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Abstract

Aggregations are almost always done at the top of operator tree after all selections
and joins in a SQL query. But actually they can be done before joins and make later
joins much cheaper when used properly. Although some enumeration algorithms
considering eager aggregation are proposed, no sufficient evaluations are available
to guide the adoption of this technique in practice. And no evaluations are done
for real data sets and real queries with estimated cardinalities. That means it is not
known how eager aggregation performs in the real world.

In this thesis, a new estimation method for group by and join combining tradi-
tional estimation method and index-based join sampling is proposed and evaluated.
Two enumeration algorithms considering eager aggregation are implemented and
compared in the context of estimated cardinality. We find that the new estimation
method works well with little overhead and that under certain conditions, eager
aggregation can dramatically accelerate queries.
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1 Introduction

1.1 Relational Database Management System

Relational model [3] was proposed in 1970. It has two very important ideas that in-
fluence future database products called relational database management system(RDMBS).
The representation of data and access path to data should be independent and not
known to end users. With structured query language(SQL) [1], users can specify the
kind of data they want and don’t need to consider how the data is retrieved and
processed. This greatly simplifies the use of RDBMS, while choosing a query plan is
not an easy problem and performance with different plans can be orders of magni-
tudes different. A cost based query optimizer [9] compares the cost of each plan in a
enumeration space and take the plan with minimum cost.

1.2 Query Optimizer

A classic query optimizer consists of enumeration space, cost model and cardinality
estimation. All components are evaluated in [5] and it finds that cardinality estima-
tion has the biggest influence on the quality of the produced plan.

1.2.1 Enumeration Space

Dynamic programming is usually used to explore enumeration space when the num-
ber of tables are not too large. It can memorize best plans for all intermediate results
until obtaining the best plan when all tables are joined. Three dynamic program-
ming based enumeration algorithms which can freely reorder inner joins including
DPsize, DPsub and DPccp are described and compared in detail in [8]. DPsize enu-
merates join order bottom up in the order of number of tables. It obtains cost of
all intermediate results with n-1 tables before obtaining intermediate results with n
tables. DPsub iterates over all possible non-empty subsets. Both DPsize and DPsub
can encounter intermediate results that can only be joined through cartesian join
which should be avoided as it has bigger possibility to largely increase intermedi-
ate cardinalities. Then such intermediate results are abandoned. DPcpp builds a
query graph before enumerating and will only enumerate connected pairs and thus
can avoid cartesian join. [4] pushes it further and can reorder all kinds of joins and
group by.

Although dynamic programming is a wonderful technique, it can be quite expen-
sive when joining a large number of tables. Heuristic algorithms such as [10] which
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1 Introduction

can produce sound plans efficiently are good choices in this situation.
Another consideration in enumeration space is the shape of join trees. Left-deep

tree, right-deep tree, zig-zag tree and bushy tree are evaluated in [5].

1.2.2 Cost Model

When evaluating whether a plan is good or not, we need to have a cost for each plan.
Plan with a minimum cost is considered by the optimizer to be the best plan, though
it may be not the best in reality. To model the cost of plan, we need to model the
cost of each physical operator such as table scan, selection and join. In traditional
RDBMS, accessing to disk is the bottleneck, which means it should have a bigger
proportion in the cost function. Except for disk access, cpu performance, memory
bandwidth should also be considered. In main memory RDBMS, the cost model can
be much simpler. [5] shows that there is no much difference on the produced plan
when using a sophisticated or a simple cost model. But it doesn’t mean a sophisti-
cated cost model is not useful. [7] shows a very sophisticated cost model considering
even TLB and cache misses.

1.2.3 Cardinality Estimation

Cardinalities are very important inputs for cost model, especially in main memory
database. Although decades of research have been done and some sophisticated ap-
proach exist, estimation method used in production is quite simple. For example,
PostgreSQL has a statistic and formula based approach which assumes inclusive,
uniformity and independence of data. This can be accurate when all assumptions
meet, but quite bad when there are join crossing correlations. Different from Post-
greSQL, some systems such as HyPer have a sampling based approach. In query
optimization phase, selections on base tables and joins are done on samples of tables
to estimate cardinalities. Currently, HyPer only use sampling approach to estimate
base tables. [11] obtains a plan with traditional approach, executes the plan on sam-
ples and revises estimated cardinalities. It then obtains a new plan with revised es-
timates and then repeat the process until the plan doesn’t change anymore. [6] takes
advantage of available index structure and can obtain all estimates before executing
the plan. It is independent of runtime and can be injected in any query optimizer
easily.

1.3 Aggregation and Group By

Aggregation is used to calculate summary of attributes from multiple rows on a
number of groups, including max, min, sum, avg and count. Usually aggregation
and group by are performed after all selections and joins. This is simple to imple-
ment but not always optimal. Doing aggregation and group by before joins are in-
troduced in [2] [12]. It may largely increase query performance when used properly.
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1 Introduction

1.4 Outline

The main contributions of the thesis are listed as following:

• A new estimation method for group by and join combining traditional ap-
proach and index-based join sampling is proposed and evaluated. Both es-
timates for group by and join are better than any technique alone.

• Two enumeration algorithms with eager aggregation are implemented and
evaluated ,namely complete enumeration and heuristic with real data set and
real queries. We find that three conditions need be be met to enable eager
aggregation dramatically accelerate queries. And even when the conditions
are incorrect, it is not dangerous to enable eager aggregation, which means it
won’t largely decrease query performance.

