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ABSTRACT

Policy-agnostic programming on the client-side

by Kushal Palesha

Browser security has become a major concern especially due to web pages becoming

more complex. These web applications handle a lot of information, including sensitive

data that may be vulnerable to attacks like data exfiltration, cross-site scripting (XSS),

etc. Most modern browsers have security mechanisms in place to prevent such attacks

but they still fall short in preventing more advanced attacks like evolved variants

of data exfiltration. Moreover, there is no standard that is followed to implement

security into the browser.

A lot of research has been done in the field of information flow security that

could prove to be helpful in solving the problem of securing the client-side. Policy-

agnostic programming is a programming paradigm that aims to make implementation

of information flow security in real world systems more flexible. In this paper, we

explore the use of policy-agnostic programming on the client-side and how it will help

prevent common client-side attacks. We verify our results through a client-side salary

management application. We show a possible attack and how our solution would

prevent such an attack.

Keywords Information flow security, policy-agnostic programming, faceted values



ACKNOWLEDGMENTS

I would like to thank Dr. Thomas Austin for introducing me to the field of

information flow security and programming language theory. He has been a great

guide throughout this journey.

I would also like to thank Dr. Chris Pollett and Dr. Jenny Lam for accepting to

be part of my panel, taking interest in my project, and for being patient throughout

this process.

Finally, I want to thank my family who have supported me in all my endeavors

and also my friends for tolerating my blabbering whenever something went wrong

with my project.

v



TABLE OF CONTENTS

CHAPTER

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Efforts to secure browser content . . . . . . . . . . . . . . . . . . 2

1.1.1 Common security measures found in most modern browsers 2

1.1.2 Arguments against common browser security mechanisms 3

2 What is policy-agnostic programming? . . . . . . . . . . . . . . . 6

2.1 A brief overview of information flow security . . . . . . . . . . . . 6

2.1.1 Basic principles of information flow security . . . . . . . . 6

2.1.2 Need for information flow security . . . . . . . . . . . . . . 8

2.1.3 Language based information flow security . . . . . . . . . 9

2.2 The policy-agnostic programming model . . . . . . . . . . . . . . 11

2.2.1 What is a faceted value? . . . . . . . . . . . . . . . . . . . 12

2.2.2 Evaluation semantics of faceted values . . . . . . . . . . . 12

2.2.3 The Jacqueline Framework . . . . . . . . . . . . . . . . . 16

2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Implementing policy-agnostic programming on the client side 19

3.1 Implementing faceted values in Narcissus . . . . . . . . . . . . . . 19

3.2 Implementing Jeeves . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Using Jeeves constructs . . . . . . . . . . . . . . . . . . . . 22

3.3 Policy agnostic programming in dom.js . . . . . . . . . . . . . . . 23

3.4 A data exfiltration case study . . . . . . . . . . . . . . . . . . . . 27

vi



vii

3.5 The context object and defining policies . . . . . . . . . . . . . . 29

3.6 Client-server interaction with policy-agnostic programming . . . . 30

4 Future Work and Conclusion . . . . . . . . . . . . . . . . . . . . . 32

LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



LIST OF FIGURES

1 The 𝜆𝑗𝑒𝑒𝑣𝑒𝑠 source language [24] . . . . . . . . . . . . . . . . . . . 14

2 Faceted evaluation semantics [24] . . . . . . . . . . . . . . . . . . 15

3 Semantics of Derived Encodings [24] . . . . . . . . . . . . . . . . 15

4 Faceted Evaluation of a potential implicit flow . . . . . . . . . . 16

5 Model definition in the Jacqueline framework . . . . . . . . . . . 17

6 Independent implementation of faceted behavior for the ‘‘if’’
control flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7 Function application rules [24] . . . . . . . . . . . . . . . . . . . . 21

8 Evaluation semantics for Jeeves labels and policies [24] . . . . . . 22

9 Concretize and partialConcretize function definitions . . . . . . . 23

10 Example usage of Jeeves constructs . . . . . . . . . . . . . . . . . 24

11 Return faceted value if exists when the innerHTML property is
accessed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

12 Persisting faceted values for createTextNode . . . . . . . . . . . . 26

13 Web page that displays employee salaries . . . . . . . . . . . . . 28

14 Third Party library with exfiltration code . . . . . . . . . . . . . 28

15 Access log entry giving Manny’s salary information to the attacker 29

16 Code that would set the display message on the web page . . . . 29

17 Example of a policy function for the salary faceted value . . . . . 31

viii



CHAPTER 1

Introduction

The rapid increase in the number of applications that collect and process private

data has made prevention of data leaks an involving task for security professionals. It

is hard enough protecting against attacks on web servers, we now have sophisticated

web applications that do more than just display static information received from the

server. Javascript is the language of choice to develop these dynamic web pages, but

there is lot of fragmentation in the Javascript engines used by different browsers,

so if one browser may prevent some form of attack, we cannot assume that another

browser may prevent the same form of attack.

