
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 5-26-2015

Introducing Faceted Exception Handling for
Dynamic Information Flow
Sri Tej Narala
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Programming Languages and Compilers Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Narala, Sri Tej, "Introducing Faceted Exception Handling for Dynamic Information Flow" (2015). Master's Projects. 406.
DOI: https://doi.org/10.31979/etd.dc4n-r6g8
https://scholarworks.sjsu.edu/etd_projects/406

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70410163?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F406&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F406&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F406&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F406&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F406&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/406?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F406&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Introducing Faceted Exception Handling for Dynamic Information Flow

A Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Sri Tej Narala

May 2015

© 2015

Sri Tej Narala

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Introducing Faceted Exception Handling for Dynamic Information Flow

by

Sri Tej Narala

APPROVED FOR THE DEPARTMENTS OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

May 2015

Dr. Thomas Austin Department of Computer Science

Dr. Chris Pollett Department of Computer Science

Tran Thanh Department of Computer Science

ABSTRACT

Introducing Faceted Exception Handling for Dynamic Information Flow

by Sri Tej Narala

JavaScript is most commonly used as a part of web browsers, especially client-

side scripts interacting with the user. JavaScript is also the source of many security

problems, which includes cross-site scripting attacks. The primary challenge is that

code from untrusted sources run with full privileges on the client side, thus lead-

ing to security breaches. This paper develops information flow controls with proper

exception handling to prevent violations of data confidentiality and integrity.

Faceted values are a mechanism to handle dynamic information flow security in a

way that overcomes the limitations caused by dynamic execution, but previous work

has not shown how to properly handle exceptions with faceted values. Sometimes

there might be problems where high-security information can be inferred from a pro-

gram's control flow, or sometime the execution might crash while transferring this

high-security information when there is an exception raised. Usage of faceted values

is an experimental approach as an alternative to multi-process execution. This paper

provides more detail on providing exception support to multi-faceted execution.

ACKNOWLEDGMENTS

I am very thankful to my advisor Dr. Thomas Austin for his continuous guidance

and support throughout this project and believing me. Also, I would like to thank the

committee members Dr. Chris Pollett and Tran Thanh for monitoring the progress

of the project and their valuable time.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

1.1 Security Challenges . 1

1.2 Dynamic Information Flow . 2

2 Background . 4

2.1 Information Flow Analysis for JavaScript 4

2.1.1 Explicit Flows . 4

2.1.2 Implicit Flows . 5

2.1.3 Other existing information flow analysis 6

2.2 Faceted Evaluation Overview . 8

2.2.1 Exceptions Overview . 9

2.3 JavaScript Attacks . 12

2.3.1 Different types of XSS attacks 13

2.3.2 Clickjacking . 14

3 Multi-Faceted Evaluation . 15

3.1 Programming Constructs with Facets 17

3.2 Faceted Evaluation with Exceptions 19

3.3 Faceted Exceptions . 21

4 Implementation of faceted exceptions with JavaScript 23

4.1 Possible attack with Exceptions 24

4.2 Embedding the feature into Firefox 26

vi

vii

4.3 Identifying private data . 27

5 Firefox addon development . 28

5.1 History . 28

5.2 Why Firefox ? . 28

6 Performance Results . 30

6.1 System Configuration . 30

6.2 Benchmarks . 30

6.3 Test Suits . 30

6.4 Results . 31

7 Conclusion . 34

APPENDIX

LIST OF TABLES

1 Faceted Evaluation vs. Secure Multi-Execution 32

viii

LIST OF FIGURES

1 Information Flow . 6

2 Execution at L security level. 8

3 Execution at H security level. 8

4 The source language 𝜆𝑓𝑎𝑐𝑒𝑡. 10

5 Faceted evaluation - control flow. 10

6 Faceted exception - control flow. 11

7 Reflected XSS . 12

8 Persistent XSS . 13

9 DOM based XSS attack 1 . 13

10 DOM based XSS attack 2 . 14

11 DOM based XSS attack 2 . 14

12 Standard Semantics. 16

13 Extended Semantics with faceted values. 18

14 The Standard semantics to handle exceptions. 19

15 Core rules for Faceted Evaluation with Exception Handling. . . . 20

16 Faceted Evaluation Rules for Application and Exceptions. 21

17 Sample code that handles exceptions. 24

18 Information leak using exceptions. 25

19 Restricting Information leak. 26

ix

CHAPTER 1

Introduction

JavaScript has become the most common web development language. Though

once seen as a client side scripting language that only interacts with the user to

control visual layout, today JavaScript is widely used to communicate asynchronously

by sending and receiving data to and from the server thus giving web applications a

much more interactive look.

Developers generally build or develop websites by grabbing JavaScript code-

snippets from various sources. This integration might be an intentional one or might

be a result of some malicious code being inserted due to some security vulnerability.

This act of injecting code from different untrusted zones into a website is generally

referred to as cross-site scripting attack (XSS). There are chances that this code might

still breach several security policies no matter if it has been included either know-

ingly or unknowingly. This malicious code operates with the same rights as that of

the normal code developed and written by the web developer, thus leading to different

security issues.

In this paper I worked on addressing one of such security issue which might leak

some information to the attacker due to an unexpected error in the program’s control

flow.

1.1 Security Challenges

There are a wide variety of security measures that have been implemented to

safeguard against these problems. As the content is changing and is very dynamic in

1

nature it has become very challenging to keep up with the best practices. One way

is to build these security controls into the browser.

One way to tackle such security issues is to include proper information flow

analysis within the browser. Advantages of this approach being that the users are

protected even when they visit websites with no server side security. Though this

guarantees a systematic solution against proven security attacks, it has failed to

achieve its purpose in many of the cases as they only concentrate on static information

flow type systems. Here lies the challenge as JavaScript is dynamically typed, only

dynamic information flow analysis is well suited to achieve protection against these

malicious scripts.

1.2 Dynamic Information Flow

JavaScript is a dynamically typed language. It is used to embed within web

pages and is executed by the browser. It is now-a-days the most widely used pro-

gramming language of all the current web 2.0 applications [14]. It is generally used

for client side validations, password fields check, major websites like search engines

and mapping applications. JavaScript code from multiple sources executes with the

same authority as that of an authorized user. To help address these sorts security

issues, we investigate the methodology of tracking the data/information flow dynam-

ically during runtime. There has been some amount of work done prior to this on

type systems [15], [17], but most of them are not suitable to this kind of dynamic

languages. Further, having just a static analysis approach can be problematic when

used with in the browser.

