
©2008 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195658597?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Multi-Classifier Classification of Spam Email on an Ubiquitous Multi-Core

Architecture

Md. Rafiqul Islam, Jaipal Singh, Ashley Chonka and Wanlei Zhou

School of Engineering and Information Technology,

Deakin University, Melbourne, Australia

{rmd,jaipal,ashley,wanlei}@deakin.edu.au

Abstract

This paper presents an innovative fusion based multi-

classifier email classification on a ubiquitous multi-core ar-

chitecture. Many approaches use text-based single classi-

fiers or multiple weakly trained classifiers to identify spam

messages from a large email corpus. We build upon our

previous work on multi-core by apply our ubiquitous multi-

core framework to run our fusion based multi-classifier ar-

chitecture. By running each classifier process in parallel

within their dedicated core, we greatly improve the perfor-

mance of our proposed multi-classifier based filtering sys-

tem. Our proposed architecture also provides a safeguard of

user mailbox from different malicious attacks. Our experi-

mental results show that we achieved an average of 30%

speedup at the average cost of 1.4ms. We also reduced the

instance of false positive, which is one of the key challenges

in spam filtering system, and increases email classification

accuracy substantially compared with single classification

techniques.

1 Introduction

The problem of unsolicited bulk email, more commonly

known as spam, has been around since email was first used

by the general public. In 2005, 80% of total email volume

was considered spam [19]. The cost of managing spam

is not proportional to the cost of sending these messages.

While the cost of sending spam is negligible, the cost to cor-

porations in terms of network resources, delayed emails and

employee productivity is considerable and needs to be ad-

dressed. It is estimated that an average internet user spends

10 days a year dealing with spam [4]. There have been

many proposals in dealing with spam, from legislation to

recent advances in machine learning content classification.

While previous research in spam classification is pri-

marily concerned with using a text based single classi-

fier [15, 14] to detect spam messages, we have developed

a novel spam filter architecture using a multi-classifier ap-

proach [13].

The use of multi-classifier systems provides a very high

spam detection rate, but comes with high processing costs,

if each of the classifiers is executed serially. In order for

multi-classifier systems to be more efficient, classification

needs to be done in parallel. Therefore, running our multi-

classifier classification spam filtering system on a single

core clustered-based computing or multi-core systems is

ideal.

Cluster-based single core systems are usually thought as

many computers that are coupled together to form a sin-

gle virtual computer. By using this cluster to execute our

multi-classifier algorithms, we are able to perform parallel

operations, and achieving improved speed and performance.

Multi-core CPUs were released in early 2000 but have be-

come more affordable to the general public since 2005, and

are combination of two or more independent microproces-

sor cores into a single chip [1].

In this paper we build upon our previous work [13, 8, 9],

by combining our fusion based multi-classifier architecture

with our ubiquitous multi-core framework, in order to pro-

vide high performance while at the same time improving the

accuracy of spam detection. Based on our previous work in

security and multimedia, we are seeing that our ubiquitous

multi-core framework is able to be applied to most areas of

computer science (as long as the system is multi-core).

Some of the benefits of MuM (multi-classifier ubiqui-

tous multi-core) are as follows, firstly it will be cheaper to

run and maintain in comparison to many high-end single

core clustered computers; since parallel processing of data

occurs within one CPU, keeping communication overheads

much lower as the signal has to travel a shorter distance [6].

Secondly, we have discovered that complications are less-

ened in implementation, in comparison to a cluster of dif-

ferent machines.

Some of the weaknesses of MuM are: Firstly, cluster-

based computing provides better redundancy compared to

2008 IFIP International Conference on Network and Parallel Computing

978-0-7695-3354-4/08 $25.00 © 2008 IEEE

DOI 10.1109/NPC.2008.71

210

2008 IFIP International Conference on Network and Parallel Computing

978-0-7695-3354-4/08 $25.00 © 2008 IEEE

DOI 10.1109/NPC.2008.71

210

MuM, but the cost of running a redundant multi-core ma-

chine would still be cheaper, compared to running multi-

ple high-end cluster-based computers. Secondly, if MuM

goes off-line, then the spam filter is completely off-line as

well. However, having MuM distributed on multiple multi-

core machines can be used as a backup in order to over-

come this problem. The rest of this paper is organised as

follows: Section 2 will provide a review of multi-core and

multi-classifier spam filtering architectures. Section 3 de-

tails our proposed multi-core fusion based multi-classifier

spam filter architecture. Section 4 presents the results of

our proposed architecture followed by the conclusion.