In this paper, we propose the introduction of policy-agnostic programming (PAP)

into Javascript to help protect sensitive data on the client-side. PAP is a programming

paradigm introduced by Yang et al. [1] that builds on research efforts in language

based information flow security. In their paper, Yang et al. introduced Jeeves, a

language to write policy-agnostic programs. The PAP paradigm aims to make the

implementation of information flow controls in complex real world systems flexible

and intuitive. Yang et al. [2] presented how PAP can be used to protect data on

a database backed server. They introduced an MVC framework called Jacqueline,

which extends the Django framework [3] with Jeeves for policy-agnostic evaluation.

Similarly, we will extend Javascript to support PAP and demonstrate how it can help

prevent sensitive data leaks on the browser.

In the rest of this chapter we give a survey of the current state of browser security,

proposals to protect against various client-side attacks and where our solution would

fit into the client-side architecture. In Chapter 2 we give a brief background about

information flow security, policy-agnostic programming, Jeeves, and related concepts.

In Chapter 3 we review our solution, provide details of our implementation, and show
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a sample application. In the final chapter we conclude.

1.1 Efforts to secure browser content

Ever since the first web browser was introduced [4] in 1990, the kind of content

rendered has evolved dramatically. First it was only static html pages that were

acquired from web servers. The introduction of the Common Gateway Interface (CGI)

in 1993 [5], added the capability of generating dynamic web pages based on client

requests made by the web browser. "Dynamic" here was pages that were created

by web servers based on user requests and hence served personalized content that

may include sensitive data. This meant there was content worth protecting, but even

then most of the security measures were focused on the server-side (where all the

data resided) since that was where attackers also focused their attention. With the

introduction of Javascript in 1995 [6] web browsers became really powerful since it

enabled web developers to create web pages with client-side interactivity without the

need to make requests to a web server.

With further iterations of Javascript and the technologies around it, web pages

have now evolved into web applications giving great control over sensitive user

data to the client-side. The flexibility of Javascript that makes it possible to develop

sophisticated web applications also makes content rendered by web browsers vulnerable

to attacks. Over the years browser vendors have come up with various security

measures to protect browser content.

1.1.1 Common security measures found in most modern browsers

Flanagan [7, Section 13.6] talks about browser security in brief and states two

competing goals that browser vendors have tried to balance: ‘‘Defining powerful

client-side APIs to enable useful web applications.’’ and ‘‘Preventing malicious code

from reading or altering your data, compromising your privacy, scamming you, or
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wasting your time.’’ Flanagan [7, Section 13.6.1] lists some of the common security

restrictions imposed on Javascript and notes that ‘‘Different browsers have different

security policies and may implement different API restrictions.’’.

Same-origin policy
‘‘The same-origin policy restricts how a document or script loaded from

one origin can interact with a resource from another origin. It is a critical
security mechanism for isolating potentially malicious documents.’’ [8]

The article [8] gives details about how the same-origin policy controls Javascript

behavior for different scenarios like cross-origin network access (control http requests

or resource embedding tags), cross-origin script API access (limit access to Window

and Location objects) and cross-origin data storage access. The same origin policy

is very broad in terms of what it controls primarily because it needs to keep the

flexibility that Javascript is known for. Flanagan [7, Section 13.6.2] has more details

about the same origin policy and lists some techniques of how the same origin policy

can be relaxed in some cases (read Cross-Origin Resource Sharing (CORS) [9]).

Content Security Policy
‘‘Content Security Policy (CSP) is an added layer of security that helps

to detect and mitigate certain types of attacks, including Cross Site Script-
ing (XSS) and data injection attacks. These attacks are used for everything
from data theft to site defacement or distribution of malware.’’ [10]

In CSP, inline scripts are disabled by default, which would automatically prevent

code injection based attacks. Additionally, CSP also allows a server administrator to

restrict what sources a web page can import executable scripts from. On the face of

it, CSP seems to provide a robust mechanism to prevent XSS and data exfiltration

attacks.