Different ideas on dynamic information flow analysis has been published in pre-

vious papers [1], [3], [4] where the main discussion was around a special type of value

2

called faceted value. Faceted value approach was seen as one of the good way of achiev-

ing multi-process execution with the efficiency of single-process execution [19] [18] .

By altering each one of the faceted values that contains both high level(confidential)

and low level(public) information, a single process simulates the two processes of

multi-process execution. The main advantage here being able to execute single exe-

cution that is the two mimicked executions collapses to a single one if both the values

in a given faceted value are same and thus lessening the program overhead. More on

faceted values can be see in the following chapters.

There has been a couple of papers on faceted value approach [7] [4] to dynamic

information flow analysis. This paper concentrates on properly handling exceptions

with faceted approach. Chapter 2 describes some background information on types of

information flow analysis and also shows some of the JavaScript attacks. Chapter 3

gives an introduction on basic faceted evaluation, its semantics followed by some of the

scenarios where there is a need to handle exceptions and a theoretical explanation

of handling exceptions using the language constructs defined in earlier paper [7].

Chapter 4 and 5 takes you through the implementation part of the project with some

of the examples from real time scenarios and how the new feature has been embedded

into Mozilla Firefox browser. Chapter 6 compares the performance of faceted value

implementation to that of Secure-Multi execution and chapter 7 gives the conclusion.

3

CHAPTER 2

Background

2.1 Information Flow Analysis for JavaScript

Information flow generally refers to the transfer of information from one variable

x to the another variable y in a certain process. This chapter expands more on how

to track information flow. Information flow control secures information mainly by

limiting how exactly the information is communicated among the objects and users

with various security classes. The main approach that is followed to keep track of this

information flow is to label and track sensitive information. We associate each value

within this JavaScript interpreter with a security label. These labels are the security

classes dictating how a value may be used.

These dynamic labels are needed to securely control information flow, especially

when the access rights are changed dynamically and checked at runtime. Using these

labels, the interpreter should never leak any secret to public users.

2.1.1 Explicit Flows

Some times direct assignment leads to explicit flows as in here, as the value

var l = h;

depends on the value of h, the system monitor labels l as secret as well.

This system updates the labels based on the labels of those values that influence

the final result. For an addition operation the label of the result is decided by the

join of other operand’s labels. modifying an object’s structure or that of an array

4

by introducing or removing properties updates the label of that particular object to

current context. Such changes can be observed by an attacker easily.

2.1.2 Implicit Flows

Implicit flows arise through the program’s control flow. Given such a situation as

var l = 0;
if (h)
l = 1;

above, the value of l depends on the value of h. Thus to handle such kind of implicit

flows a new security label associated with the control flow has been introduced and is

called the program counter (pc). The pc reflects the securing against the modification

of less confidential data when the execution is influenced by confidential data.

Many previous papers on information flow control have only talked about lan-

guages without unstructured control flow. But many of the languages do have control

statements such as break, continue, try ... catch ... finally. The implicit flows that

come up with such kind of control flows are never to be ignored. In this paper I have

worked on presenting an experimental way to deal with such kind of implicit flows.

Concentrating on dynamic mechanisms alone will not be helpful as they acquire

excessive run-time overhead and might not prevent implicit flows that arising from

the control flow paths that are not taken or observed during runtime. Thus, both

dynamic labels and static information flow controls are combined to get the desired

security.

5

2.1.3 Other existing information flow analysis

2.1.3.1 Secure Multi execution

Secure multi execution (SME) is a classic way to provide security by complet-

ing/running a program multiple times, once for every security level. It ensures for

every executing level, the output produced is confined only to that security level and

is dependent only on the input given to that level. Secure multiexecution guarantees

non-interference [18] [21].

Static analysis accepts or rejects a particular program before it is run and there is

no check performed once the program is started. In contrast to this, dynamic analysis

makes some checks at runtime. Dynamic analysis seems more permissive, but on the

other hand it will treat the paths/views that are not considered during the current

execution in a more moderate way and might limits any change [21].

Within secure multi-execution, security is achieved by separating the computa-

tions that are having different security principles. The program is executed as many

times as there are number of security levels within the program and different outputs

are seen in a different way for obvious reasons.

Consider the following JavaScript code used to send an email.

1 var text = document.getElementById(’email-input’).text;
2 var abc = 0;
3 if(text.indexOf(’abc’)!=-1) {
4 abc = 1
5 };
6 var url = ’http://example.com/img.jpg?t=’ + escape(text) + abc;
7 document.getElementById(’banner-img’).src = url;

Figure 1

The expression "document.getElementById(’email-input’).text" could be con-

6

sidered as an input at security level H (confidential). The expression

"document.getElementById(’banner-img’).src" could be considered as an output at

security level L (public). The example in Figure 1 displays an information flow from

a high level input(H) into a low level output (L). In this classification, this unaccept-

able flow can be eliminated by a property called non-interference.

2.1.3.2 Non-Interference

The goal here is to avert attackers from gaining access to any kind of information

that is confidential. In other words, if a program has same level of inputs, lets say

public, for two parallel executions, then it must produce the same level of outputs no

matter how confidential the inputs are.

A system is said to have non-interference property if and only if there is no

dependency on the high level input and it produces the same low level outputs for

any corresponding low level inputs. That is, a low level user will never be able to

gain any information on the activities of a high level user. Non-interference has two

different types.

1) Termination-sensitive

2) Termination-insensitive

Termination-sensitive non-interference makes sure that no information is lost

due to termination behavior of the program. Termination-insensitive non-interference

(TINI) leaks only a single bit of information and that is due to the program’s termi-

nation behavior.

Now consider the following program with different levels of execution.

