4 research outputs found

    Nearest Neighbor Discriminant Analysis Based Face Recognition Using Ensembled Gabor Features

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Bilişim Enstitüsü, 2009Thesis (M.Sc.) -- İstanbul Technical University, Institute of Informatics, 2009Son yıllarda, ışık varyasyonlarına ve yüz ifade değişikliklerine karşı gürbüz olduğu üzere yüz tanıma alanında Gabor öznitelikleri tabanlı yüz temsil etme çok umut vaad edici sonuç vermiştir. Seçilen uzamsal frekans, uzamsal lokalizasyon ve yönelime göre yerel yapıyı hesaplaması, elle işaretlendirmeye ihtiyaç duymaması Gabor özniteliklerini efektif yapan özellikleridir. Bu tez çalışmasındaki katkı, Gabor süzgeçleri ve En Yakın Komşu Ayrışım Analizi'nin (EYKAA) güçlerini birleştirerek önemli ayrışım öznitelikleri ortaya çıkaran Gabor En Yakın Komşu Sınıflandırıcısı (GEYKS) genişletip Parçalı Gabor En Yakın Komşu Sınıflandırıcısı (PGEYKS) metodunu ortaya koymaktır. PGEYKS; alçaltılmış gabor öznitelikleri barındıran farklı segmanları kullanarak, her biri ayrı dizayn edilen birçok EYKAA tabanlı bileşen sınıflandırıcılarını bir araya getiren grup sınıflandırıcısıdır. Tüm gabor özniteliklerinin alçaltılmış boyutu tek bir EYKAA bileşeninden çıkarıldığı gibi, PGEYKS; ayrışım bilgi kaybını minimum yapıp 3S (yetersiz örnek miktarı) problemini önleyerek alçaltılmış gabor öznitelikleri içindeki ayrıştırabilirliği daha iyi kullanır. PGEYKS yönteminin tanıma başarımı karşılaştırmalı performans çalışması ile gösterilmiştir. Farklı ışıklandırma ve yüz ifadesi deişiklikleri barındıran 200 sınıflık FERET veritabanı alt kümesinde, 65 öznitelik için PGEYKS %100 başarım elde ederek atası olan GEYKS'nın aldığı %98 başarısını ve diğer GFS (Gabor Fisher Sınıflandırıcı) ve GTS (Gabor Temel Sınıflandırıcı) gibi standard methodlardan daha iyi sonuçlar vermiştir. Ayrıca YALE veritabanı üzerindeki testlerde PGEYKS her türlü (k, alpha) çiftleri için GEYKS'ten daha başarılıdır ve 14 öznitelik için step size = 5, k = 5, alpha = 3 parametlerinde %96 tanıma başarısına ulaşmıştır.In last decades, Gabor features based face representation performed very promising results in face recognition area as its robust to variations due to illumination and facial expression changes. The properties of Gabor are, which makes it effective, it computes the local structure corresponding to spatial frequency (scale), spatial localization, and orientation selectivity and no need for manual annotations. The contribution of this thesis, an Ensemble based Gabor Nearest Neighbor Classifier (EGNNC) method is proposed extending Gabor Nearest Neighbor Classifier (GNNC) where GNNC extracts important discriminant features both utilizing the power of Gabor filters and Nearest Neighbor Discriminant Analysis (NNDA). EGNNC is an ensemble classifier combining multiple NNDA based component classifiers designed respectively using different segments of the reduced Gabor feature. Since reduced dimension of the entire Gabor feature is extracted by one component NNDA classifier, EGNNC has better use of the discriminability implied in reduced Gabor features by the avoiding 3S (small sample size) problem as making minimum loss of discriminative information. The accuracy of the EGNNC is shown by comparative performance work. Using a 200 class subset of FERET database covering illumination and expression variations, EGNNC achieved 100% recognition rate, outperforming its ancestor GNNC perform 98 percent as well as standard methods such GFC and GPC for 65 features. Also for the YALE database, EGNNC outperformed GNNC on all (k, alpha) tuples and EGNNC reaches 96 percent accuracy in 14 feature dimension, along with parameters step size = 5, k = 5, alpha = 3.Yüksek LisansM.Sc