1.1.2 Arguments against common browser security mechanisms

The security mechanisms mentioned above are implemented in all modern

browsers to help prevent sensitive data leaks among other security breaches but
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they are not foolproof solutions as presented by several researchers:

• Chen et al. [11] present cases where the same-origin policy falls short in protecting

sensitive data from a particular form of the data-exfiltration attack. They define

a data-exfiltration attack as:

‘‘an attack where the adversary exports user’s private data to
a server controlled by the attacker, possibly using a code injection
vulnerability.’’

This form of attack would be prevented by the same origin policy. The authors

present self-exfiltration as a new ‘‘class’’ of the data-exfiltration attack. In this

form of attack, the injected script does not directly send the extracted data to an

attacker-controlled server; instead it is posted to another location of the victim

website itself or to whitelisted origins. The attacker can later log-on/access the

victim website or whitelisted site respectively to retrieve the information.

• Acker et al. [12] present a strong case arguing the failure of CSP to prevent data

exfiltration. They show that even the strongest CSP policies can be circumvented

using DNS and resource prefetching as data exfiltration techniques.

The researchers above reveal flaws in existing browser security mechanisms and suggest

possible improvements to fix them. As mentioned at the beginning of this chapter,

all browsers are not created equal and so maybe a couple of browser vendors may

implement one of the suggested solutions. But this would mean the vulnerability

would still exist in the rest of the browsers until said solution becomes a standard

and all the vendors adopt it. Moreover, these are just some examples of the many

loopholes that researchers (and unfortunately attackers) have been finding in the

current browser security architecture.

We propose adding information flow controls to client-side Javascript through

PAP and use them to protect content displayed on a web page. We demonstrate
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its usefulness in protecting content on the browser by incorporating PAP constructs

into the document object model(DOM) [13], which is an application programming

interface that defines how programs and scripts can access and update the content,

structure, and style of documents.

5



CHAPTER 2

What is policy-agnostic programming?

Before we talk about policy-agnostic programming, we first need to give an

introduction to the domain it belongs to, i.e., information flow security.

2.1 A brief overview of information flow security

Information flow security is a security mechanism that consists of information

flow policies and information flow controls to detect and prevent leaking of sensitive

data by an application. Information flow policies here are the policies that define

where sensitive data can flow. Information flow controls are the mechanisms that

enforce them.

2.1.1 Basic principles of information flow security

When designing a system with information flow security, sensitive data needs to

be identified and corresponding information flow policies need to be defined. Smith [14]

talks about basic principles of information flow security that we mention here in brief.

Security labels

We assign security labels to variables according to the level of security they are

classified into. The most basic labels are L for low security or public information and

H for high security or private information; the goal is to prevent improper leaks of

information in H variables to L variables. The flow of data from an L variable into

an H variable is legal.

Explicit and implicit flow

In information flow security, the leak can be in terms of an explicit flow or an

implicit flow. The following is an example of an explicit flow where there is a direct

flow of data from an H variable to an L variable:

publicL = confidentialH
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The code-snippet below is an example of an implicit flow :

if (confidentialH % 2) == 0

publicL = 0

else

publicL = 1

Although it may not seem obvious that there is a leak of sensitive data in this example,

the last bit of the H variable (confidentialH) is being copied into the L variable

(publicL). Any case where there is a branching statement that depends on an H

variable has a potential data leak in terms of an implicit flow.

Noninterference

An important property in information flow security is noninterference. Smith [14]

defines a program satisfying noninterference as:

‘‘Program 𝑐 satisfies noninterference if, for any memories 𝜇 and 𝑣 that
agree on L variables, the memories produced by running 𝑐 on 𝜇 and on 𝑣
also agree on L variables (provided that both runs terminate successfully).’’

It is a formalization of the idea that a program should not leak information about H

(private) variables through L (public) variables. All systems that provide information

flow analysis need to prove noninterference. Although strict noninterference is not

desired since a real world system may need to change labels or declassify (downgrade

level of a variable) variables at runtime. One such relaxed form of noninterference is

termination-insensitive noninterference which still maintains the property of private

inputs not influencing public outputs on program execution although private infor-

mation can influence the termination of the program. Although the termination of a

program is a publicly observable fact, Askarov et al. [15] show that an attacker would

be reduced to using a brute force approach which would take more than polynomial
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time in the size of the sensitive data to exfiltrate.

Confidentiality and integrity

Information flow security is used to ensure confidentiality and integrity of data.