7

1 var text = undefined;
2 var abc = 0;
3 if(text.indexOf(’abc’)!=-1) {
4 abc = 1
5 };
6 var url = ’http://example.com/img.jpg?t=’ + escape(text) + abc;
7 document.getElementById(’banner-img’).src = url;

Figure 2: Execution at L security level. Multi-Execution of JavaScript program from
Figure 1

1 var text = document.getElementById(’email-input’).text;
2 var abc = 0;
3 if(text.indexOf(’abc’)!=-1) { abc = 1 };
4 var url = ’http://example.com/img.jpg?t=’ + escape(text) + abc;

Figure 3: Execution at H security level. Multi-Execution of JavaScript program from
Figure 1

2.2 Faceted Evaluation Overview

We have seen the problems caused by implicit flows. To overcome that, the

Faceted Value approach has been put forward in the previous papers [4] [7]. Consider

the following example where the value of l depends on the authority of the observer.

var l = 0 ;
if (h)
l = 1;

if h is secret here, then

-a private observer who has access to h reads l as 1;

-a public observer who doesn’t have access to h reads it as 0;

Looking at this, A faceted value can be explained as a triple that consists of a principle

k and then followed by two values 𝑉𝐻 and 𝑉𝐿. Faceted values showcase the dual nature

8

of l that has to be 0 or 1 based on the user's authority. Below is how a faceted value

can be written

< 𝑘 ? 𝑉𝐻 : 𝑉𝐿 >

A private observer can see 𝑉𝐻 and public observer can see 𝑉𝐿. But if there is a need

to represent a single value V where it needs to be private, it can be showcased as

< 𝑘 ? 𝑉 : ⊥ >

A faceted value can be nested. Consider the example below.

< 𝑘1 ? 𝑡𝑟𝑢𝑒 : ⊥ > && < 𝑘2 ? 𝑓𝑎𝑙𝑠𝑒 : ⊥ >

The above expression can be evaluated to

< 𝑘1 ? < 𝑘2 ? 𝑓𝑎𝑙𝑠𝑒 : ⊥ > : ⊥ >

where 𝑘1 and 𝑘2 are two different principals.

Using these Faceted Values, a previous paper [4] developed a dynamic analysis

that exactly tracks information flow. If a control flow comes across a faceted value

as shown in Figure 5, both 𝑒1 and 𝑒2 are executed carefully and whatever evaluations

or assignments that are performed during the 𝑒1 phase are only observed by private

users and those of 𝑒2 by public users. After both the evaluations are completed, the

results are combined into a single faceted value and the flow continues. We can have

a closer look at the examples in later chapters.

2.2.1 Exceptions Overview

Handling exceptions with faceted values introduces many challenges. An excep-

tion raised in a single view should not influence the other view especially when the

exception is raised in a higher level view. Intruders can have a chance to send out few

9

Figure 4: The source language 𝜆𝑓𝑎𝑐𝑒𝑡.
Source: [7]

1 var k = <𝑘1 ? 0 : 1>;
2 if (k)
3 e1;
4 else e2;

Figure 5: Faceted evaluation - control flow.

10

values that might raise an exception and thus try to get a handle on the actual infor-

mation by repeatedly sending such kind if information. These implicit flows needs to

be properly handled. Consider the example Figure 6

1 function parseJSON(jsonStr) {
2 var obj = {};
3 try {
4 eval (" obj = " + jsonStr);
5 } catch (e) {
6 console.log(e);
7 throw e;
8 }
9 return obj;

10 }

Figure 6: Faceted exception - control flow.
This function accepts a JSON string as an input and assigns it to an object obj. If
the given JSON string is malformed an exception is thrown at line 4.

if the parameter jsonStr that is sent to this function in Figure 6 is of this form,

< 𝑘 ? “{𝑛𝑎𝑚𝑒 : ‘𝑠𝑚𝑖𝑡ℎ′, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 : 2543′′ : “{ }′′ >

then for a higher level view there will be a syntax error thrown. But we need to make

sure that does not affect what a lower level user can see and this exception should

not be visible in that view. In this paper, I will be presenting a proper way to handle

this kind of exception and make sure the control flow is proper and the program does

not crash.

The main theme about Faceted Evaluation is to mimic the multiple executions of

SME. Labelled approach in many situations, lacks certain important features. This

paper reviews the semantics of faceted values with exceptions for minimal language

𝜆𝑓𝑎𝑐𝑒𝑡 and provides implementation for JavaScript using Narcissus [9] and Zaphod [10]

libraries.

11

Figure 7: Reflected XSS.
Source: [29]

2.3 JavaScript Attacks

JavaScript and the Document Object Model are the main source of security

attacks. They provide a way for malicious users to inject third party scripts and

allowing them to run on the client computer via the webpage. A common security

problem related to JavaScript is cross-site scripting or XSS, which is a violation of

the same-origin policy.

The main goal of the attacker to implement XSS attack is to introduce the

malicious script into the webpage of the victim. This script appears to be from the

same site that is being attacked and thus user’s browser cannot identify the script

being executed is a part of the same site that the they are viewing [34]. This can be

achieved by submitting some special values through webforms. Figures 9, 10 shows

few examples of JavaScript attacks.

12

Figure 8: Persistent XSS.
Source: [29]

1 <SCRIPT>
2 var output=document.URL.indexOf("parameter=")+10;
3 document.write(document.URL.substring(output,document.URL.length));
4 </SCRIPT>

Figure 9: Script to write on the screen from a url parameter. This can be used to
gain access to user’s session cookie by sending a url as shown in Figure 10

2.3.1 Different types of XSS attacks

Persistent XSS, malicious string is a part of website’s database. Figure 8

Reflected XSS, malicious string will be a part of the victim’s request. Figure 7

DOM-based XSS, vulnerability is seen within the client-side code. Figures 9, 10

shows DOM based attack.

13

1 www.mysite.com/page.html?parameter=<script>alert(document.cookie)</script>

Figure 10: URL used to attack.

2.3.2 Clickjacking

Advertising is the source of numerous incidents involving malicious JavaScript

code. Attacker tries to intercept any click that user clicks on the advertise and

makes the browser to redirect to thirdparty site by populating the URL to docu-

ment.location [30]. Once, the user is redirected, then the site may install malware

1 document.addEventListener("click",new function() {
2 document.location = "http://www.evil.com";
3 });

Figure 11: URL used to attack.

onto the user’s system. Details on this attack are available on Google Caja’s web-

site [31]

In order to prevent this kind of attack, we generally restrict write to docu-

ment.location to all the scripts hosted on the trusted/current site. All other scripts

that are loaded from the other domains are marked as untrusted. DOM objects

are updated as untrusted facets for simple usage except the DOM objects like docu-

ment.location, which is treated as high-integrity. Usage of faceted values helps us in

using the authorized/trusted facet if the URL is a faceted value. Thus by marking

the code from external sites as untrusted and limiting its ability to update critical

fields, we achieve key integrity properties.