2 Related Work

2.1 Multi-core processor architecture

The ability of manufacturing faster single core systems

has reached a threshold due to the heat dissipation caused

by placing too many transistors of a single chip. In order to

overcome this problem, hardware manufacturers have de-

veloped multi-core CPU architectures [12, 2]. Multi-core or

chip-level microprocessors (CMP) systems combine two or

more independent microprocessor cores into a single chip

[1]. Each microprocessor core has its own independent

cache memory (L1) and share a common cache (L2) with

other cores and peripheral devices. The next version of

AMD multi-core processors will come with their own in-

dependent L1 and L2 caches.

In terms of software, a multi-core architecture provides

improved multitasking performance by concurrently exe-

cuting software codes on their own cores. Thus, multi-core

architectures is ideal for parallel computing, where process

threads can be run in parallel on different cores. Unfortu-

nately, most of the existing software do not make use of par-

allel processing. Researchers are currently revisiting paral-

lel programming for use in a multi-core environment [8, 9].

2.2 Bodyguard framework

We have developed a multi-core defence framework

called bodyguard [8]. From this framework, we developed

the Farmer bodyguard system. The basic hypothesis of the

bodyguard framework, is to separate all security processes

from other processes (email, browser, etc.), and assign them

to a set of cores. The remaining cores within the system

were assigned to the applications that require security. The

bodyguard framework is made up of a Forward Bodyguard

(FB) and Side Bodyguard (SB). For example, in our Farmer

bodyguard system, the SB is responsible for providing a fast

decision on whether to filter out any attack traffic. Upon de-

tecting an attack, FB will then move in front of the applica-

tion in order to protect it and initiate a filtering procedure.

There are many advantages that come with the use of the

bodyguard framework, such as efficient use of resources,

performance increases and real-time detection and filtering.

2.3 Ubiquitous Multi-core (UM) multi-
media

We have designed a ubiquitous multi-core framework

and implemented it in the application of Bio-Inspired mul-

timedia [9]. The Ubiquitous Multi-core (UM) framework is

built from a divide-and-conquer approach, by dividing our

applications and placing them on separate core processors.

We found with our new multi-core framework, in the area

of multimedia, the following benefits:

• By partitioning each application and its sub-tasks to

separate cores, it will result in reducing the computa-

tional burden of the overall multi-core system.

• Memory storage requirements will be reduced, since

each application is assigned its own L1 cache.

• If one of the applications is idle, then its core processor

can be assigned to assist the other applications, this

leads to a fully optimised usage of resources.

• Lastly, if one of the applications fails, then the rest

of the doctor’s applications are still able to function,

while maintenance is completed.

2.4 Multi-classifier classification of spam
email

Automated spam classification has traditionally been

done using a single classifier technique. The classification

algorithms such as SVM (Support Vector Machine) [10],

NB (Naive Bayesian) [3] and Boosting [5] are used in con-

tent based spam filtering. These classification algorithms

search for the most appropriate classifier in a search space

that contains all the classifiers it can learn.

While single classifier techniques are fairly accurate,

they require a lot of data for training. We performed com-

prehensive analyses of these classifiers in [13] and found

that different classification algorithms return different re-

sults. The accuracy of the classification is reduced if it

is used to classify generic content. In order to improve

the classification accuracy, multi-classifier techniques were

proposed [17, 18, 7].

The multi-classifier technique uses an ensemble of clas-

sifiers to classify email content. These classifiers are ar-

ranged in a two level hierarchy, with one classifier oversee-

ing the results provided by two or more classifiers below

it. These lower level classifiers are usually weakly trained,

so as to reduce processing time. The lower level classifiers

will provide a score for a message. The top level classifier

211211

will aggregate the results from the lower level classifiers and

provides the final decision on whether an email message is

spam or legitimate.

