82 research outputs found

    Building Extraction from Very High Resolution Aerial Imagery Using Joint Attention Deep Neural Network

    Get PDF
    Automated methods to extract buildings from very high resolution (VHR) remote sensing data have many applications in a wide range of fields. Many convolutional neural network (CNN) based methods have been proposed and have achieved significant advances in the building extraction task. In order to refine predictions, a lot of recent approaches fuse features from earlier layers of CNNs to introduce abundant spatial information, which is known as skip connection. However, this strategy of reusing earlier features directly without processing could reduce the performance of the network. To address this problem, we propose a novel fully convolutional network (FCN) that adopts attention based re-weighting to extract buildings from aerial imagery. Specifically, we consider the semantic gap between features from different stages and leverage the attention mechanism to bridge the gap prior to the fusion of features. The inferred attention weights along spatial and channel-wise dimensions make the low level feature maps adaptive to high level feature maps in a target-oriented manner. Experimental results on three publicly available aerial imagery datasets show that the proposed model (RFA-UNet) achieves comparable and improved performance compared to other state-of-the-art models for building extraction

    Weakly Supervised Deep Learning for Thoracic Disease Classification and Localization on Chest X-rays

    Full text link
    Chest X-rays is one of the most commonly available and affordable radiological examinations in clinical practice. While detecting thoracic diseases on chest X-rays is still a challenging task for machine intelligence, due to 1) the highly varied appearance of lesion areas on X-rays from patients of different thoracic disease and 2) the shortage of accurate pixel-level annotations by radiologists for model training. Existing machine learning methods are unable to deal with the challenge that thoracic diseases usually happen in localized disease-specific areas. In this article, we propose a weakly supervised deep learning framework equipped with squeeze-and-excitation blocks, multi-map transfer, and max-min pooling for classifying thoracic diseases as well as localizing suspicious lesion regions. The comprehensive experiments and discussions are performed on the ChestX-ray14 dataset. Both numerical and visual results have demonstrated the effectiveness of the proposed model and its better performance against the state-of-the-art pipelines.Comment: 10 pages. Accepted by the ACM BCB 201

    Bag of Tricks for Long-Tailed Multi-Label Classification on Chest X-Rays

    Full text link
    Clinical classification of chest radiography is particularly challenging for standard machine learning algorithms due to its inherent long-tailed and multi-label nature. However, few attempts take into account the coupled challenges posed by both the class imbalance and label co-occurrence, which hinders their value to boost the diagnosis on chest X-rays (CXRs) in the real-world scenarios. Besides, with the prevalence of pretraining techniques, how to incorporate these new paradigms into the current framework lacks of the systematical study. This technical report presents a brief description of our solution in the ICCV CVAMD 2023 CXR-LT Competition. We empirically explored the effectiveness for CXR diagnosis with the integration of several advanced designs about data augmentation, feature extractor, classifier design, loss function reweighting, exogenous data replenishment, etc. In addition, we improve the performance through simple test-time data augmentation and ensemble. Our framework finally achieves 0.349 mAP on the competition test set, ranking in the top five.Comment: Accepted for the ICCV 2023 Workshop on Computer Vision for Automated Medical Diagnosis (CVAMD

    Explainable Machine Learning Techniques in Medical Image Analysis Based on Classification with Feature Extraction

    Get PDF
    Animals are also afflicted by COVID-19, a virus that is quickly spreading and infects both humans and animals. This fatal viral disease has an impact on people's daily lives, health, and economy of a nation. Most effective machine learning method is deep learning, which offers insightful analysis for examining a significant number of chest x-ray pictures that have a significant bearing on COVID-19 screening. This research proposes novel technique in lung image analysis for detection of lung infection due to COVID using Explainable Machine learning techniques. Here the input has been collected as COVID patient’s lung image dataset and it has been processed for noise removal and smoothening. This processed image features have been extracted using spatio transfer neural network integrated with DenseNet+ architecture. Extracted features has been classified using stacked auto Boltzmann encoder machine with VGG-19Net+. With the transfer learning method integrated into the binary classification process, the suggested algorithm achieves good classification accuracy. The experimental analysis has been carried out for various COVID dataset in terms of accuracy, precision, Recall, F-1score, RMSE, MAP. The proposed technique attained accuracy of 95%, precision of 91%, recall of 85%, F_1 score of 80%, RMSE of 61% and MAP of 51%
    • …
    corecore