14

CHAPTER 3

Multi-Faceted Evaluation

The basic structure for faceted evaluation for dynamic information flow is as

shown in Figure 1. This language is an extension of 𝜆 -calculus with a special value

called ⊥ and facilities for creating faceted values. These semantics were developed as

a part of previous work [7]. This paper provides an implementation for the same in

JavaScript that was discussed in previous paper, further checks for different possibil-

ities of attacks that can be avoided.

As shown in Figure 1, this language captures most of the essential features of

dynamic information flow in many realistic languages. The language includes few

of the key challenges like higher order function calls, implicit flows and mutable

references.

𝜆𝑓𝑎𝑐𝑒𝑡 contains the following standard features like variables (x), functions (𝜆𝑥.𝑒),

function application (𝑒1, 𝑒2) and constants (c). This language also supports referenc-

ing (ref e) and dereferencing (!e) and updating (𝑒1:= 𝑒2) a reference cell. In order

to model the same interactive nature of JavaScript, our 𝜆𝑓𝑎𝑐𝑒𝑡 also supports reading

from and writing to files. The expression

< 𝑘 ? 𝑒1 : 𝑒2 >

is a faceted value, which says 𝑒1 is a value that can only be observed by the private

users. That is, if a user does not have access to the secret value, then he can only see

the public value 𝑒2.

The ⊥ value that is shown in the language semantics above is a substitute for

"nothing" , similar to null in Java or undefined in JavaScript. It is generally used as

15

Figure 12: Standard Semantics.
Source: [7]

a public value with nothing to display as shown below. Where V denotes the private

value.

< 𝑘 ? 𝑉 : ⊥ >

Figure 12 shows the standard semantics without faceted values. Values may be

addresses, ⊥ , constants or closures as shown. The store 𝜎 maps addresses to values

and also files f to sequence of values w, each address is allocated to a reference cell a.

16

The standard semantics as shown in Figure 12 can be interpreted as an expression

e

𝜎, 𝑒 ↓ 𝜎
′
, 𝑣

in the context of store 𝜎 is evaluated, which results in a value v and the store 𝜎
′ . To

show one example, the rule [s-app] evaluates the function body e which is called;

the notation e[x := v] says that it maps x to v for all values within expression e.

One unusual thing that can be observed here is the value ⊥. Operations that

include this are very strict in nature. Strict operations with ⊥ clearly considers it as

no value. This is different from having "undefined". We can see more on this when

this is used as a part of faceted value

3.1 Programming Constructs with Facets

As the standard semantics are now defined, we now look into the extended se-

mantics with faceted values that track information flow dynamically and provide

non-interference guarantees.

Figure 13 shows the additional runtime syntax that is required to support faceted

values. Values "V" now contain faceted values of the form

< 𝑘 ? 𝑉𝐻 : 𝑉𝐿 >

where 𝑉𝐻 is private facet and 𝑉𝐿 is public. The value

< 𝑘 ? ”𝑃𝑎𝑠𝑠𝑤𝑜𝑟𝑑” : ⊥ >

says that Password is confidential and can only seen by the user who has access to k.

NULL on the other side is viewed by unauthorized viewers.

A new label called the program counter(pc) is introduced to keep track of when

program is influenced by public or private facets.

17

Figure 13: Extended Semantics with faceted values.
Source: [7]

18

Figure 14: The standard semantics to handle exceptions.
Source: [7]

3.2 Faceted Evaluation with Exceptions

In this paper I have concentrated on providing exception support for faceted

evaluation. If an exception is thrown due to a single facet of a faceted value, that

must not be visible to unauthorized principals. JavaScript supports exceptions to

smoothly handle errors. These exceptions introduce additional challenges to our

analysis on evaluation with faceted values, as some branches of a faceted execution

could terminate normally but others might throw exceptions.

Thus, there is a need to extend our analysis to handles such cases like throwing

and catching exceptions. We improve the syntax of 𝜆𝑓𝑎𝑐𝑒𝑡 as follows:

𝑒 ::= ... | 𝑟𝑎𝑖𝑠𝑒 | 𝑒1 𝑐𝑎𝑡𝑐ℎ 𝑒2

19

Figure 15: Core rules for Faceted Evaluation with Exception Handling.
Source: [7]

Figure 14 shows some of the additional rules for the standard semantics to handle

exceptions. Unlike the normal standard semantics, an evaluation returns a behaviour

(b), which can either be a value (v) or raise, marking an exception. We can describe

[s-try-catch] rule as in an expression 𝑒1 catch 𝑒2, if 𝑒1 is evaluated to raise, then 𝑒2

is evaluated and the result is returned. Otherwise, 𝑒1 is evaluated and the result is

returned.

20

Figure 16: Faceted Evaluation Rules for Application and Exceptions.
Source: [7]

3.3 Faceted Exceptions

We now move a step forward and work on core rules for faceted evaluation with

exceptions. Exception handling with faceted values requires considerable amount of

care. As shown in Figure 15, in an application (𝑒1 𝑒2), if 𝑒1 evaluates to raise for some

view of the faceted value, then 𝑒2 should not be evaluated for that view. Similarly, an

exception handling block should only be executed for views that witness an exception.

In previous paper by Austin and Flanagan [7], there are two additional evaluation

relations introduced to handle exceptions properly. The rules are further updated

and presented in Figure 16.

21

An additional evaluation relation has been introduced in the paper by Austin

and Flanagan [7]

𝜎𝑒 ↓↓𝐵𝑃𝐶 𝜎
′
𝐵

′

Here the evaluation of e is controlled by superscript B , so that this relation evaluates

e only for views L for which L(B) not= raise: as shown in Figure 16. This says that

e is evaluated normally if the observed behaviour B is a value, as mentioned by [fb-

normal]. In other case, if B is raise, e is not evaluated and instead raise is returned

as mentioned by [fb-raise]. The rule [fb-split] says that its called recursively on every

facet when B is a faceted behaviour

An important property that has to be observed here is that if there is an exception

that is raised for a particular view, this view will not be affected by the code part

that has been skipped over due to an exception.