The rest of the thesis is organized as follows: section 2 first explains what is eager
aggregation and how is done with examples. Then estimation method for group by
and join is introduced. Enumeration algorithms for eager aggregation conclude the
section. Section 3 evaluates different estimation techniques for group by and join
as well as effects and overhead of enumeration algorithms. Finally, queries that are
suitable for eager aggregation are described, which can give you a guidance when
and when not to use the technique.
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2 Eager Aggregation

2.1 Introduction to Eager Aggregation

Almost all RDBMS perform Aggregation in the final step of a query after all joins.
As we know, only Sybase applies eager aggregation, which is really a pity as it can
dramatically increase performance when used properly. To use eager aggregation,
join and aggregation operator need to be changed slightly to produce correct results
since some attributes are eliminated in aggregation. Count for each row needs to be
maintained in both aggregation and join operators. In this work, we only consider
inner join, because we aim to explore the performance gain and loss with eager ag-
gregation but not enumeration algorithms which are explained clearly in [4].

e1 e2 e3 e4'=e1⋈e2
g1 j1 a1 g2 j2 a2 j3 a3 g1 j1 a1 g2 j2 a2
1 1 1 1 1 3 1 4 1 1 1 1 1 3
1 2 2 1 2 1 2 2 1 2 2 1 2 1
1 1 3 1 2 2 5 6 1 2 2 1 2 2
2 3 2 1 1 3 1 1 3

e4=Γ(g1;e1) e5=Γ(g2;e2) e5'=e4'⋈e3
g1 j1 a1 count g2 j2 a2 count g1 j1 a1 g2 j2 a2 j3 a3
1 1 2 2 1 1 3 1 1 1 1 1 1 3 1 4
1 2 2 1 1 2 1.5 2 1 2 2 1 2 1 2 2
2 3 2 1 1 2 2 1 2 2 2 2

1 1 3 1 1 3 1 4
e6=e4⋈e5

g1 j1 a1 g2 j2 a2 count Γ(g1,g2;e5')
1 1 2 1 1 3 2 g1 g2 a1 a2 a3
1 2 2 1 2 1.5 2 1 1 8 9 12

e7=e6⋈e3 Γ(g1,g2;e7)
g1 j1 a1 g2 j2 a2 j3 a3 count g1 g2 a1 a2 a3 count
1 1 2 1 1 3 1 4 2 1 1 8 9 12 4
1 2 2 1 2 1.5 2 2 2

Figure 2.1: An example with e1, e2 and e3

Usually aggregation is done grouping by attributes which are specified in group
by clause of SQL language. It will eliminate all attributes except those that are in
the group by clause. Therefore, in eager aggregation, in order that tables still have
attributes to join with other tables after eager aggregation, join attributes are also
needed to be included in the group by attributes except for those attributes which
are already in group by clause in SQL language. For example, there are two tables
s with attributes (g1, j1) and t with attribute j2 and join condition is j1 = j2. If we
want to do an eager aggregation on s before joining s and t, we need to group by
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2 Eager Aggregation

(g1, j1) instead of (g1).
Aggregation consists of count, sum, avg, min and max. An example in figure 2.1

is shown on how to get correct results for count, sum and avg. Count and sum is
shown in the figure, then avg can be calculated as sum/count. When doing aggre-
gation on intermediate results, including base tables, the values for attributes which
are required to be aggregated need to be divided by count. That is how 1.5 in e5
comes from. Then in the final aggregation, all values will be multiplied by their cor-
responding counts. Min and max are much simpler, we can simply do normal join
on intermediate results obtained with eager aggregation and don’t need to maintain
count information but only need to memorize the minimum or maximum value.

2.2 Construction of Eager Aggregation Operator

When construing eager aggregation operators, a local group by clause should be
constructed, at least including join attributes and attributes that are in group by
clause specified in SQL query. It is also possible to include some other attributes,
but this will increase the number of groups, making eager aggregation less useful.
Although sometimes it can increase chances to do eager aggregation, we argue that
it is not worth doing it. Therefore, we simply do eager aggregation grouping by
attributes included in join expressions and group by clause.

Draft saved at 22:23:47

miit pi

Hashjoin( it, mi)

Hashjoin( mi, pi)

Group by it, id,
Aggregate on mi, movie_id

s

join

t

group by

1,0003,000

20

80,0001,600

Remaining Tables: S3 S4 S5

S1

S2

S3 S4

S5

j3=j1

j3=j2 j1=j2

j5=j4

j5=j1

s1

join

s2

group by j2group by j1

Figure 2.2: Join graph and intermediate operator tree

It is obvious that the attributes in group by clause should be included in eager
aggregation. The reason for including join attributes is that eager aggregation may
eliminate some columns which will be needed later, which leads to an invalid eager
aggregation. Therefore, when constructing eager aggregation operators, we need
to check whether it is valid or not. Figure 2.2 shows the query graph of the query
below which doesn’t have an explicit group by and will produce one group. But
we can do eager aggregation grouping by attributes involved in joins, which are j1,
j2, j3, j4 and j5 in the figure. The intermediate operator tree contains s1 and s2. s3,
s4 and s5 are still needed to be joined. In order to decide whether we can do eager
aggregation when building join tree consists of s1 and s2, we need to check for each
remaining table whether they have join condition with the potentially eliminated
attributes from s1 and s2. We can see from the query graph that s3 and s5 are both
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2 Eager Aggregation

joined with j1 or j2, and s4 doesn’t have a join condition with s1 or s2. Therefore, it
is safe to do eager aggregation on j1 or j2. If s1 or s2 has other attributes which will
be used to join later, then eager aggregation on top of that table cannot be done.

