25,990 research outputs found

    Evaluation of optimization techniques for aggregation

    Get PDF
    Aggregations are almost always done at the top of operator tree after all selections and joins in a SQL query. But actually they can be done before joins and make later joins much cheaper when used properly. Although some enumeration algorithms considering eager aggregation are proposed, no sufficient evaluations are available to guide the adoption of this technique in practice. And no evaluations are done for real data sets and real queries with estimated cardinalities. That means it is not known how eager aggregation performs in the real world. In this thesis, a new estimation method for group by and join combining traditional estimation method and index-based join sampling is proposed and evaluated. Two enumeration algorithms considering eager aggregation are implemented and compared in the context of estimated cardinality. We find that the new estimation method works well with little overhead and that under certain conditions, eager aggregation can dramatically accelerate queries

    Verifiable Network-Performance Measurements

    Get PDF
    In the current Internet, there is no clean way for affected parties to react to poor forwarding performance: when a domain violates its Service Level Agreement (SLA) with a contractual partner, the partner must resort to ad-hoc probing-based monitoring to determine the existence and extent of the violation. Instead, we propose a new, systematic approach to the problem of forwarding-performance verification. Our mechanism relies on voluntary reporting, allowing each domain to disclose its loss and delay performance to its neighbors; it does not disclose any information regarding the participating domains' topology or routing policies beyond what is already publicly available. Most importantly, it enables verifiable performance measurements, i.e., domains cannot abuse it to significantly exaggerate their performance. Finally, our mechanism is tunable, allowing each participating domain to determine how many resources to devote to it independently (i.e., without any inter-domain coordination), exposing a controllable trade-off between performance-verification quality and resource consumption. Our mechanism comes at the cost of deploying modest functionality at the participating domains' border routers; we show that it requires reasonable processing and memory resources within modern network capabilities.Comment: 14 page
    • …
    corecore