22

CHAPTER 4

Implementation of faceted exceptions with JavaScript

Having seen some of the semantics to handle exceptions(Figure 15 and Figure

16) using faceted values, we now go ahead to see some of the code samples and

observations using the same. We have developed few of the code samples and executed

them from command line. consider the following code sample Figure 17

As seen in the line # 1, a variable p is assigned a value 0 by default. In line # 2,

a faceted value is created using the function "cloak". The function cloak is given with

two parameters, the first one being the value and the second one being the principle.

Principle states what kind of information this variable carries. Principle can assume

any value. Its basically a string or just a character that classifies the associated value.

For example, to classify a highly secured value/information we use "h", stating that

this value can only be viewed by authorized users. we can see the structure of cc as

mentioned below.

(𝑙𝑎𝑏𝑒𝑙 : {𝑣𝑎𝑙𝑢𝑒 : ”ℎ”, 𝑏𝑎𝑟 : (𝑣𝑜𝑖𝑑 0)}, 𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒𝑑 : 123456, 𝑢𝑛𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒𝑑 : 0)

The variable cc, which contains the faceted value, is checked for authorization and

an exception is thrown if some unauthorized value is observed. As described in the

earlier chapters, the "if" block is executed twice as per the multi-process execution

principles, once for the authorized view and once for the unauthorized view. The if

block sees the value of cc as "123456" for the authorized view and "0" for the another.

As per the code, when cc is "0" there is an exception being thrown and the program

counter p is being updated to 1. If there is normal flow in the program with out

any exception, the value of the program counter p will be seen as 2. Thus, there

23

1 var p = 0;
2 var cc = cloak (123456,"h") || 0;
3 try {
4

5 if (cc===0)
6 {
7 throw "error";
8 }
9 p=2;

10 }
11 catch (e) {
12 p=1;
13 }
14 print(cc);
15 print(p);
16 ...
17 ...

Figure 17: Sample code that handles exceptions.
cc is a faceted value that stores confidential information like credit card details.

is no abrupt end in the program and the rest of the steps are well executed after

the exception normally. Just that the value of p will be differ. This multi-process

execution will only be initiated for the if block and then p is converted to a faceted

value and a single execution is continued there on until the program flow encounters

another conditional block or statement. The value of p can be seen as below.

(𝑙𝑎𝑏𝑒𝑙 : {𝑣𝑎𝑙𝑢𝑒 : ”ℎ”, 𝑏𝑎𝑟 : 𝑓𝑎𝑙𝑠𝑒}, 𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒𝑑 : 2, 𝑢𝑛𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒𝑑 : 1)

4.1 Possible attack with Exceptions

Consider the code sample 18. For every bit set in the binary representation of a

Credit Card number, the code mentioned leaks a bit every time when there is no excep-

tion and this tracks all the bit positions that are set. This code crashes with previous

implementation of faceted values whenever there is an exception raised. setTimeout

initiates a new thread which calls the function leakBit for every 2 seconds. Function

24

1 var creditCard = cloak (5,"h") || 0;
2 setTimeout(function(){ leakBit(0); }, 2000);
3

4 var leakBit = function (bitPos) {
5 setTimeout(function(){
6 leakBit(bitPos+1);
7 }, 2000);
8 var bitSet = creditCard &
9 Math.pow(2,bitPos);

10 if(bitSet === 0) {
11 throw "error";
12 }
13 sendInfoToEvilServer(
14 "www.evil.com/hack.html?bitSet="+bitPos);
15 }

Figure 18: Information leak using exceptions.

leakBit does a 'bitwise and'(&) operation between the tracked number (Credit Card

number) and a number which is mentioned in the power of 2. Every time when the

function leakBit is called, the parameter is incremented and passed to it. This way

it is easy to track which bit of the confidential information is set and send it to the

evil server. For all the threads which see the bitSet variable as 1, the information is

sent to the evil server and all the threads which see the bitSet variable as 0 crashes

throwing an exception which is not tracked and thus no information is sent. As there

is no exception scenario handled properly for faceted execution, this code does not

restrict the intruder from gaining access to the confidential information.

Consider the code sample 19. Exceptions are properly handled and there is no

program crash. The information will still be sent the evil server for all the threads

which see the bitSet variable as either 0 or 1. But only the public information will be

sent every time. We mark the public information as "0" at line # 15 always and is

assigned as a public value. Thus the attacker only sees 0’s every time. This prevents

25

1 var creditCard = cloak (5,"h") || 0;
2 setTimeout(function(){ leakBit(0); }, 2000);
3

4 var leakBit = function (bitPos) {
5 setTimeout(function(){
6 leakBit(bitPos+1);
7 }, 2000);
8 var bitSet = creditCard &
9 Math.pow(2,bitPos);

10 try{
11 if(bitSet === 0) {
12 throw "error";
13 }
14 }catch(e) {
15 bitSet=0;
16 }
17 sendInfoToEvilServer(
18 "www.evil.com/hack.html?bitSet="+bitPos);
19 }

Figure 19: Restricting Information leak.

the attacker to get hold of any confidential information.

4.2 Embedding the feature into Firefox

The ideas on faceted evaluation have been included into Firefox through the Nar-

cissus JavaScript engine [8] and Zaphod Firefox plugin [10] To handle the additional

complexities of JavaScript, ZaphodFacets implementation [11] extends the faceted se-

mantics. This paper extends the basic implementation without exceptions that was

presented in [7] to provide exception handling support.

Among the examples given, I have modified the method call to "getView()" to

send the principle as a string variable and hence return the exact value for the view.

This plugin also handles exception scenarios as described above in the codes sample.

The function "cloak(v,k)" produces a faceted value with v being the authorized value

26

and null being the unauthorized value. the unauthorized value can be changed by

performing a logical or operation between the faceted value and the desired value for

the view (unauthorized).

𝑣𝑎𝑟 𝑥 = 𝑐𝑙𝑜𝑎𝑘(”𝐻𝑒𝑙𝑙𝑜”, ”ℎ”) || ”𝐻𝑖”;

The above statement sets x to

< 𝑘 ? ”𝐻𝑒𝑙𝑙𝑜” : ”𝐻𝑖” >

Cloak is mainly used during an input given to the system.

Once Zaphod plugin is installed into the browser, we can choose to execute

JavaScript either using normal Spider Monkey library or by using Narcissus library.