SELECT sum(s1.a1) FROM s1, s2, s3, s4, s5 WHERE s1.j1=s2.j2 AND
s2.j2=s3.j3 AND s1.j1=s3.j3 AND s1.j1=s5.j5 AND s4.j4=s5.j5;

2.3 Considerations in Eager Aggregation

Avoid Unnecessary Grouping

It is possible to have unnecessary grouping operators when we group by a key. But
the good news is that we can know the key for base tables from schema and compute
the keys for all intermediate results. There can be multiple keys, let K(e) be a set
of keys which are sets containing one or some attributes. Keys for base tables are
known and we can compute the keys for inner joins in the following step:

• In case j1 is a key of e1 and j2 is a key of e2

K(e1 ./j1=j2 e2) = K(e1) ∪K(e1)

Each key of e1 and e2 is also a key in the join result

• In case j1 is a key and j2 is not

K(e1 ./j1=j2 e2) = K(e1)

Each key of e2 is also a key in the join result

• In case j1 and j2 are both not keys

K(e1 ./j1=j2 e2) = ∪
k1∈K(e1),k2∈K(e2)

k1 ∪ k2

Each pair of keys from e1 and e2 is also a key in the join result

In JOB queries, we don’t have the first case. When doing eager aggregation, our
local group by attributes consist of join attributes and overall group by attributes
which will definitely not keys. The only possible situation of grouping by keys is on
base table, which will definitely increase the cost. Therefore, our query optimizers
will never consider grouping by keys in eager aggregation. But to reduce the number
of produced plans, we will check whether it is a key in base table.

6



2 Eager Aggregation

2.4 Cardinality Estimation for Group By

To enable query optimizer consider eager aggregation, we need a way to estimate
cardinality of group by and a function to calculate the cost of it. In our implementa-
tion, cardinality multiplied by an adjustable parameter is used to calculate the cost.
To estimate cardinality of gorup by, we need some statistics which are number of
tuples(ntuples) for each table involved in group by, number of selected rows(nrows)
for those tables, and number of distinct values(n distinct) for each relevant attribute.
nrows is equal to ntuples if there is no selection on that table. Then the cardinality
estimation for group by is calculated in the following way:

1. Eliminate the attribute with bigger n distinct if two equivalence attributes from
different tables exist. For example, group by (j1, j2) and j1 = j2 is a join condi-
tion.

2. For all attributes from a single table, multiply all n distinct, and clamp it to
ntuples

10 . If there exists some attributes whose n distinct are bigger than ntuples
10 ,

then set the value to the largest n distinct. Then multiply the value with selec-
tivity which is calculated from formulas shown below:

3. Repeat step 2 for all tables, multiply all the values and then clamp it to the
number of tuples before group by.

The selectivity mentioned above can be calculated in the three following ways
according to PostgreSQL.

1.
n distinct ∗ nrows

ntuples
The idea of this formula is that n distinct should be proportional to selectivity
of base table.

2. n distinct ∗ (1− (
n distinct− 1

n distinct
)nrows)

The probability that one particular value doesn’t exist in nrows is (n distinct−1
n distinct )nrows),

so the probability that it exists is 1 minus this value. Then the expected number
of groups is n distinct times it.

3. n distinct ∗ (1− (
ntuples− nrows

ndistinct
)

ntuples

ndistinct)

2.5 Cardinality Estimation for Join and Group By

Since cardinality for group by must be smaller than its input which is mostly a join,
estimates for group by rely on estimates for join. Traditional approach tend to un-
derestimate cardinality of joins. In this case, estimates for group by can be bounded
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2 Eager Aggregation

by estimates for joins and then also be underestimated. This is a bad news for query
optimizer, because it will consider this eager aggregation a waste since it cannot
reduce intermediate results but only increase the cost of plans.

Therefore, good estimates for joins are badly needed. A sampling approach with
little overhead based on available index structure is proposed in [6]. We will consider
both traditional approach and this novel sampling approach in this work.

When using traditional approach, estimates for group by are obtained as described
in section 2.4. estimates for joins are calculated through the formula:

|T1 ./x=y T2| =
|T1||T2|

max(dom(x), dom(y))

Where T1 and T2 are inputs which can be table scans, selections or joins. dom(x)
is the number of distinct values of attribute x.

When using the index based join sampling, estimates for joins without considering
eager aggregation are obtained before enumeration of plans with eager aggregation.
There are at most 2n(n is the number of tables) intermediate results considering only
joins. We can also use sampling approach to estimate group by, but this will lead
to too many intermediate results. Therefore, A combination of traditional approach
and index based join sampling is used to avoid sampling group bys.

As is shown in figure 2.3, estimates in red are obtained with index-based join
sampling, while estimates in black are calculated in enumeration phase and will
be inputs for cost function. When estimating the join, estimate for group by which
is 20 is compared with original estimate 1000. eager aggregation makes right table
50 times smaller, the estimate for join should also be 50 times smaller. Then, 3000

3000 ∗
1000
20 ∗ 8000 = 1600 will be the final estimate for the join.

miit pi

Hashjoin( it, mi)

Hashjoin( mi, pi)

Group by it, id,
Aggregate on mi, movie_id

s

join

t

group by

1,0003,000

20

80,0001,600

Figure 2.3: An example for estimating group by and join

2.6 Cost Function

The cost function is similar to the one used in [5] with a few differences. We don’t
have index nested loop join in query engine and we have aggregation operator. Cost
for aggregation is also very simple, multiplying its cardinality with a parameter µ
which is for balancing the cost with table scan and join. We use the cardinality of
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2 Eager Aggregation

itself instead of its input for cache and rehashing issues. When the number of groups
is small, even a big input doesn’t cost too much. Of course, a more sophisticated
model should consider both. τ is another parameter for balancing. Specifically, we
set µ = 0.6 and τ = 0.2 for all experiments if not specified explicitly.