A combination of NB and k-Nearest Neighbour (k-NN)

classifier technique in a stacking framework overseen by

a memory-based classifier [17] was one of the first multi-

classifier techniques used in spam detection. Several other

ensemble techniques for spam detection include NB bag-

ging [18] and semi-supervised labelled messages [7].

The current research has shown that aggregating scores

from multiple classifiers improve the accuracy of classify-

ing an email message. However, the current spam filter sys-

tems only use one or two types of classifiers, instead of

a diverse range of classifiers, in their architecture. Since

different classifiers provide different results, the reliance of

similar classifier types will limit the classification accuracy.

In this paper, we are interested in using multi-classifier

spam filters on a multi-core system to further improve the

accuracy of detecting spam messages. There is currently

no research in using multi-core for improving the accuracy

of spam detection. In section 3, we will present an innova-

tive multi-core framework for implementing multi-classifier

classification architecture to detect spam emails.

3 Multi-classifier ubiquitous multi-core

(MuM)

We have developed a generic fusion based multi-

classifier classification spam filter architecture that elimi-

nates misidentification of legitimate emails as spam (false

positive) during spam detection. The spam filter architec-

ture was originally designed and developed for a single

SVM classifier as detailed in [15, 14]. We extended this ar-

chitecture to be used for an ensemble based generic multi-

classifier that processes the information in serial [13]. In

this section, we are proposing a modified version of our

spam classification architecture so that it can be executed

in a multi-core environment, using different machine learn-

ing classification algorithms.

3.1 Design of multi-classifier classification
filter

Figure 1 provides a description of our proposed email

classification using multi-classifier classification (MCC)

technique.

Our architecture should be used in a two-stage approach,

at the mail server and at the recipient’s mailbox. The email

server will automate the email classification process while

the user will be given the option to manually identify mes-

sages that do not fall collectively within the category of le-

gitimate or spam. Emails messages that are cannot be iden-

tified as either legitimate (TP) or spam (TN) are termed grey

Figure 1. Multi-classifier classification (MCC)

spam filter architecture.

list (GL) messages. The characteristics of email messages

that have been successfully identified both legitimate and

spam is used to retrain the multi-classifiers so as to reduce

the requirement for the user to manually identify spam mes-

sages.

Before our architecture can be used to classify email

messages, all of the classifiers need to be trained to recog-

nise the attributes to be classified, whether they may be

Boolean, frequency or N-gram attributes. The classifiers

can be used to check for spam as well as non-spam attributes

in an email message. This training is done using attributes

extracted from training (Tr) data. The training process is an

offline process that is done when the classifiers are idle.

In the first stage, the email server receives all incoming

emails for the organisation. The server will index the email

corpora. All of the incoming indexed emails (Ts) will be

sent to the adaptive section. The main function of the adap-

tive section is to allocate the email messages to the classi-

fiers and collect all of the results from the classifiers. The

results of the email classification will be given a value of 1
for true positive (legitimate) or 0 for true negative (spam).

These results will be forwarded to the decision fusion

to calculate the final result for an email message. If the

decision fusion component receives the same results for a

particular email messages, it can be classified as either le-

gitimate (TP) or spam (TN). If the total result is not 0 or 1,

that email is a GL email. This process can be represented in

equation 1.

212212

f(WMe) =

N∑

i=1

CiMe

N
(1)

The results of N classifiers (Ci) for message (Me)

will return f(WMe) = 1 for true positive (legitimate),

f(WMe) = 0 for true negative (spam) and 0 <

f(WMe) < 1 for grey list.

All of these messages, legitimate, spam and grey list will

be forwarded to the user’s mailbox. The detailed functions

and algorithms for the message transformation, adaptive

section, feature extraction/feature selection (FE/FS) and de-

cision fusion mechanisms will not be shown in this paper as

they can be found in [15].

Our approach of using three categories for email mes-

sages, legitimate (white list), spam (black list) and uniden-

tified (grey list) will provide greater accuracy in classifying

spam messages and legitimate messages from the vast bulk

of emails received by the email server. Once the messages

have been categorised, they will be sent to the user (stage

2).