We can see a button on the status bar to toggle between the two engines. Narcissus

library has the capacity to deal with faceted values and provide a smooth flow when

an exception occurs in any single view. The code that is evaluated on narcissus have

different permissions.

4.3 Identifying private data

The major challenge here lies in identifying the private data and if any excep-

tion is raised, how does the view needs to react as it should see no difference in the

functionality. Generally the policy published in the paper [7] describes that all the

password fields are private and also any form element with a class of secure or con-

fidential is also treated as private data. I, in this paper will be going by the same

set of rules to identify private data and thus properly handle exceptions that arise

due to improper assignments within the control flow. Similarly we extend the same

techniques to identify the untrusted scripts.

27

CHAPTER 5

Firefox addon development

An add-on is something that can be associated with an existing application or

object to improve its performance or to enhance security [22]. In software terms this

can be referred to as plug-in a browser extension, or an add-on. In general, add-

ons are used to block web based ads, detect malware, download video content from

a web-page, use different themes, enables internet content to be downloaded and be

played on different web players like flash, quicktime and many a times supports online

games.

5.1 History

Microsoft’s Internet explorer was the first one to support these browser

extensions/add-ons starting from its version 5 in 1999 [35]. Later since 2004, [36]

Mozilla started providing support for extensions within its own browser Firefox. Then

followed by Opera, Chrome, and Safari browsers in 2009 and 2010 [37], [38], [39],. The

mode of development and the language used differs from browser to browser and thus

the extensions developed are not cross platform. All these extensions can be obtained

from the respective browser stores for Mozilla [23], for Chrome [24], for Safari [25].

5.2 Why Firefox ?

Firefox provides an extensive API base to develop add-ons. Add-ons for Firefox

are more powerful and have access to all of the process that a Firefox browser starts

or has access to. As this paper deals with security, it is much more easier from the

developer perspective with more stream lined API calls to add security features into

28

a Firefox based add-on when compared to Chrome extensions. A Firefox add-on

can gain access to external resources in a much easier way as compared to Chrome

extensions. Chrome is limited in-terms of trusting an extension, thus complete access

is not given to a Chrome extension and hence limiting us to only few areas.

There are 3 different forms of Extensions that are in use now-a-days [27]

1) Add-ons SDK extensions (also known as Jetpacks)

2) Bootstrapped extensions

3) Traditional extensions

As a part of this paper, I worked on an existing traditional extension called Za-

phod [10]. Traditional, classic, or XUL extensions are more powerful, but more com-

plicated to build and require a restart to install [26]. Due to its power to access more

browser features, we chose this kind of development in contrast to boostrapped or

SDK based implementations.

29

CHAPTER 6

Performance Results

To understand the trade offs between both secure multi-execution and faceted

values, I have compared performance tests between both sequential and concurrent

secure multi-execution in Narcissus to that of faceted execution.

6.1 System Configuration

All of my tests were performed on a Ubuntu 14.04 LTS system. The machine is

running with 1.60GHz Intel Corei5-4200U processor with 4 cores and 6 GB of memory.

6.2 Benchmarks

I have selected testcases from the SunSpider [28] benchmark suite.

6.3 Test Suits

• The crypto-md5 test case deals with number crunching. This was modified

to include 8 hashing operations with some inputs marked as confidential as per

previous paper [7]. Test cases involve 0 through 8 principals. Every princi-

pal marks an element as confidential for each case; additional hash inputs are

marked as public. For example, test 1 hashes 1 confidential input and 7 public

inputs. Test 8 hashes 8 confidential inputs and has no public inputs. if the data

is marked as confidential then the public facet is set to an empty string.

• The string-tagcloud test case deals with parsing JavaScript Object Nota-

tion (JSON). This test is modified to create 8 distinct tag clouds from JSON-

30

formatted strings. As in crypto-md5 tests, inputs from 0 to 8 are marked as

confidential using a different principal. The public facet of this confidential data

is initialized to a JSON string that represents an empty array.

• The string-unpack-code test cases makes use of 4 JavaScript libraries

MochiKit, jQuery, Dojo, & Prototype and extracts JavaScript code from them.

This test case is modified to include 0-4 of the packed libraries and are marked

as untrusted, and except for the Dojo library 3 others are passed to eval. This

kind of setup might be useful for those that involves confidential information.

During this testing the public facet is left as undefined.

6.4 Results

The results that are shown in Table 1 showcase the trade-offs between different

approaches. The Sequential approach using Secure multi execution has better per-

formance when there are no principals included. But once the number of principals

grow, the performance time is almost doubled for each principal.

Concurrent multi-execution is seen to be better performing when the number

of principals are small. As the number of principals increase, the performance time

is increased exponentially for concurrent execution. Faceted evaluation outperforms

both concurrent and sequential multi-execution as the number of principals increase.

There are some differences observed between string-tagcloud and crypto-md5

evaluations with faceted values. The performance timings are pretty constant and

decrease a bit for the string-tagcloud test. This is observed as it depends on the

choice of public facets, which sometimes tend to require lesser computations. For

example, parsing a JSON string with empty size is faster than parsing a huge JSON

31

Time in seconds
Secure Multi-Execution

Test case # principals Sequential Concurrent Faceted Execution
0 182 186 193
1 332 211 213
2 619 380 253
3 1148 699 258

crypto-md5 4 2414 1285 283
5 4116 2184 320
6 * 3982 338
7 * * 345
8 * * 367
0 82 84 83
1 153 141 79
2 287 180 77
3 536 325 75

string-tagcloud 4 993 578 72
5 1861 875 70
6 3270 1945 68
7 * * 65
8 * * 65
0 5.5 5.5 5.2
1 10 6.4 4.6

string-unpack-code 2 19.8 11.7 4.6
3 39.7 23.7 4.6
4 80 48.4 4.6

Time in milli seconds
0 64 67 69
1 93 104 61
2 161 222 41
3 295 449 41

Exception Han-
dling

4 576 773 42

5 1129 890 45
6 2192 1375 42
7 4441 2900 45
8 9540 5770 49

Table 1: Faceted Evaluation vs. Secure Multi-Execution

32

string cloud. For the other test case, crypto-md5, we can see faceted evaluation is

slowed down considerably with the introduction of each principal.