Cmm(T ) =


τ · |R| if T = R ∨ T = σ(R)

|T |+ Cmm(T1) + Cmm(T2) if T = T1 ./ T2

µ · |T |+ Cmm(Tc) if T = Γ(Tc)

2.7 Implementation for Aggregation and Join

Section 2.1 shows how aggregation and join are done to enable eager aggregation
by maintaining count information. We implement a standard hash based aggrega-
tion algorithm with unordered map in C++ standard library which uses linked list
to solve collisions. When the load factor is going to surpass its max load factor, it
performs a rehash. After aggregation, count for each group is stored.

Hashjoin is implemented with unordered map which has a vector as value, mak-
ing it more efficient than unordered multimap for locality reason. To maintain count
information, each match needs to multiply count from two sides and make it the
count for the new tuple. If aggregation is not done before join, there is no count
column, in which case count is 1 by default.

2.8 Enumeration Algorithm for Eager Aggregation

The enumeration algorithm is built on top of DPccp [8] which constructs a query
graph and enumerates connected pairs and described in detail in [4]. CPccp simply
joins the pair, while the new enumeration algorithm will check both left and right
side whether eager aggregation can be done on any side. At most four join trees
shown in figure 2.4 will be produced instead of only 1 in DPccp.

Draft saved at 19:38:33

RW3

RW4

MA5

RW5

MA6

RW6

EX7

MA7

EX8

MA8

ID10 ID12

EX9
EX1
0

pi

pi, info_type_id

mi mi_idxit pi

Hashjoin( it, mi)

Hashjoin( mi, pi)

Hashjoin( mi, mi_idx)

Aggregate on mi, movie_id

S2

s1

join

s2 s1

join

s2

group by j1

s1

join

s2

group by j2

s1

join

s2

group by j2group by j1

Figure 2.4: 4 operator trees

Algorithm 1 describes the framework of the algorithm. Line 1 and 2 initializes
the table, setting the best plan consists of only one table to the table itself. Line 3
enumerates all connected pairs S1 and S2 of the query graph. It guarantees that
when S1 and S2 are enumerated, their plans have already been known. There might
be multiple versions of BUILDPLANS with different performance and quality which
will be described shortly.
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2 Eager Aggregation

Algorithm 1 General framework
Input: a set of relations R = R0, R1, ..., Rn−1

a query graph H
Output: An optimal bushy operator tree
1 for all Ri ∈ R
2 DPTable[Ri] = Ri

3 for all csg-cmp-pairs(S1, S2)
4 BUILDPLANS(S1, S2)
5 return DPTable[R]

Complete Enumeration

Without eager aggregation, only the best plan for each intermediate result needs to
be maintained since it meets principle of optimality. Eager aggregation will increase
the cost but decrease the cardinality of a join tree compared to the join tree without
eager aggregation. The reduced cardinality may compensate the cost of bigger join
trees. Therefore, We cannot determine which tree will be the best when it is enumer-
ated. In order to have the optimal plan in the end, all four trees need to be stored.
Every time construing an intermediate result, at most 4 trees need to be stored, mak-
ing the number of intermediate results increase exponentially. This approach is not
realistic when the number of tables in a query is big.

In algorithm 2, line 1 and 2 iterate all plans of S1 and S2. Line 3 builds at most 4
operator trees as is shown in figure 2.4.

Algorithm 2 BUILDPLANS(S1, S2) with Complete Enumeration
Input: a set of relations S1andS2
1 for each T1 ∈ DPTable[S1]
2 for each T2 ∈ DPTable[S2]
3 for each T ∈ optrees(T1, T2)
4 DPTable[S1 ∪ S2].APPEND(T)

Heuristic

When the number of tables in a query is too big, to reduce optimization overhead, a
heuristic which will only keep the local optimal operator tree can be used. This may
throw some potentially useful plans with eager aggregation. But the produced opti-
mal plan will definitely be better than or same as not considering eager aggregation
at all.

In algorithm 3, line 2 compares the new operator tree with the current best opera-
tor tree and keep it if it is better.

10



2 Eager Aggregation

Algorithm 3 BUILDPLANS(S1, S2) with Heuristic
input: a set of relations S1andS2
1 for each T ∈ optrees(T1, T2)
2 if COST (T ) < COST (DPTable(S1 ∪ S2))
3 DPTable[S1 ∪ S2] = T

11



3 Evaluation

3.1 Experimental Setup

All experiments run on a server with two X5570 2.93GHz 4 core CPUs and 48 GB
RAM. The whole IMDB dataset and statistics such as domains are mapped into
memory before queries are executed.