Our solution will mostly focus on confidentiality, but here we would briefly like to

define the two in the context of information flow security. Confidentiality as we

have described above ensures that there is no unwanted flow of information from

H variables into L variables. For example, you wouldn’t want to allow the flow of

data from a variable that contains credit card information into a variable that is

meant to store payment amount. Integrity introduces the concepts of tainted and

untainted variables. Variables that contain information received from an external

source (network or user input) are marked as tainted. Here the aim is to not allow

the flow of information from tainted variables into untainted variables. For example,

data in a tainted variable needs to be sanitized before it can be used as a parameter in

an SQL query or as part of a string that is used as input to the eval function. eval

is a Javascript function that takes Javascript code (in the form of a string) as input

and executes it.

2.1.2 Need for information flow security

Information flow analysis has seen very little adoption in commercial software

systems. A majority of these systems rely on standard security mechanisms like

access control, encryption, and firewalls. Sabelfeld and Myers [16] show how these

mechanisms fall short in completely preventing sensitive data leaks. Access control is

an important part of any security infrastructure that is used to control access of data

to legitimate users, but once access is granted, there is no way to control how the

data is used. Similarly, encryption will ensure that data will remain confidential while

in transit between two end-points but once the data is decrypted at the receiving

8



end, there is no way to control the flow of data from that point onwards. A similar

argument can be made for firewalls.

Yang [17] in her blog post talks about a very popular privacy leak in recent times

that involved FBI director James Comey’s ‘‘secret’’ Twitter account being discovered

by Feinberg [18]. The leak was the result of an information flow vulnerability that

exists in Instagram. Feinberg found the private account of James Comey’s son Brian

Comey. Ideally, a private account’s ‘‘following’’ list should not be available to an

external observer which is the case in a normal flow. But, when Feinberg requested

to follow Brian’s account, Instagram’s ‘‘helpful’’ recommendation algorithm presented

a list of suggested accounts to follow. All of them included the other Comey family

members except for one account with an unusual name (‘‘reinholdniebuhr’’). With

some online research, Feinberg was able to figure out that James Comey had written

a thesis on ‘‘Reinhold Niebuhr’’ in law school. She found a Twitter account with the

same name and verified that it was in fact his account due to a public statement he

made specifying the number of people his ‘‘secret’’ Twitter account was following.

While Instagram does protect the identity of users who wish to remain private, it does

not prevent how their recommendation algorithms make use of this private data. The

result of computations done by these algorithms is not protected which is what led to

the leak in this particular case. Note: While Instagram was not directly responsible

for this leak, Feinberg did exploit this undetected implicit flow that resulted in her

findings.

2.1.3 Language based information flow security

There have been several approaches that researchers have tried to deal with the

problem of information flow security, primarily categorized into static and dynamic

analysis [19, 20]. In recent years, a lot of the research has been focussed on language-
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based approaches with the objective of making information flow security a part of

the programming language used for development. These are mostly extensions to

existing programming languages that provide constructs to define labels, to specify

policies, and to check those policies. As Sabelfeld and Myers [16] discuss, the use of

type systems for information flow analysis presents a promising approach to get a

practical implementation of information flow control. Here, every expression has a

security type with two parts: an ordinary type and a label that describes how the

value may be used. It is the job of the compiler to perform type checking; whenever a

program containing labelled types is read, the compiler also makes sure that there

will be no illegal flow of information at run-time. The authors call such a type system

that enforces information flow policies a security-type system.

Jif (Java + information flow) is an example of a language with a security-type

system [21], it extends Java with information flow controls and access controls that

are enforced at compile-time and run-time. It is based on the JFlow language [22],

which is the first usable programming model that provided static information flow

analysis.

The programming model introduced with Jif provides a robust set of features

along with the ability to specify information flow policies that are enforced by the

Jif compiler, but it is still not adopted in many practical, real-world systems. This

is largely due to the fact that a programmer must still have policy checking logic

all over the program whenever a sensitive value is used. When access to a sensitive

value is forbidden by a policy and the programmer has not handled such cases, the

program is likely to behave in an unexpected manner or get stuck. As Yang puts

it in her thesis [23], handling all cases where sensitive variables are used leads to

‘‘programmer burden from policy spaghetti’’. That is, using a system like Jif results

in policy checking logic scattered throughout the code. This leads to code that is
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difficult to maintain and prone to human error. Another problem is realized when

these policies need to be changed, which would mean changes everywhere the sensitive

variable is used.

2.2 The policy-agnostic programming model

In an attempt to make the implementation of information flow security more

flexible, Yang et al [1] introduced the policy-agnostic programming (PAP) model. PAP

is an approach where the developer only needs to focus on writing core functionality

without the additional burden of thinking about data privacy constraints on sensitive

values.