33

CHAPTER 7

Conclusion

We have seen how to achieve termination-insensitive non-interference dynami-

cally in scenarios involving exceptions. Faceted values calculate multiple different

views for different security levels while providing a non-interference guarantee. Adding

to the existing research on the faceted value approach from previous papers [4, 7] that

show-cased implementation of JavaScript with faceted values to defend against many

security related attacks , this paper shows an experimental implementation of excep-

tion handling scenarios without the program being halted abruptly and not leaking

any information to the attacker by throwing exceptions when any malicious code is

inserted.

Our performance results clearly show how the faceted value approach outperforms

Secure Multi-Execution in many cases, even when exception handling is involved and

thus showing a way for much secure JavaScript implementations.

34

LIST OF REFERENCES

[1] Brandon Shirley, Christian Hammer, Seth Just, Alan Cleary, Information Flow
Analysis for JavaScript, Proc. PLASTIC, 2011,
https://csl.cs.uni-saarland.de/projects/ifcjs/plas06-just.pdf.

[2] Daniel Hedin, Andrei Sabelfeld, Information-Flow Security for a Core of
JavaScript, CSF, 2012,
http://www.cse.chalmers.se/~andrei/jsflow-csf12.pdf.

[3] Dongseok Jang, Ranjit Jhala, Sorin Lerner, Rewriting-based Dynamic In-
formation Flow for JavaScript, 17th ACM Conference on Computer and
Communications Security, 2010,
http://goto.ucsd.edu/~rjhala/papers/rewriting_based_dynamic_
information_flow_for_javascript.pdf.

[4] Thomas H. Austin, Cormac Flanagan, Multiple Facets for Dynamic Information
Flow, POPL, 2012,
https://users.soe.ucsc.edu/~cormac/papers/popl12b.pdf.

[5] Lantian Zheng, Andrew C. Myers, Dynamic Security Labels and Static Infor-
mation Flow Control, Cornell University, International Journal of Information
Security, Volume 6 Issue 2, March 2007
http://www.cs.cornell.edu/andru/papers/dynlabel-ijis.pdf.

[6] Information flow (information theory), accessed April 2015,
http://en.wikipedia.org/wiki/Information_flow_%28information_
theory%29.

[7] Thomas H. Austin, Cormac Flanagan , Multiple Facets for Dynamic Information
Flow with Exceptions, accessed April 2015.

[8] Brendan Eich. Narcissus-js implemented in js, accessed February 2015, 2004,
https://github.com/mozilla/narcissus/.

[9] kuno, node-narcissus implemented in js, accessed February 2015, 2011,
https://github.com/kuno/node-narcissus.

[10] Mozilla labs: Zaphod add-on for the firefox browser, accessed November 2014,
2010,
http://mozillalabs.com/zaphod.

35

https://csl.cs.uni-saarland.de/projects/ifcjs/plas06-just.pdf
http://www.cse.chalmers.se/~andrei/jsflow-csf12.pdf
http://goto.ucsd.edu/~rjhala/papers/rewriting_based_dynamic_information_flow_for_javascript.pdf
http://goto.ucsd.edu/~rjhala/papers/rewriting_based_dynamic_information_flow_for_javascript.pdf
https://users.soe.ucsc.edu/~cormac/papers/popl12b.pdf
http://www.cs.cornell.edu/andru/papers/dynlabel-ijis.pdf
http://en.wikipedia.org/wiki/Information_flow_%28information_theory%29
http://en.wikipedia.org/wiki/Information_flow_%28information_theory%29
https://github.com/mozilla/narcissus/
https://github.com/kuno/node-narcissus
http://mozillalabs.com/zaphod

[11] Thomas H. Austin, ZaphodFacetes github page, accessed November 2014, 2011,
https://github.com/taustin/ZaphodFacets.

[12] Thomas H. Austin and Cormac Flanagan, Efficient purely-dynamic information
flow analysis, PLAS , 2009,
https://slang.soe.ucsc.edu/cormac/papers/plas09.pdf.

[13] Dominique Devriese and Frank Piessens, Noninterference through secure
multi-execution, Proc. SP , May 2010,
https://lirias.kuleuven.be/bitstream/123456789/265429/1/secure-
multi-executi.

[14] Paruj Ratanaworabhan, Benjamin Livshits and Benjamin G. Zorn, JSMeter:
Comparing the Behavior of JavaScript Benchmarks with Real Web Applications,
USENIX Web Application Conference, 2010,
https://www.usenix.org/legacy/event/webapps10/tech/full_papers/
Ratanaworabhan.pdf.

[15] Ravi Chugh, Jeffrey A. Meister, Ranjit Jhala, Sorin Lerner, Staged Information
Flow for JavaScript, PLDI , June 2009,
http://goto.ucsd.edu/~rjhala/papers/staged_information_flow_for_
javascript.pdf.

[16] Martin Lester, Information Flow Analysis for JavaScript via a dynamically
typed language with staged metaprogramming, Department of Computer
Science, Parks Road, Oxford , 2012,
http://mjolnir.cs.ox.ac.uk/web/slamjs/slamjs-oxfordcs-abstract.
pdf.

[17] Magnus Madsen, Benjamin Livshits, Michael Fanning, Practical Static Analysis
of JavaScript Applications in the Presence of Frameworks and Libraries,
Microsoft Research Technical Report , 2012,
http://research.microsoft.com/en-us/um/people/livshits/papers/tr/
jscap_tr.pdf.

[18] Dominique Devriese, Frank Piessens, Noninterference Through Secure Multi-
Execution, Proc. SP , May 2010,
https://lirias.kuleuven.be/bitstream/123456789/265429/1/secure-
multi-executi.

[19] Gilles Barthe, Juan Manuel Crespo, Dominique Devriese, Frank Piessens,
Exequiel Rivas, Secure multi-execution through static program transformation,
Proc. IFIP WG 6.1 , 2012,
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.474.7674&
rep=rep1&type=pdf.