3.2 IMDB data set and JOB queries

Internet Movie Data Base(IMDB) contains information about movies and related
facts such as actors and production companies. 33 query structures with different
selectivity from very low to high on base tables are constructed, which is called Join
Order Benchmark(JOB). Queries with same structure but different selectivity will
have different optimal plans and runtimes. There are 21 tables in IMDB and 113
queries in JOB queries. One example is shown below:

SELECT sum(t.production_year) AS movie_year FROM
company_type AS ct,
info_type AS it,
movie_companies AS mc,
movie_info_idx AS mi_idx,
title AS t WHERE
ct.kind = ’production companies’ AND
it.info = ’top 250 rank’ AND
mc.note not like ’%(as Metro-Goldwyn-Mayer Pictures)%’ AND
(mc.note like ’%(co-production)%’ or mc.note like
’%(presents)%’) AND join conditions;

In addition, another 33 queries with same structure but no selectivity are con-
structed, which means all tuples in base tables are selected. These queries will be
extremely slow without eager aggregation when the number of joins is big, because
no selectivity predicate will lead to quite large results. Such query is like:

SELECT sum(t.production_year) AS movie_year FROM
company_type AS ct,
info_type AS it,
movie_companies AS mc,

12



3 Evaluation

movie_info_idx AS mi_idx,
title AS t Where
join conditions;

3.3 Loss and Gain of Eager Aggregation

In order to get an idea of how eager aggregation works in different settings, before
running JOB queries which consist of many complex joins, four simple joins are exe-
cuted and compared in non eager aggregation, partial aggregation and double eager
aggregation case. Experiments show that the technique can not only dramatically
increase the performance of query, but can also make the query slower.

We use table scan of following tables shown in figure 3.1 directly as input of join
operators. Hash join is applied, small table is used to build hash table and big table
is used to probe the hash table. Domains for movie id are very large, while very small
for info type id. As shown in previous section that the aggregation is hash based, it
can be very efficient when domains are small, since the whole hash table can be in
the CPU cache. Another benefit of small domains is that there will be only a few
tuples left after aggregation, making the join much cheaper. To the contrary, large
domains will not only make aggregation expensive, but also have no positive effect
on join performance. An extreme case is when the domain is equal to number of
tuples, which makes eager aggregation totally a waste.

Table

movie_info

tuples

movie_companies

movie_id

info_type

company_type_id

14835720

info_type_id

 2609129

     113

2468825

1087236

/

/

2

/

71

/

113

Figure 3.1: Tables with statistics

Both are Big Tables with Small Domains

Big table with small domains will degrade hash join to be like a nested loop join.
Each tuple in the probe table will have to iterate a large number of build keys. In
our experiment, we are not able to get a result within 30 minutes. With eager aggre-
gation, the join becomes quite efficient since there are only 2 tuples left after aggre-
gation. Eager aggregation on both sides will lead to a join between 2 tables with 2
tuples. Eager aggregation on one side will make a join similar to a table scan. More
importantly, the eager aggregation itself is also quite efficient in this case, because it
is very cache friendly when domain is small.

SELECT sum(mc1.company_type_id) FROM movie_companies AS mc1,
movie_companies AS mc2 WHERE mc1.company_type_id= mc2.company_
type_id;
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3 Evaluation

Eagerness

Eager on Both Sides

total_time

Eager on Left Side

join_time

Eager on Right Side

agg_time

No Eager

430.081 ms

563.686 ms

556.081 ms

>30 min

8.084e−06 ms

251.666 ms

235.890 ms

NaN

411.625 ms

279.349 ms

291.138 ms

NaN

Figure 3.2: Both are Big Tables with Small Domains

Both are Big Tables with Large Domains

Large domains in a big table will make aggregation slow since the eager aggregation
is cache unfriendly in this case. Also it won’t dramatically increase the performance
of later joins since the number of tuples is not reduced much. But the good news
is that even eager aggregation on both sides is slightly slower than no eager aggre-
gation version, which means it is not too dangerous to have the plan with eager
aggregation even in the situation which is not suitable for doing eager aggregation.

SELECT sum(mc.movie_id) FROM movie_info AS mi, movie_companies
AS mc WHERE mi.movie_id = mc.movie_id;

Eagerness

Eager on Both Sides

total_time

Eager on Left Side

join_time

Eager on Right Side

agg_time

No Eager

9042.85 ms

8508.69 ms

7524.74 ms

6347.14 ms

1059.33 ms

1707.61 ms

3875.54 ms

4010.64 ms

7022.16 ms

5396.46 ms

2727.93 ms

2018.00 ms

Figure 3.3: Both are Big Tables with Large Domains

One Big Table with Small Domains and One Small Table

The performance is not very different in this case with or without eager aggrega-
tion. Join can be done in the way that the small table as build table and big table as
probe table, which is not expensive. Also eager aggregation on big table is efficient
since it is cache friendly. But eager aggregation version is still faster than non eager
aggregation one, which is positive.

SELECT sum(mi.info_type_id) FROM movie_info AS mi, info_type
AS it where mi.info_type_id = it.id;
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3 Evaluation

Eagerness

Eager on Both Sides

total_time

Eager on Left Side

join_time

Eager on Right Side

agg_time

No Eager

1460.56 ms

1431.08 ms

2545.81 ms

2231.64 ms

2.5773e−05 ms

3.2437e−05 ms

1893.65 ms

1523.91 ms

1299.81 ms

1268.92 ms

479.94 ms

441.30 ms

Figure 3.4: One Big Table with Small Domains and One Small Table

One Big Table with Large Domains and One Small Table

This case is a nightmare for eager aggregation. On the one hand, eager aggregation
on big table with big domain is quite expensive, on the other hand, although there
is a big table in the join, small table can be used as probe table, making the join
still cheap. The experiment shows that with eager aggregation, performance can be
almost 20 times slower. Fortunately, this plan will not be selected by query optimizer
if the estimation for group by is not too bad.