PAP is introduced using Jeeves, a domain specific language that provides con-

structs to define sensitive labels, policies, and to mark variables as sensitive. In Jeeves,

sensitive data has two views associated with it, a high confidentiality view and a low

confidentiality view. What view of the sensitive data is revealed to a particular output

channel depends on the context of the channel and the policy associated with the

sensitive data. Context here is an object that contains relevant information that a

policy may refer to. This can vary depending on the application. Austin et al [24]

provide an example of a context object for a health database application:

HealthContext {viewer: User, time: Date}

Here, the policies attached to sensitive variables will be resolved based on the user

who is trying to access a health record while time allows certain policies to define

expiration and activation times for visibility. The goal of PAP is that you define all

policies on sensitive values when they are defined. After this, everywhere the sensitive

value needs to be sent to an output channel, the language runtime is responsible for

enforcing and checking the policies associated with them.

The initial implementation of Jeeves involved symbolic execution and constraint
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solving to produce outputs adhering to the policies associated with sensitive data. This

approach had limitations in terms of implementation feasibility and expressiveness,

which were later addressed by extending it with faceted values [24]. The faceted

execution of policy-agnostic programs is based on work by Austin and Flanagan [25].

2.2.1 What is a faceted value?

A faceted value as defined in [25] is ‘‘a triple consisting of a principal 𝑘 and two

values 𝑉𝐻 and 𝑉𝐿.’’ It is represented as:

⟨𝑘 ? 𝑉𝐻 : 𝑉𝐿⟩

Here you can imagine the principal 𝑘 to be the owner/guard of the sensitive value.

The faceted value appears as 𝑉𝐻 (private facet) to private observers that are allowed

to view 𝑘’s private data, and as 𝑉𝐿 (public facet) to other public observers. In Jeeves,

principals of faceted values have policies associated with them which are rules that

the ‘‘guard’’ will check before providing access to the private facet. These policies

need not be checked till the value needs to be revealed to an output channel. So,

while faceted values are flowing through a program, there are special semantics that

define how they should be evaluated. The following is an example of a faceted value

that specifies a sensitive email address:

⟨𝑘 ? ‘jon@sjsu.edu’ : ‘[redacted]’⟩

When the policy associated with 𝑘 can be resolved to true, the value ‘jon@sjsu.edu’ is

visible and if the policy is resolved to false, then the value ‘[redacted]’ is visible.

2.2.2 Evaluation semantics of faceted values

The semantics of Jeeves are modeled using 𝜆𝑗𝑒𝑒𝑣𝑒𝑠 which is the core language

that extends the faceted execution semantics of Austin and Flanagan [25]. Figure 1

shows the 𝜆𝑗𝑒𝑒𝑣𝑒𝑠 language. Notable here are the faceted expressions, label declarations
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and policy specification expressions which help build policy agnostic programs. We

briefly discuss some of the faceted evaluation semantics to give a gist of a how a policy

agnostic program might behave in certain scenarios. In Chapter 3, we will talk about

the Jeeves constructs that enable PAP.

A program counter (pc) is used to track when program execution is being

influenced by a public or private facet. Any expression involving a faceted value

becomes a faceted expression. So if we have something like:

⟨𝑘 ? 𝑉𝐻 : 𝑉𝐿⟩ + 𝑛𝑢𝑚𝑏𝑒𝑟

This can be though of as the faceted expression:

⟨𝑘 ? 𝑉𝐻 + 𝑛𝑢𝑚𝑏𝑒𝑟 : 𝑉𝐿 + 𝑛𝑢𝑚𝑏𝑒𝑟⟩

which is of the form:
⟨𝑘 ? 𝑒1 : 𝑒2⟩

The faceted evaluation semantics shown in Figure 2 defines [F-SPLIT] as the rule to

evaluate faceted expressions. Here, assuming neither 𝑘 nor 𝑘 are in the current pc,

we evaluate both expressions 𝑒1 and 𝑒2 one after the other. First, 𝑘 is added to pc to

obtain 𝑉1 from 𝑒1 and then 𝑘 is added to pc to obtain 𝑉2 from 𝑒2. Finally, we create

a new faceted value:
⟨𝑘 ? 𝑉1 : 𝑉2⟩

On the other hand, if the pc already contains either 𝑘 or 𝑘, then only one expression

is evaluated as defined in the rules [F-LEFT] and [F-RIGHT].