36

https://github.com/taustin/ZaphodFacets
https://slang.soe.ucsc.edu/cormac/papers/plas09.pdf
https://lirias.kuleuven.be/bitstream/123456789/265429/1/secure-multi-executi
https://lirias.kuleuven.be/bitstream/123456789/265429/1/secure-multi-executi
https://www.usenix.org/legacy/event/webapps10/tech/full_papers/Ratanaworabhan.pdf
https://www.usenix.org/legacy/event/webapps10/tech/full_papers/Ratanaworabhan.pdf
http://goto.ucsd.edu/~rjhala/papers/staged_information_flow_for_javascript.pdf
http://goto.ucsd.edu/~rjhala/papers/staged_information_flow_for_javascript.pdf
http://mjolnir.cs.ox.ac.uk/web/slamjs/slamjs-oxfordcs-abstract.pdf
http://mjolnir.cs.ox.ac.uk/web/slamjs/slamjs-oxfordcs-abstract.pdf
http://research.microsoft.com/en-us/um/people/livshits/papers/tr/jscap_tr.pdf
http://research.microsoft.com/en-us/um/people/livshits/papers/tr/jscap_tr.pdf
https://lirias.kuleuven.be/bitstream/123456789/265429/1/secure-multi-executi
https://lirias.kuleuven.be/bitstream/123456789/265429/1/secure-multi-executi
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.474.7674&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.474.7674&rep=rep1&type=pdf

[20] T. H. Austin and C. Flanagan, Permissive dynamic information flow analysis,
PLAS, 2010,
https://users.soe.ucsc.edu/~cormac/papers/plas10.pdf.

[21] Willard Rafnsson, Andrei Sabelfeld, Secure Multi-Execution: Fine-grained,
Declassification-aware, and Transparent, Proc. CSF, 2013,
http://www.cse.chalmers.se/~andrei/csf13.pdf.

[22] Add-ons. (Mozilla Developer Network), accessed April 29, 2015,
https://developer.mozilla.org/en-US/Add-ons.

[23] Add-ons. (Featured Extensions), accessed April 29, 2015,
https://addons.mozilla.org/en-US/firefox/extensions/.

[24] Chrome Web Store, accessed April 29, 2015,
https://chrome.google.com/webstore/category/extensions?_sort=1.

[25] Apple - Safari - Safari Extensions Gallery, accessed March 29, 2015,
http://extensions.apple.com/.

[26] Building an extension, accessed March 29, 2015,
https://developer.mozilla.org/en-US/docs/Building_an_Extension.

[27] Getting Started with Firefox Extensions, accessed March 29, 2015,
https://developer.mozilla.org/en-US/Add-ons/Overlay_Extensions/
XUL_School/Getting_Started_with_Firefox_Extensions.

[28] Webkit.org. 2011, SunSpider JavaScript benchmark, accessed April 28, 2015,
http://www.webkit.org/perf/sunspider/sunspider.html.

[29] "Excess XSS." : A Comprehensive Tutorial on Cross-site Scripting. N.p., ac-
cessed March 26, 2015,
http://excess-xss.com/.

[30] David Flanagan, Javascript: the definitive guide, O'Reilly & Associates, Inc.,
Sebastopol, CA, USA, fifth edition, 2006.

[31] Redirect without user action, RedirectWithoutUserAction, accessed February 26,
2015,
http://code.google.com/p/google-caja/wiki/.

[32] Steve Zdancewic, A type system for robust declassification, ENTCS , 2003,
http://www.cis.upenn.edu/~stevez/papers/Zda03.pdf.

[33] Alejandro Russo, Andrei Sabelfeld, Securing timeout instructions in web appli-
cations, CSF , 2009,
http://www.cse.chalmers.se/~andrei/russo-sabelfeld-csf09.pdf.

37

https://users.soe.ucsc.edu/~cormac/papers/plas10.pdf
http://www.cse.chalmers.se/~andrei/csf13.pdf
https://developer.mozilla.org/en-US/Add-ons
https://addons.mozilla.org/en-US/firefox/extensions/
https://chrome.google.com/webstore/category/extensions?_sort=1
http://extensions.apple.com/
https://developer.mozilla.org/en-US/docs/Building_an_Extension
https://developer.mozilla.org/en-US/Add-ons/Overlay_Extensions/XUL_School/Getting_Started_with_Firefox_Extensions
https://developer.mozilla.org/en-US/Add-ons/Overlay_Extensions/XUL_School/Getting_Started_with_Firefox_Extensions
http://www.webkit.org/perf/sunspider/sunspider.html
http://excess-xss.com/
http://code.google.com/p/google-caja/wiki/
http://www.cis.upenn.edu/~stevez/papers/Zda03.pdf
http://www.cse.chalmers.se/~andrei/russo-sabelfeld-csf09.pdf

[34] Cross-site scripting (xss), accessed April 26, 2015,
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS).

[35] Internet Explorer 5, wikipedia, accessed February 25, 2015,
http://en.wikipedia.org/wiki/Internet_Explorer_5.

[36] User talk:ChrisHofmann/QuarterlyReleases, accessed February 25, 2015,
https://wiki.mozilla.org/User_talk:ChrisHofmann/QuarterlyReleases.

[37] Opera Software ASA - Opera version history. (n.d.). accessed February 25, 2015,
http://www.opera.com/docs/history/presto/.

[38] Google Chrome, accessed February 25, 2015,
http://en.wikipedia.org/wiki/Google_Chrome.

[39] Safari 4.1.3 for Tiger, accessed February 25, 2015,
https://support.apple.com/kb/DL1069?locale=en_US.

38

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
http://en.wikipedia.org/wiki/Internet_Explorer_5
https://wiki.mozilla.org/User_talk:ChrisHofmann/QuarterlyReleases
http://www.opera.com/docs/history/presto/
http://en.wikipedia.org/wiki/Google_Chrome
https://support.apple.com/kb/DL1069?locale=en_US

	San Jose State University
	SJSU ScholarWorks
	Spring 5-26-2015

	Introducing Faceted Exception Handling for Dynamic Information Flow
	Sri Tej Narala
	Recommended Citation

	Introduction
	Security Challenges
	Dynamic Information Flow

	Background
	Information Flow Analysis for JavaScript
	Explicit Flows
	Implicit Flows
	Other existing information flow analysis

	Faceted Evaluation Overview
	Exceptions Overview

	JavaScript Attacks
	Different types of XSS attacks
	Clickjacking

	Multi-Faceted Evaluation
	Programming Constructs with Facets
	Faceted Evaluation with Exceptions
	Faceted Exceptions

	Implementation of faceted exceptions with JavaScript
	Possible attack with Exceptions
	Embedding the feature into Firefox
	Identifying private data

	Firefox addon development
	History
	Why Firefox ?

	Performance Results
	System Configuration
	Benchmarks
	Test Suits
	Results

	Conclusion