The second stage occurs once the email messages are

received by the user. These messages will be presented

in their respective mailboxes. The true positive (legiti-

mate) emails will be sent to the user’s inbox (TP) while the

true negative (spam) messages will be in the spam mailbox

(TN). The unidentified messages (GL) will be analysed by

the user to categorise them as legitimate or spam. Such an

approach is beneficial since categorising email messages is

subjective. Some user might consider a message to be spam

while other users might consider the same message as legit-

imate.

Those GL messages that are legitimate will be sent to the

user’s inbox while the spam messages will be in the spam

mailbox. In order to automate the process of detecting spam

messages, our architecture has a dynamic feature selection

component. This component (FE/FS) will extract the rele-

vant features from the legitimate and spam email messages

and send this data to the mail server in order to train the

classifiers. This training data (Tr) will be updated every

time the user identifies a grey list email. This ensures that

the messages identified as legitimate or spam is according

to the personal preference of the user.

In our approach, the use of grey lists provides the user

with fine-grain controls to classify messages as legitimate

or spam. We also update the training data on the mail server

using dynamic feature selection so that most of the e-mail

messages will be identified correctly before reaching the

user. These two stages ensure that our multi-classifier clas-

sification architecture is scalable and can eliminate the false

positive problem.

3.2 Design of Multi-classifier classifica-
tion filter with Ubiquitous Multi-core
framework (MuM)

In order to improve the classification of email messages,

we build upon previous work with multi-core systems by

developing a fusion based ubiquitous multi-classifier archi-

tecture (FUMA). FUMA uses fully trained data sets to gen-

erate results and supports any machine learning classifier

technique such as SVM, NB, k-NN and Boosting.

The execution of all the classifiers is done in parallel so

as to reduce the time taken to classify a message. In a single

core CPU, the execution of multiple classifiers at the same

time will fully utilise the available CPU power. We believe

by our application of the ubiquitous multi-core framework,

we greatly improve the performance and resource usage of

our multi-classifier architecture.

While most multi-core research look at improving the

communication between cores and application, through our

development of an ubiquitous multi-core framework, we

will reduce the CPU computation of n full featured classi-

fiers in order to correctly identify legitimate email messages

from spam messages.

Our proposed multi-classifier classification filter with

ubiquitous multi-core (MuM) framework used by the classi-

fiers is shown in Figure 2. Each of the classifiers (Classifier-

n) in the spam filter system will run on their own indepen-

dent core. The same email input will be sent by the adaptive

section to each of the classifiers. The classifiers will run in

parallel, thus improving the speed in analysing the emails.

Each classifier process (Cn) will execute their sub processes

(Pm) in parallel. Once the classifiers have completed their

analysis, they will send the results back to the adaptive sec-

tion as described in section 3.1.

Figure 2. Multi-classifier classification filter

with ubiquitous multi-core (MuM).

213213

3.3 Benefits of MuM

Through our use of ubiquitous multi-core framework we

are summarizing the following key benefits of MuM:

Firstly, the partitioning of each classifier and its tasks to

a separate core will reduce the computation burden of the

overall mail server system.

Secondly, the reduction of memory storage requirements

for email messages (Ts). Since the same email messages

(Ts) are sent to all classifiers, the system buffer will store

the email message once.

Thirdly, in terms of processing time, all of the classifiers

will process the email messages in parallel. Unlike ensem-

ble based multi-core architectures, our approach allows a

classifier to process an email message independently from

other classifiers. This allows for faster processing of mes-

sages compared to other architectures.

Fourthly, the multi-classifiers are trained using (Tr) data

when the system is idle. Since each core is independent,

the training can be done at different times as some cores

will complete the classification tasks faster than other cores.

This will mean that the mail server resource usage will be

optimised.

Lastly, MuM is robust, as the adaptive selection can still

provide accurate email classification if one of the core fails.

The adaptive selection component can choose to either re-

duce the number of classifiers or redistribute the classifier

(and the sub-tasks) to another core. Although this is a non-

optimum solution, this is a robust solution in the event of

one of the core fails during operation.