In Figure 3, the [F-IF-SPLIT] rule defines how a conditional statement is handled

for faceted values. Figure 4 shows a code snippet which has a potential to leak data

through an implicit flow. Line 8 defines a faceted value which is sent as input to the

function f. Line 3 has a conditional statement which is dependent on this faceted
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Figure 1: The 𝜆𝑗𝑒𝑒𝑣𝑒𝑠 source language [24]

value. Here, the conditional statement would become a faceted expression of the

form <h? 25 > 0 : 0 > 0>. The [F-SPLIT] rule would be used to evaluate this

expression to <h?true:false>. Now, the [F-IF-SPLIT] rule would be used to evaluate

the if block from line 3 to line 5. First, ℎ is added to the pc to evaluate the if block

under the influence of the private facet which would be the assignment expression:

E1 = v1 := false. Next, the if block is evaluated under the influence of the public

facet by adding ℎ̄ to the pc. This would be a no-op since there is no else block. Note,

under the influence of the private facet, we assigned false to the variable v1 which

already had true assigned to it. At the end of evaluation of the if block, the final

value of v1 is <h?false:true>.

The faceted evaluation semantics of Jeeves gives it a few desirable properties;
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Figure 2: Faceted evaluation semantics [24]

Figure 3: Semantics of Derived Encodings [24]

the projection property which states that a single execution with faceted val-

ues can be projected onto multiple different executions without faceted values, the

termination-insensitive noninterference (the projection property helps to prove this),

and termination-insensitive policy compliance which states that data is revealed to an
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1 function f(val) {
2 var v1 = true;
3 if (val > 0) {
4 v1 = false;
5 }
6 return v1;
7 }
8 var f1 = <h?25:0 >;
9 f(f1);

Figure 4: Faceted Evaluation of a potential implicit flow

external observer only if it is allowed by the policy specified in the program.

2.2.3 The Jacqueline Framework

Yang et al. [2] demonstrate the practical feasibility of the policy-agnostic pro-

gramming paradigm for database-backed server-side applications. They introduce

Jacqueline, an MVC framework with an aim to provide a platform to easily implement

information flow security in server side applications. Figure 5 shows a snippet of a

‘‘Model’’ definition in Jacqueline, how a sensitive value is defined, and what a policy

looks like. Here, project_name is the field we are marking as sensitive by using the an-

notation @label_for. The method jeeves_restrict_projectlabel defines the pol-

icy which is a boolean function while the method jeeves_get_private_project_name

defines the public facet of the sensitive value. In jeeves_restrict_projectlabel,

ctxt is the context object representing the output channel which in the case of this

application is the currently logged-in user. Once the policy for a sensitive variable

is defined, the programmer need not worry about where or how they are using this

value; the Jeeves runtime will take care of any potential leaks and the policy is only

resolved when the value is going out to an output channel like the client-side.

As seen in the example above, the Jeeves runtime in the Jacqueline framework

took care of information flow control and resolved the policy for sensitive data only

when going out to the browser. But, once data is on the browser, the concept of

16



1 class Project(JacquelineModel):
2 project_name = models.CharField(max_length = 128)
3 code_name = models.CharField(max_length = 128)
4 start_date = models.DateTimeField(’date started ’)
5 end_date = models.DateTimeField(’date ended’)
6 department = ForeignKey(Department , on_delete=models.CASCADE)
7
8 @staticmethod
9 def jeeves_get_private_project_name(project):

10 return project.code_name
11
12 @staticmethod
13 @label_for(’project_name ’)
14 @jeeves
15 def jeeves_restrict_projectlabel(project , ctxt):
16 return project.department == ctxt.department

Figure 5: Model definition in the Jacqueline framework

facets is lost. However, we may want to further protect our data against exfiltration

attacks. This is where our solution would help by persisting faceted values and policies

associated with them on the client-side.

2.3 Related Work

Austin and Flanagan’s [25] original work showed the benefits of faceted values for

dynamic information flow control by giving an example of how it could help reduce

the power of an XSS attack. Rajani et al. [26] implement information flow controls

for event handling and the DOM API which is based on work done by Bichhawat

et al. [27] in which they build information flow controls into the WebKit Javascript

engine. The drawback of both these approaches is that when an information flow

control is violated, the execution is halted which may not be desirable for dynamic

web pages.

Koskela et al. [28] present an interesting approach to browser security by present-

ing an actor based approach where the various content providers (actors) that make

up a web page are accountable for the content they send. They confine each actor
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within a <div> tag and based on their track record, the user/browser can decide how

much restriction to enforce on a particular <div> node.