SELECT sum(mi.movie_id) FROM movie_info AS mi, info_type
AS it WHERE mi.movie_id = it.id;

Eagerness

Eager on Both Sides

total_time

Eager on Left Side

join_time

Eager on Right Side

agg_time

No Eager

7958.55 ms

7127.21 ms

371.27 ms

424.59 min

184.33 ms

421.23 ms

226.25 ms

226.95 ms

7215.21 ms

6223.71 ms

1.1017e−04 ms

3.1807e−05 ms

Figure 3.5: One Big Table with Large Domains and One Small Table

3.4 Estimation Accuracy for Group By

Estimates with Traditional Approach

We store all plans with an aggregation operator on the top which are produced dur-
ing enumeration and execute those plans to obtain real cardinalities.

The method described in section 2.4 is used to estimate cardinalities for group by.
All three formulas are applied and analyzed and the results are shown in figure 3.6
and 3.7. In general, estimates for group by tend to be underestimated. But estimates
for group by with one attribute and two attributes are quite different. Estimates for
one attribute is stable and similar when the number of tables is different, while quite
different for two attributes. Estimates for two attributes are quite similar to estimates
for joins shown in the fourth figure of figure 3.7. It is not surprising after knowing
how it is estimated. Group by multiple attributes need to multiply several values,

15



3 Evaluation

making the estimate very big. But the estimate must be clamped to its input which is
the estimate for joins. When the number of tables is 1, there is no join and therefore
it is different from remaining estimates.

●

●

●

●●

●●●●
●●●●●●●●●●
●●●
●
●
●
●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

1e6

1e4

1e2

1

1e2

1e4

1e6

1 2 3 4 5 6

un
de

re
st

im
at

io
n 

[lo
g 

sc
al

e]
 o

ve
re

st
im

at
io

n

formula 1

●

●

●●

●●

●●

●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

1e6

1e4

1e2

1

1e2

1e4

1e6

1 2 3 4 5 6

formula 2

●

●

●●

●●

●●

●●●●●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

1e6

1e4

1e2

1

1e2

1e4

1e6

1 2 3 4 5 6

formula 3

group by one attribute

number of tables

Figure 3.6: Quality of cardinality estimates for group by with one attribute in com-
parison with the true cardinalities

The estimate is quite close to real cardinality only when grouping by one attribute
on a single table with formula 2 and 3. Formula 1 can be orders of magnitude dif-
ferent, because it simply multiples domain of attribute by selectivity. This can be
accurate when the attribute is a key, but can be quite inaccurate when it is in a big
table with a small domain. Grouping by two attributes when the number of tables is
two is also good, which is a little surprising when compared with grouping by one
attribute. The reason is that most estimates are bounded by estimates for joins and
there are many join crossing correlations when grouping by one attribute, but not
many when grouping by two attributes. This result may be coincidence and not be
robust since there are only 93 and 31 results for one and two attributes, respectively.
The distribution of results is shown in figure 3.8. Figure 3.8a shows the number of
results for different number of tables and 3.21b shows the percentage of results that
are bounded or unbounded by joins with different number of tables. We can see that
except when the number of tables is 1, most results are bounded by joins. Therefore,
it is possible to improve the estimates for group by by having a better technique for
estimating joins.
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Figure 3.7: Quality of cardinality estimates for group by with two attribute in com-
parison with the true cardinalities
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Figure 3.8: Number of estimates for group by

Estimates with Real Cardinalities for Joins

To see whether this assumption is correct, we try to estimate cardinalities for group
by with true cardinalities for joins, unlike the cardinalities for joins used above which
are also estimated. We can see that the estimates are good with a few number of joins
but become worse with the increase number of joins in figure 3.9. This is caused by
the wrong assumption we made. The estimation approach assumes that the number
of groups will not be changed during joins. But actually join crossing correlations
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may keep all tuples in one group and rule out all other groups
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Figure 3.9: Quality of estimates for group by with real estimates for joins in compar-
ison with true cardinalities

Estimates with Index-Based Join Sampling

Index-based join sampling was proposed in [6]. Figure 3.10 reproduces the result to
give you an idea about the quality of estimates for joins. Two things different from
the original work is that we use first 80 queries instead of all 113 queries and set the
sample size to be 100 instead of 1000. Estimates with 100 and 1000 are quite similar
when the number of joins is fewer than 10 and this is mostly true in the first 80
queries. We will see what the quality of estimates is like after combining the index-
based join sampling with estimates for group by. The overhead of the new approach
is still same as index-based join sampling.

Estimates for Joins

Figure 3.10 shows estimates for joins produced by index-based join sampling ap-
proach with different budgets. More budget there is, better estimates and also more
overhead there is. These estimates are for joins which doesn’t consider eager aggre-
gation and will be injected in query optimizer to calculate estimates for group by
and new estimates for joins with eager aggregation. 100k will be used by default for
all experiments if not specified.

Estimates with Unlimited Budget

We can see from figure 3.11 that the quality of estimates for group by with index-
based join sampling is quite similar to estimates with real cardinalities for joins,
overestimating a little bit. But the bad news is that the quality of estimates for joins
become worse, especially when grouping by two attributes. Estimates for joins are
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Figure 3.10: Quality of Cardinality Estimates for Joins by index-based join sampling
in Comparison with True Cardinalities

overestimated instead of being underestimated as before. This is caused by the over-
estimation of group by.
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Figure 3.11: Quality of Cardinality Estimates for Group By and Join with unlimited
budget in Comparison with True Cardinalities

Estimates with Budget = 10k and Budget = 100k

Figure 3.12 shows a very interesting result. Estimates for group by with 100k is even
better than when using real cardinalities for joins. Estimates for joins also becomes
better compared with the estimates directly from index-based join sampling. This
is because estimates for group by tend to be overestimated, while estimates for join
tend to be underestimated. The combination compensate each other, making both of
them better, which is ”two wrongs make a right”. There should be a budget between
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3 Evaluation

10k and 100k making the estimates even better.
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Figure 3.12: Quality of Cardinality Estimates with Different Budget in Comparison
with True Cardinalities

3.5 Plan Quality with Traditional Estimated Cardinality

Plans with eager aggregation obtained by complete enumeration and heuristic are
compared to plans without eager aggregation. They behave very different when
there is selection or no selection on base tables.