    Robust recognition of facial expressions on noise degraded facial images

    Get PDF
    Magister Scientiae - MScWe investigate the use of noise degraded facial images in the application of facial expression recognition. In particular, we trained Gabor+SVMclassifiers to recognize facial expressions images with various types of noise. We applied Gaussian noise, Poisson noise, varying levels of salt and pepper noise, and speckle noise to noiseless facial images. Classifiers were trained with images without noise and then tested on the images with noise. Next, the classifiers were trained using images with noise, and then on tested both images that had noise, and images that were noiseless. Finally, classifiers were tested on images while increasing the levels of salt and pepper in the test set. Our results reflected distinct degradation of recognition accuracy. We also discovered that certain types of noise, particularly Gaussian and Poisson noise, boost recognition rates to levels greater than would be achieved by normal, noiseless images. We attribute this effect to the Gaussian envelope component of Gabor filters being sympathetic to Gaussian-like noise, which is similar in variance to that of the Gabor filters. Finally, using linear regression, we mapped a mathematical model to this degradation and used it to suggest how recognition rates would degrade further should more noise be added to the images.South Afric

    Features extraction for low-power face verification

    Get PDF
    Mobile communication devices now available on the market, such as so-called smartphones, are far more advanced than the first cellular phones that became very popular one decade ago. In addition to their historical purpose, namely enabling wireless vocal communications to be established nearly everywhere, they now provide most of the functionalities offered by computers. As such, they hold an ever-increasing amount of personal information and confidential data. However, the authentication method employed to prevent unauthorized access to the device is still based on the same PIN code mechanism, which is often set to an easy-to-guess combination of digits, or even altogether disabled. Stronger security can be achieved by resorting to biometrics, which verifies the identity of a person based on intrinsic physical or behavioral characteristics. Since most mobile phones are now equipped with an image sensor to provide digital camera functionality, biometric authentication based on the face modality is very interesting as it does not require a dedicated sensor, unlike e.g. fingerprint verification. Its perceived intrusiveness is furthermore very low, and it is generally well accepted by users. The deployment of face verification on mobile devices however requires overcoming two major challenges, which are the main issues addressed in this PhD thesis. Firstly, images acquired by a handheld device in an uncontrolled environment exhibit strong variations in illumination conditions. The extracted features on which biometric identification is based must therefore be robust to such perturbations. Secondly, the amount of energy available on battery-powered mobile devices is tightly constrained, calling for algorithms with low computational complexity, and for highly optimized implementations. So as to reduce the dependency on the illumination conditions, a low-complexity normalization technique for features extraction based on mathematical morphology is introduced in this thesis, and evaluated in conjunction with the Elastic Graph Matching (EGM) algorithm. Robustness to other perturbations, such as occlusions or geometric transformations, is also assessed and several improvements are proposed. In order to minimize the power consumption, the hardware architecture of a coprocessor dedicated to features extraction is proposed and described in VHDL. This component is designed to be integrated into a System-on-Chip (SoC) implementing the complete face verification process, including image acquisition, thereby enabling biometric face authentication to be performed entirely on the mobile device. Comparison of the proposed solution with state-of-the-art academic results and recently disclosed commercial products shows that the chosen approach is indeed much more efficient energy-wise

    A Critical Look at the Music Classification Experiment Pipeline: Using Interventions to Detect and Account for Confounding Effects

    Get PDF
    PhD ThesisThis dissertation focuses on the problemof confounding in the design and analysis of music classification experiments. Classification experiments dominate evaluation of music content analysis systems and methods, but achieving high performance on such experiments does not guarantee systems properly address the intended problem. The research presented here proposes and illustrates modifications to the conventional experimental pipeline, which aim at improving the understanding of the evaluated systems and methods, facilitating valid conclusions on their suitability for the target problem. Firstly,multiple analyses are conducted to determinewhich cues scattering-based systems use to predict the annotations of the GTZAN music genre collection. In-depth system analysis informs empirical approaches that alter the experimental pipeline. In particular, deflation manipulations and targeted interventions on the partitioning strategy, the learning algorithm and the frequency content of the data reveal that systems using scattering-based features exploit faults in GTZAN and previously unknown information at inaudible frequencies. Secondly, the use of interventions on the experimental pipeline is extended and systematised to a procedure for characterising effects of confounding information in the results of classification experiments. Regulated bootstrap, a novel resampling strategy, is proposed to address challenges associated with interventions dealing with partitioning. The procedure is demonstrated on GTZAN, analysing the effect of artist replication and infrasonic information on performance measurements using a wide range of systemconstruction methods. Finally, mathematical models relating measurements from classification experiments and potentially contributing factors are proposed and discussed. Suchmodels enable decomposing measurements into contributions of interest, which may differ depending on the goals of the study, including those from pipeline interventions. The adequacy for classification experiments of some conventional assumptions underlying such models is also examined. The reported research highlights the need for evaluation procedures that go beyond performance maximisation. Accounting for the effects of confounding information using procedures grounded on the principles of experimental design promises to facilitate the development of systems that generalise beyond the restricted experimental settings
    corecore