Policy agnostic programming along with faceted values provides a very flexible

approach (which is desirable on the client-side) to information flow control while still

providing strong guarantees. We discuss more about our solution in Chapter 3 along

with a demonstration of how it would help protect browser content.
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CHAPTER 3

Implementing policy-agnostic programming on the client side

We incorporated policy-agnostic programming into Javascript by adding con-

structs defined for the Jeeves language as a subsystem1. We chose Narcissus [29], a

Javascript interpreter written in Javascript, to create the proof of concept. Narcissus

was built by its developers to be able to prototype new language features for Javascript.

3.1 Implementing faceted values in Narcissus

The implementation of faceted values is integral to implementing Jeeves. Our

implementation of faceted values derives heavily from the work done by Austin and

Flanagan [25] and is inspired from the concept presented by Kerchove et al. [30] for

‘‘modular instrumentation’’ of interpreters. They talk about how many dynamic anal-

ysis approaches for information flow security have prototypes that are implemented

in very specific ways making it difficult to compare and reuse. They derive some

specific criteria to follow in order to achieve ‘‘modular instrumentation’’ using the

implementation [31] of faceted values [25] as a case study. While we borrow a few

ideas from this, our implementation does not follow the criteria specified because

achieving ‘‘modular instrumentation’’ would involve non-trivial changes to the Nar-

cissus interpreter making it out of scope for our problem. What we did achieve is

the untangling of the concerns of the core interpreter for non-faceted evaluation from

the concerns of faceted evaluation. This makes it easier to relate principles of faceted

evaluation with the implemented prototype and also to extend or reuse it.

Our implementation of faceted values is independent from the core Narcissus

interpreter. This involved making the core interpreter modular to be able to modify

existing evaluation mechanisms to behave differently for faceted values. The Narcissus

interpreter has an execute function that consists of a switch case control flow that is
1The code is available at: https://github.com/kushalpalesha/narcissus
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set to perform the appropriate set of operations based on the type of node identified

by the parser. Wherever there is need for faceted behavior, instead of making the

core interpreter code handle faceted behavior, we moved the part we would need to

change into a function and later override it to handle the faceted behavior. Figure 6

shows how this overriding is implemented for the [F-IF-SPLIT] evaluation rule. Here,

BaseExecContext is an object that stores a copy of all the fucntions from the core

interpreter which we need to override. ExecutionContext is an object from the core

interpreter that keeps track of the current flow of execution. FacetExecContext is

the ExecutionContext object extended with the pc to help keep track of the influence

of public or private facets on the current flow of execution. In the evalIfBlock

function, notice we call the base evalIfBlock function if cond is not a faceted value.

Otherwise, we call the evaluateEach function which implements the [FA-SPLIT] rules

from Figure 7. We override behavior of the rest of the functions in BaseExecContext

in a similar manner.

3.2 Implementing Jeeves

Once we had faceted values working, adding support for Jeeves constructs was

pretty straightforward. All of the Jeeves constructs are encapsulated in the prototype

of the PolicyEnvironment object which includes the [F-LABEL] and [F-RESTRICT]

evaluation rules as shown in Figure 8. Every instance of the PolicyEnvironment

object has a policyMap that is used to store the ‘label’:‘policy’ mapping.

The Jeeves constructs available in the PolicyEnvironment prototype are:

1. mkLabel: This function is roughly based on the [F-LABEL] rule. It creates a

label and associates a default true policy to it.

2. restrict: This function associates the given policy function to the given label

in the policyMap of the current PolicyEnvironment.
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1 var BaseExecContext = {
2 getValue : interpreter.ExecutionContext.prototype.getValue ,
3 putValue : interpreter.ExecutionContext.prototype.putValue ,
4 evalBinOp : interpreter.ExecutionContext.prototype.evalBinOp ,
5 evalUnaryOp : interpreter.ExecutionContext.prototype.evalUnaryOp ,
6 evalIfBlock : interpreter.ExecutionContext.prototype.evalIfBlock ,
7 evalDot : interpreter.ExecutionContext.prototype.evalDot ,
8 evalFunctionCall : interpreter.ExecutionContext.prototype.

evalFunctionCall ,
9 runWhileLoop : interpreter.ExecutionContext.prototype.runWhileLoop

10 };
11
12 FacetExecContext.prototype.evalIfBlock = function(cond ,thenPart ,

elsePart) {
13 var execContext = FacetExecContext.current;
14 if (cond instanceof FacetedValue) {
15 evaluateEach(cond , function(v, x) {
16 if (v) {
17 interpreter.execute(thenPart , x);
18 } else if (elsePart) {
19 interpreter.execute(elsePart , x);
20 }
21 }, execContext);
22 } else {
23 BaseExecContext.evalIfBlock.call(this ,cond ,thenPart ,elsePart);
24 }
25 };

Figure 6: Independent implementation of faceted behavior for the ‘‘if’’ control flow

Figure 7: Function application rules [24]

3. mkSensitive: This function creates a faceted value. It takes the label, private

value, and public value as input and returns a faceted value. This function

would only return the private value or the public value in cases where the current
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Figure 8: Evaluation semantics for Jeeves labels and policies [24]

program counter contains the label or reverse of the label respectively.