Plan Generated with Complete Enumeration

Complete enumeration stores all intermediate results produced during optimization
phase, making it very expensive. When the number of tables in a query is big, op-
timization cannot be finished in a reasonable time. Therefore, we cannot get results
for all 113 JOB queries. Instead, first 80 queries are used.

Selection with Selectivity

Selectivity means some tuples in base tables will be selected, but not all tuples. It
has queries ranging from very low selectivity to high selectivity.

As is shown in figure 3.15, few queries benefit from eager aggregation and some
queries even get worse. But the good news is that the performance decrease is not
too much. Eager aggregation can be considered to be safe.

Selection with no Selectivity

No selectivity means all tuples in base tables will be selected, making intermediates
results too big to fit in main memory. Although operating system can handle this
through virtual memory subsystem, the query becomes so slow that it cannot finish
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Figure 3.13: Performance gain with eager aggregation by complete enumeration for
queries with selectivity

in a reasonable time. Therefore, we don’t have results for all 33 queries but only a
few of them.

Different from results obtained above, eager aggregation can greatly accelerate
such queries. More importantly, with eager aggregation, queries that cannot finish in
a reasonable time previously can also finish. This is because eager aggregation will
largely reduce intermediate results, making joins faster and intermediate results fit
in main memory. We can see that eager aggregation can not only accelerate queries
but also save main memory resource.

We set different tgus, namely 0 and 0.6. Eager aggregation will always be done
when tgu = 0 since eager aggregation has no cost. When tgu = 0.6, some eager
aggregation cannot be recognized by the query optimizer and chance of improving
performance is lost, which is shown in figure 3.14. This is caused by the inaccuracy
of cardinality estimates. Estimates for group by are bounded by estimates for joins.
When bounded, eager aggregation will not decrease cardinalities of intermediate
results and is considered to be a waste.
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Figure 3.14: Slowdown of queries with eager aggregation by complete enumeration
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3.6 Plan Quality with Index-Based Join Sampling Estimated
Cardinality

Plan Generated with Complete Enumeration

Selection with Selectivity

Figure 3.15 shows that the performance is not that different with or without eager ag-
gregation. The situation is same as when traditional cardinality estimation method
is used. It is better not to use eager aggregation at all when selectivity on base tables
is high.
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Figure 3.15: Performance gain with eager aggregation by complete enumeration for
queries with selectivity

Selection with no Selectivity

There are 3 kinds of queries, grouping by no attributes, grouping by it, kind id whose
domain is 7 and grouping by ci|mk|mc, movie id whose domain is 2528312. They will
produce only one group, a small number of groups, a large number of groups, re-
spectively. In Figure 3.16, the query is becoming more and more complex with the
increase of query number. It shows that more complex the query is, better perfor-
mance it gains with eager aggregation. And queries which produce fewer groups
will gain more performance than queries that produce more groups. When the num-
ber of groups is big enough, eager aggregation may decrease performance.

Then different tgu is also tested to see whether the query optimizer misses some
eager aggregation opportunities. Figure 3.19 shows a proper tgu is better than 0,
which is different from using traditional estimation method that cannot recognize
good plans with eager aggregation due to inaccuracy of cardinality estimates. The
improved cardinality estimates indeed help query optimizer.
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Figure 3.16: Performance gain with eager aggregation by complete enumeration for
queries without selectivity
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Figure 3.17: Slowdown of queries with eager aggregation by complete enumeration

Plan Generated with Heuristic

Selection with Selectivity

As is shown in figure 3.18, all queries have similar performance, which makes eager
aggregation a waste. But the good thing is that no queries become slower because of
eager aggregation.

Selection with no Selectivity

The result shown in figure 3.19 is quite similar to the result in figure 3.16. Although
heuristic can improve less performance than complete enumeration, the overhead is
also much less.
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Figure 3.18: Slowdown of queries with selectivity with eager aggregation by heuris-
tic
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Figure 3.19: Performance gain with eager aggregation by heuristic for queries with-
out selectivity

3.7 Estimation and Enumeration Overhead

Estimation overhead of index-based join sampling with sample size = 1000 is shown
in [6].

Enumeration overhead varies greatly with different algorithms. As expected, the
algorithm which doesn’t consider eager aggregation has the lowest overhead, while
complete enumeration has the highest overhead. When the number of tables in a
query is big, the overhead can be more than 10 seconds. Heuristic has similar over-
head with the algorithm which doesn’t have eager aggregation. Therefore, Com-
plete enumeration can be used when the number of tables is small and heuristic can
be used as an alternative when the number of tables is big.

3.8 Queries that are Suitable for Eager Aggregation

The results have shown that JOB queries with selectivity don’t benefit much from
eager aggregation, while JOB queries with no selectivity benefit a lot. Following are
the reasons that eager aggregation cannot increase performance for some queries:
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Figure 3.20: Overhead of different optimization algorithms

too many groups are produced

Grouping by it, kind id, ci|mk|mc, movie id or no attributes perform very different.
When there are too many groups, eager aggregation won’t largely reduce interme-
diate results, making it a waste. AS aggregation in this case is quite expensive, per-
formance of eager aggregation can become much worse. But this won’t happen with
good estimates for group by and join.