4 Results

We evaluate the performance and accuracy of our MuM

by simulating our fusion based multi-classifier classifica-

tion architecture on a 4 core multi-core system. We have

dedicated 3 cores for implementing 3 different classifiers

and use the fourth core to implement the other components,

such as initial transformation, adaptive section and decision

fusion, of our multi-classifier architecture (figure 1). This

method ensures that the performance of the classifiers is not

affected by the adaptive section and decision fusion com-

ponents. The performance of MuM is described in detail

below.

4.1 Multi-core performance benchmark

Once we have the execution times ts, computational

time tcomp, and communication time tcom, we can estab-

lish what the speedup factor (formula 2) and computa-

tion/communication ratio (formula 3) from a single core to

multi-core system.

speedup factor =
ts

tcp

=
ts

tcomp + tcom

(2)

where ts will stand for execution time on a single core

processor (tcp), this includes computation time and com-

munication time. The Computation/Communications ratio

is derived from [11].

C/C ratio =
tcomp

tcom

(3)

Apart from speedup and the Computa-

tion/Communications ratios, we also evaluate the multi-

classifier algorithm, through the use of Time Complexity or

”big-oh”, also referred to as ”order of magnitude” [16].

f(x) = O(g(x)) (4)

[0 ≤ f(x) ≤ cg(x)] for all x ≥ 0

where f(x) and g(x) are functions of x. A positive con-

stant, c, has to exist for all otherwise it is zero. To evaluate

Time complexity, we use the total sum of computation and

communication (formula 2).

Time Complexity = Tp (5)

= tcomp + tcom

= (
n

cp + 1
) +

(2tstartup + (
n

cp + 1
)tmsgdata)

where n is the number of threads on each core processor.

The last benchmark we will use is the cost and cost-optimal.

Cost = execution time * total number of processor used

Cost Optimal = time complexity * number of processor

= (n log n)

4.2 Multi-core system evaluation

To measure and evaluate the performance of MuM, we

wrote 4 simple programs to simulate the multi-classifier ap-

plications. We assigned them to 4 cores within our multi-

core system by using affinity methods. The multi-classifier

functions are simulated, by the 4 programs just to demon-

strate our framework, though 3 actual multi-classifier pro-

grams are planned in the future.

Based on our evaluations, displayed in table 1 and figure

3, we see that a speed average of 30% was archieved at the

average cost of 1.4ms. This is achieved by separating out

each application and allowing them to run on their own sep-

arate cores. The time complexity results also show that the

efficiency of our algorithm is at 3.0. This means that for 4

computational steps (estimate) we achieved 3 data items.

214214

So, the more computations that are done the more data

items we complete. For example, 5 computational steps

will give us 3.5 data items. One of the results, the Com-

putation/Communication Ratio, shows that it was less than

Time Complexity. This means, it will not improve speedup

or efficiency beyond the figures we already have. Lastly, we

see that the cost of running our program was below the cost-

optimal, and at the same time achieving an average of 95%

CPU (see figure 3). This means that our model/program was

quite cost efficient to run and resource usage (CPU) was al-

most fully optimised. Since the Time Complexity is higher

then Computation/Communication Ratio, it would not be

worthwhile trying to send our costs up to reach the optimal

threshold, since we would gain no performance benefit.

Table 1. Results of multi-core speedup and
the costs.

Core 1 Core 2 Core 3 Core 4

Exe Time 1.4ms 1.5ms 1.4ms 1.4ms

Comp Time 0.4 ms 0.10ms 0.4ms 0.09ms

Comm Time 1ms 0.5ms 1ms 0.5ms

Speed Ratio 50% 20% 50% 20%

C/C 0.4 2 0.4 1.8

Time Complex 3 3 3 3

Cost 1.4 1.5 1.4 1.4

Cost-Optimal 2 2 2 2

Figure 3. Min(90%)-Max(100%) CPU usage
that was archieved during our simulation.

