenarios and environments. The obtained results have shown the merits of our approach. A number of findings was experienced which are illustrated at the end. These observations would enhance and encourage potential research in the area and optimize performance of VLC systems for a number of interesting applications in future. A summary of future research challenges is presented at the end

    Perception Intelligence Integrated Vehicle-to-Vehicle Optical Camera Communication.

    Get PDF
    Ubiquitous usage of cameras and LEDs in modern road and aerial vehicles open up endless opportunities for novel applications in intelligent machine navigation, communication, and networking. To this end, in this thesis work, we hypothesize the benefit of dual-mode usage of vehicular built-in cameras through novel machine perception capabilities combined with optical camera communication (OCC). Current key conception of understanding a line-of-sight (LOS) scenery is from the aspect of object, event, and road situation detection. However, the idea of blending the non-line-of-sight (NLOS) information with the LOS information to achieve a see-through vision virtually is new. This improves the assistive driving performance by enabling a machine to see beyond occlusion. Another aspect of OCC in the vehicular setup is to understand the nature of mobility and its impact on the optical communication channel quality. The research questions gathered from both the car-car mobility modelling, and evaluating a working setup of OCC communication channel can also be inherited to aerial vehicular situations like drone-drone OCC. The aim of this thesis is to answer the research questions along these new application domains, particularly, (i) how to enable a virtual see-through perception in the car assisting system that alerts the human driver about the visible and invisible critical driving events to help drive more safely, (ii) how transmitter-receiver cars behaves while in the mobility and the overall channel performance of OCC in motion modality, (iii) how to help rescue lost Unmanned Aerial Vehicles (UAVs) through coordinated localization with fusion of OCC and WiFi, (iv) how to model and simulate an in-field drone swarm operation experience to design and validate UAV coordinated localization for group of positioning distressed drones. In this regard, in this thesis, we present the end-to-end system design, proposed novel algorithms to solve the challenges in applying such a system, and evaluation results through experimentation and/or simulation

    The 1992 4th NASA SERC Symposium on VLSI Design

    Get PDF
    Papers from the fourth annual NASA Symposium on VLSI Design, co-sponsored by the IEEE, are presented. Each year this symposium is organized by the NASA Space Engineering Research Center (SERC) at the University of Idaho and is held in conjunction with a quarterly meeting of the NASA Data System Technology Working Group (DSTWG). One task of the DSTWG is to develop new electronic technologies that will meet next generation electronic data system needs. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The NASA SERC is proud to offer, at its fourth symposium on VLSI design, presentations by an outstanding set of individuals from national laboratories, the electronics industry, and universities. These speakers share insights into next generation advances that will serve as a basis for future VLSI design

    光学スキャナとイメージセンサを用いる可視光通信システムの構築に関する研究

    Get PDF
    筑波大学 (University of Tsukuba)201
    corecore