44,931 research outputs found

    Implementation of Faceted Values in Node.JS.

    Get PDF
    Information flow analysis is the study of mechanisms by which developers may protect sensitive data within an ecosystem containing untrusted third-party code. Secure multi-execution is one such mechanism that reliably prevents undesirable information flows, but a programmer’s use of secure multi-execution is itself challenging and prone to error. Faceted values have been shown to provide an alternative to secure multi-execution which is, in theory, functionally equivalent. The purpose of this work is to show that the theory holds in practice by implementing usable faceted values in JavaScript via source code transformation. The primary contribution of this project is to provide a library that makes these transformations possible in any standard JavaScript runtime without requiring native support. We build a pipeline that takes JavaScript code with syntactic support for faceted values and, through source code transformation, produces platform-independent JavaScript code containing functional faceted values. Our findings include a method by which we may optimize the use of faceted values through static analysis of the program’s information flow

    Declassification of Faceted Values in JavaScript

    Get PDF
    This research addresses the issues with protecting sensitive information at the language level using information flow control mechanisms (IFC). Most of the IFC mechanisms face the challenge of releasing sensitive information in a restricted or limited manner. This research uses faceted values, an IFC mechanism that has shown promising flexibility for downgrading the confidential information in a secure manner, also called declassification. In this project, we introduce the concept of first-class labels to simplify the declassification of faceted values. To validate the utility of our approach we show how the combination of faceted values and first-class labels can build various declassification mechanisms

    Dynamic IFC Theorems for Free!

    Full text link
    We show that noninterference and transparency, the key soundness theorems for dynamic IFC libraries, can be obtained "for free", as direct consequences of the more general parametricity theorem of type abstraction. This allows us to give very short soundness proofs for dynamic IFC libraries such as faceted values and LIO. Our proofs stay short even when fully mechanized for Agda implementations of the libraries in terms of type abstraction.Comment: CSF 2021 final versio

    Policy-agnostic programming on the client-side

    Get PDF
    Browser security has become a major concern especially due to web pages becoming more complex. These web applications handle a lot of information, including sensitive data that may be vulnerable to attacks like data exfiltration, cross-site scripting (XSS), etc. Most modern browsers have security mechanisms in place to prevent such attacks but they still fall short in preventing more advanced attacks like evolved variants of data exfiltration. Moreover, there is no standard that is followed to implement security into the browser. A lot of research has been done in the field of information flow security that could prove to be helpful in solving the problem of securing the client-side. Policy- agnostic programming is a programming paradigm that aims to make implementation of information flow security in real world systems more flexible. In this paper, we explore the use of policy-agnostic programming on the client-side and how it will help prevent common client-side attacks. We verify our results through a client-side salary management application. We show a possible attack and how our solution would prevent such an attack

    The Anatomy and Facets of Dynamic Policies

    Full text link
    Information flow policies are often dynamic; the security concerns of a program will typically change during execution to reflect security-relevant events. A key challenge is how to best specify, and give proper meaning to, such dynamic policies. A large number of approaches exist that tackle that challenge, each yielding some important, but unconnected, insight. In this work we synthesise existing knowledge on dynamic policies, with an aim to establish a common terminology, best practices, and frameworks for reasoning about them. We introduce the concept of facets to illuminate subtleties in the semantics of policies, and closely examine the anatomy of policies and the expressiveness of policy specification mechanisms. We further explore the relation between dynamic policies and the concept of declassification.Comment: Technical Report of publication under the same name in Computer Security Foundations (CSF) 201

    Introducing Faceted Exception Handling for Dynamic Information Flow

    Get PDF
    JavaScript is most commonly used as a part of web browsers, especially client- side scripts interacting with the user. JavaScript is also the source of many security problems, which includes cross-site scripting attacks. The primary challenge is that code from untrusted sources run with full privileges on the client side, thus lead- ing to security breaches. This paper develops information flow controls with proper exception handling to prevent violations of data confidentiality and integrity. Faceted values are a mechanism to handle dynamic information flow security in a way that overcomes the limitations caused by dynamic execution, but previous work has not shown how to properly handle exceptions with faceted values. Sometimes there might be problems where high-security information can be inferred from a pro- gram\u27s control flow, or sometime the execution might crash while transferring this high-security information when there is an exception raised. Usage of faceted values is an experimental approach as an alternative to multi-process execution. This paper provides more detail on providing exception support to multi-faceted execution
    • …
    corecore