Domain of Movie id is Large

One reason is that domain of movie id is very large. In JOB queries, many tables
are joined between movie ids. Doing eager aggregation grouping by by movie id
will not largely reduce the number of tuples. And doing eager aggregation group-
ing by other attributes with small domains not including movie id will eliminate
movie ids, making it an invalid eager aggregation. In most queries, eager aggrega-
tion will be done almost at the top of an operator tree after joining almost all tables.
In this case, operators below the eager aggregation cannot benefit from the reduced
number of tuples and not many operators left above it. Then, only a few operators
benefit from eager aggregation.

Figure 3.21a shows a typical example from JOB query. Tables mk, ml, t and mc are
joined with movie id and some of them also join other tables through foreign key and
primary key. Some simple eager aggregation ideas are described below to help you
understand. There are some possibilities to do eager aggregation at the beginning:

• on t by movie id

• on mk by movie id, keyword id

• on mc by movie id, company id, company type id
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Figure 3.21: Query graph of a typical query and a constructed query

• on ml by movie id, link type id

We can see that all the possibilities have movie id whose domain is large in group
by attributes. Grouping by such attributes with such a large domain will not greatly
reduced intermediate results.

After joining all mk, m, t and mc first through movie id without doing eager aggre-
gation, we can then group by keyword id, link type id, company id and company type id.
But grouping by so many attributes won’t largely reduce intermediate results, either.

We can also do eager aggregation before the last join. For example, we can first
join all tables except for ct and do eager aggregation on company type id which has 2
distinct values. Although this will largely reduce intermediate results and make the
join with ct much faster, only one join can benefit from eager aggregation. But as we
know from sction 3.3, it doesn’t make much difference on performance since ct is a
small table. The only case that we can benefit much is when ct is a big table with
a small domain on join predicate. But we don’t have this case in JOB queries since
all joins are done between movie id or foreign key and primary key whose domain is
same as number of rows in the table.
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Figure 3.22: Performance gain with eager aggregation for queries with selectivity
when domain of movie id is different

To explore how domain affects performance of eager aggregation, we reduce do-
main of movie id by 10, 100, 1000, respectively. movie id is set to be movie id % ( count /
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factor) + 1 where count is the initial domain of movie id and factor is 10, 100, 1000. This
will make domain of movie id smaller, aggregation cheaper and join more expensive.
80 queries are in the experiments and the bigger the query number is, more com-
plex the query is. As is shown in figure 3.22, the reduced movie id will accelerate
complex queries, while doesn’t affect simple queries that much. And performance
gain for complex queries is more important than simple queries, as complex queries
will take much longer time. For example, reduction from 10 mins to 1 mins is more
important than reduction from 100ms to 10ms.

Selectivity on Base Tables is high

High selectivity on base tables will rule out most tuples, making later operators
much cheaper. For example, in figure 3.21a, if all tables k, lt, cn have high selectivi-
ties, joins between mk and k, ml and lt, mc and cn will be cheap and will not produce
too many tuples, making later operators also cheap. In this case, almost all joins are
done between big table and small table or between small table and small table. As
we know from section 3.3, eager aggregation will not work well in this case.

An example which meets the three requirements
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(b) query plan without eager aggre-
gation

Figure 3.23: query plans for constructed query

To demonstrate the three requirements above, a simple query with 3 tables shown
in figure 3.23b outside of JOB queries is constructed. This query meets both of the
three requirements mentioned above, small domain and no selectivity on base tables.
All mi, mi idx and pi have info type id as foreign key that references it’s primary key
id whose domain is 113. Both mi and pi are big tables with small domains in join
attribute and it is a small table with primary key. Plans with eager aggregation and
without eager aggregation are shown in figure 3.23.

Plan (a) takes 1769.8 ms while plan (b) cannot finish within 1 hour and throws
std::bac alloc exception which means there is no enough memory. We can see that
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Eager aggregation can not only make query more efficient but also save resources
when used properly. Even such a simple query that meets the three requirements
above can gain much performance with eager aggregation.

But if there is a high selection on table it, the join between it and pi will be much
cheaper. And they will also produce smaller intermediate results, making the join
between mi and mi and pi cheaper again in which case eager aggregation is not useful
at all.
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4 Conclusion and Future Work

In this thesis, a new estimation method for group by and join combining traditional
approach and index-based join sampling is proposed and evaluated. As group by
tends to be overestimated and join tends to be underestimated, the new estimation
method works even better than only estimating group by or join alone. Although 3
formulas for estimating group by looks quite different, they are similar in practice.
Two enumeration algorithms which are complete enumeration with high overhead
and heuristic with low overhead are implemented and evaluated on IMDB data set
and JOB queries with estimates from the new estimation method. They work best
when data set and queries meet three conditions: Tables are big while selectivity on
base tables is low, join attributes have small domains and the query will produce
a small number of groups. In this case, they can not only dramatically accelerate
queries but also greatly save memory resources. When the number of tables in a
query is big, the overhead of complete enumeration is so big that it is not realistic to
be used in which case heuristic is a safe alternative.

Currently, most evaluations are performed on grouping by one attribute. Group-
ing by multiple attributes can be done as future work. But we think that it will not
be much different as long as the number of produced groups is similar. As the ef-
fects of eager aggregation technique relies heavily on data set and queries, to answer
whether it is really useful in practice, we need to evaluate it on real workloads from
database or data warehousing customers.
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