4.3 Performance of multi-classifier classi-
fication

We implemented 3 text based classifier algorithms to

measure their accuracy on a single core system compared

with our multi-core system. We executed scalable vector

machine (SVM) classifier on core-1, AdaBoost classifier

on core-2 and Naive Bayesian classifier on core-3. Each

of these classifiers was implemented in their own process

Figure 4. The comparison of average
precision-recall curve.

thread to simulate a multi-core system. We ran each type

of classifier through 6 email data sets from public data set

PUA [3]. We have converted the data sets in six different

parts based on our experimental setup to test their accuracy

in correctly detecting spam messages.

Table 2 shows the precision (false positive) and recall

(false negative) in classifying email messages. From all the

results, our proposed multi-classifier system did not return

any false positive values. We strongly state the case that

the use of a fusion based multi-classifier will eliminate the

false positive problem. Our simulations also clearly show

that a multi-classifier returns very few false negative results

compared with just using single classifier algorithms.

Figure 4 shows the comparison of average precision-

recall curve of data sets for individual cores output along

with combined three cores outputs. It has been shown from

the fig. 4 that the precision is always better for combined

result compared to individual result and it is 100 percent

for all data sets which is promising. It is clear that the

multi classifier classification approach reduces the instance

of false positive to the zero level.

The average receiver operating characteristic (ROC) re-

port of our multi-classifier approach is shown in table 3.

From the results of our experiments with 6 datasets, the ac-

curacy of our fusion based multi-classifier system is 10% to

13% higher than any single classifier algorithm.

Figure 5 shows the ROC curve for sensitivity and speci-

ficity analysis of the classifier classification algorithm ac-

curacy in detecting spam from legitimate email messages.

The figures show the average ROC curve for our datasets.

5 Conclusion

In this paper, we introduced a novel multi-core based

framework that we used in our fusion based multi-classifier

215215

Table 2. Comparison of precision-recall of individual cores with combined cores.
Data Condition

variable

Core-1 Core-2 Core-3 Combined-cores

Data 1
-1 -0.5555556 -0.7777778 -0.5555556 -0.7777778

1 1 0.96875 1 1

Data 2
-1 -0.4285714 -0.7142857 -0.7142857 -0.9285714

1 0.7777778 1 0.6666667 1

Data 3
-1 -0.4545455 -0.6363636 -0.2727273 -0.6363636

1 0.8571429 1 0.7142857 1

Data 4
-1 -0.5555556 -0.5555556 -0.5555556 -0.9444444

1 1 0.875 1 1

Data 5
-1 -0.5384616 -0.2307692 -0.3846154 -0.6923077

1 0.8333333 1 0.8333333 1

Data 6
-1 -0.6 -0.2 -0.4 -0.8

1 0.8666667 1 0.7333333 1

Table 3. Average ROC of classification algorithms.
Criterion Estimate of

AUC

AUC’s Stan-

dard Error

Lower 95%

Confidence

Limit

Upper 95%

Confidence

Limit

Core-1 (SVM) 0.852818333 0.0378933 0.75851 0.911685

Core-2 (Boost) 0.87327 0.033725 0.78470667 0.923985

Core-3 (NB) 0.826265 0.039185 0.73109 0.8886267

Combined-cores 0.949143333 0.0228333 0.86701167 0.9777817

Figure 5. The average sensitivity and speci-

ficity curve.

classification spam filter architecture. Our proposed multi-

core framework ensures that the multi-classifiers perform

more efficiently, thus reducing the burden on system re-

sources while detecting spam from email messages. We

have shown through simulations that our proposed multi-

classifier architecture performs better than any other text

based single classifier system. Our multi-classifier archi-

tecture eliminates all false positive results when detecting

spam.

In the near future, we are planning to implement our

multi-classifier system on an actual multi-core based en-

terprise grid to gain better results, particularly in terms of

the number of classifiers required to provide high accuracy

without incurring high system resource usage.

