258,386 research outputs found

    Alleviating Behavior Data Imbalance for Multi-Behavior Graph Collaborative Filtering

    Full text link
    Graph collaborative filtering, which learns user and item representations through message propagation over the user-item interaction graph, has been shown to effectively enhance recommendation performance. However, most current graph collaborative filtering models mainly construct the interaction graph on a single behavior domain (e.g. click), even though users exhibit various types of behaviors on real-world platforms, including actions like click, cart, and purchase. Furthermore, due to variations in user engagement, there exists an imbalance in the scale of different types of behaviors. For instance, users may click and view multiple items but only make selective purchases from a small subset of them. How to alleviate the behavior imbalance problem and utilize information from the multiple behavior graphs concurrently to improve the target behavior conversion (e.g. purchase) remains underexplored. To this end, we propose IMGCF, a simple but effective model to alleviate behavior data imbalance for multi-behavior graph collaborative filtering. Specifically, IMGCF utilizes a multi-task learning framework for collaborative filtering on multi-behavior graphs. Then, to mitigate the data imbalance issue, IMGCF improves representation learning on the sparse behavior by leveraging representations learned from the behavior domain with abundant data volumes. Experiments on two widely-used multi-behavior datasets demonstrate the effectiveness of IMGCF.Comment: accepted by ICDM2023 Worksho

    Multi-classifier classification of spam email on an ubiquitous multi-core architecture

    Get PDF
    This paper presents an innovative fusion based multi-classifier email classification on a ubiquitous multi-core architecture. Many approaches use text-based single classifiers or multiple weakly trained classifiers to identify spam messages from a large email corpus. We build upon our previous work on multi-core by apply our ubiquitous multi-core framework to run our fusion based multi-classifier architecture. By running each classifier process in parallel within their dedicated core, we greatly improve the performance of our proposed multi-classifier based filtering system. Our proposed architecture also provides a safeguard of user mailbox from different malicious attacks. Our experimental results show that we achieved an average of 30% speedup at the average cost of 1.4 ms. We also reduced the instance of false positive, which is one of the key challenges in spam filtering system, and increases email classification accuracy substantially compared with single classification techniques.<br /

    Voxel based annealed particle filtering for markerless 3D articulated motion capture

    Get PDF
    This paper presents a view-independent approach to markerless human motion capture in low resolution sequences from multiple calibrated and synchronized cameras. Redundancy among cameras is exploited to generate a 3D voxelized representation of the scene and a human body model (HBM) is introduced towards analyzing these data. An annealed particle filtering scheme where every particle encodes an instance of the pose of the HBM is employed. Likelihood between particles and input data is performed using occupancy and surface information and kinematic constrains are imposed in the propagation step towards avoiding impossible poses. Test over the HumanEva annotated dataset yield quantitative results showing the effectiveness of the proposed algorithm.Postprint (published version
    • …
    corecore