References

[1] Advanced Micro Devices. Multi-core processors -

the next evolution in computing. Available from:

http://multicore.amd.com/Resources/33211A Multi-

Core WP en.pdf [Accessed on: 18 Apr. 2008], 2005.
[2] Advanced Micro Devices. Amd multi-core products. Avail-

able from: http://multicore.amd.com/us-en/AMD-Multi-

Core/Products.aspx [Accessed on: 20 Apr. 2008], 2008.
[3] I. Androutsopoulos, J. Koutsias, K. V. Chandrinos,

G. Paliouras, and C. D. Spyropoulos. An evaluation of naive

216216

bayesian anti-spam filtering. In Proc. of the 11th European

Conference on Machine Learning, pages 9–17, 2000.

[4] J. M. Carpinter. Evaluating ensemble classifiers for spam

filtering. Honours thesis, University of Canterbury, 2005.

[5] X. Carreras and L. Marquez. Boosting trees for anti-spam

email filtering. In Proc. of the European Conference in Re-

cent Advances in NLP, pages 58–64, 2001.

[6] L. Chai, Q. Gao, and D. K. Panda. Understanding the impact

of multi-core architecture in cluster computing: A case study

with Intel dual-core system. In Proc. of the 7th IEEE In-

ternational Symposium on Cluster Computing and the Grid,

pages 471–478, May 2007.

[7] V. Cheng and C. Li. Personalized spam filtering with

semi-supervised classifier ensemble. In Proc. of the

IEEE/WIC/ACM International Conference on Web Intelli-

gence, pages 195–201, 18-22 Dec. 2006.

[8] A. Chonka, W. Zhou, K. Knapp, and Y. Xiang. Protect-

ing information systems from ddos attack using multicore

methodology. In Proc. of the IEEE 8th International Con-

ference on Computer and Information Technology, 2008.

[9] A. Chonka, W. Zhou, and Y. Xiang. Bio-inspired multimedia

using ubiquitous multicore (um) methodology. In Proc. of

the International Workshop on Multimedia Signal Process-

ing, 2008 [Currently under review].

[10] H. Drucker, D. Wu, and V. Vapnik. Support vector machines

for spam categorization. IEEE Transactions on Neural Net-

works, 10(5):1048–1054, Sept. 1999.

[11] I. Foster. Designing and Building Parallel Programs: Con-

cepts and Tools for Parallel Software Engineering. Addison

Wesley, 1995.

[12] Intel. Intel multi-core technology. Available from:

http://www.intel.com/multi-core/index.htm [Accessed on:

20 Apr. 2008], 2008.

[13] M. R. Islam and W. Zhou. Email categorization using multi-

stage classification technique. In Proc. of the 8th Interna-

tional Conference on Parallel and Distributed Computing,

Applications and Technologies, pages 51–58, 3-6 Dec. 2007.

[14] M. R. Islam and W. Zhou. An innovative analyser for email

classification based on grey list analysis. In Proc. of the IFIP

International Conference on Network and Parallel Comput-

ing, pages 176–182, 18-21 Sept. 2007.

[15] M. R. Islam, W. Zhou, and M. U. Choudhury. Dynamic

feature selection for spam filtering using support vector ma-

chine. In Proc. of the 6th IEEE/ACIS International Confer-

ence on Computer and Information Science, pages 757–762,

11-13 July 2007.

[16] D. E. Knuth. Big omicron and big omega and big theta.

ACM SIGACT News, 8(2):18–24, Apr.-June 1976.

[17] G. Sakkis, I. Androutsopoulos, G. Paliouras, V. Karkalet-

sis, C. D. Spyropoulos, and P. Stamatopoulos. Stacking

classifiers for anti-spam filtering of e-mail. In Proc. of the

6th Conference on Empirical Methods in Natural Language

Processing, pages 44–50, 2001.

[18] Z. Yang, X. Nie, W. Xu, and J. Guo. An approach to spam

detection by naive bayes ensemble based on decision induc-

tion. In Proc. of the 6th International Conference on Intelli-

gent Systems Design and Applications, pages 861–866, Oct.

2006.

[19] T. Zeller Jr. Law barring junk e-mail al-

lows a flood instead. Available from:

http://www.nytimes.com/2005/02/01/technology/01spam.html

[Accessed on: 19 April 2008], 1 Feb. 2005.

217217