4. concretize: This function is used when the faceted value needs to be viewed

in an output context. It takes the context object and faceted value as input and

resolves the policies for all labels in the program counter of the faceted value

recursively till it reaches a raw value with no facets.

5. partialConcretize: Partial concretize is similar to the concretize function

except it only resolves the policy associated with the first label of a possibly

complex faceted value based on the given context object. Figure 9 shows what

the concretize and partialConcretize functions look like.

3.2.1 Using Jeeves constructs

Figure 10 shows two test cases of how the Jeeves constructs listed above would

be used. Note, policyEnv is an instance of the PolicyEnvironment prototype.

In testPolicyComplexFacets, we are constructing complex faceted values with

two principals/labels and have two different policies for each respectively. The call to

concretize at the end shows what a context object would look like in this case. The

faceted value stored in a in notation looks like this: ⟨𝑥 ? ⟨𝑦 ?10 : 15⟩ : 0⟩.

In testPartialConcretize, we are using partialConcretize with two different

context objects. This type of usage would be ideal for a client-server interaction where
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1 function concretize(context , val) {
2 if (val instanceof FacetedValue) {
3 var label = head(val);
4 var policy = this.policyMap[label];
5 if (policy(context)) {
6 return this.concretize(context , val.high);
7 } else {
8 return this.concretize(context , val.low);
9 }

10 } else {
11 return val;
12 }
13 }
14 function partialConcretize(context , val) {
15 if (val instanceof FacetedValue) {
16 var label = head(val);
17 var policy = this.policyMap[label];
18 if (policy(context)) {
19 val = val.high;
20 } else {
21 val = val.low;
22 }
23 }
24 return val;
25 }

Figure 9: Concretize and partialConcretize function definitions

you can have different context objects for the server and client-side respectively. Note:

in the example, the policies associated with the two labels are expecting different

properties in the context object passed to them.

3.3 Policy agnostic programming in dom.js

Web browsers have an implementation of the DOM to allow scripts to access

and manipulate content. We add faceted values and policy-agnostic programming

constructs to the DOM implementation to show how it can be used to prevent sensitive

data from leaking.

We use dom.js [32], which is a DOM implementation written in Javascript. This

makes it possible for us to parse it using Narcissus and make DOM components

available to scripts just like a web browser would. The advantages of using dom.js
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1 function () testPolicyComplexFacets{
2 var x = policyEnv.mkLabel("x");
3 policyEnv.restrict(x, function (context) {
4 return context.val1 === 22 && context.val2 === 21;
5 });
6
7 var y = policyEnv.mkLabel("y");
8 policyEnv.restrict(y, function (context) {
9 return context.val2 === 22;

10 });
11 var a = policyEnv.mkSensitive(x, policyEnv.mkSensitive(y, 10, 15),

0);
12 return assertEquals(policyEnv.concretize ({val1: 22, val2: 21}, a),

15);
13 };
14
15 function testPartialConcretize () {
16 var x = policyEnv.mkLabel("x");
17 policyEnv.restrict(x, function (context) {
18 return context.val1 === 22 && context.val2 === 21;
19 });
20
21 var y = policyEnv.mkLabel("y");
22 policyEnv.restrict(y, function (context) {
23 return context.otherVal = 44;
24 });
25 var a = policyEnv.mkSensitive(x, policyEnv.mkSensitive(y, 10, 15),

0);
26
27 var result1 = assertEquals(policyEnv.partialConcretize ({val1: 22,

val2: 21}, b).toString (), "{y?10:15}");
28 var result2 = assertEquals(policyEnv.partialConcretize ({val:22}, b

), 0);
29 return result2 && result1;
30 };

Figure 10: Example usage of Jeeves constructs

is highlighted by Austin et al. [33, Section 9.3] since it makes it possible to include

faceted values in the DOM and track flow of private information on the web browser.

We first identify the entry and exit points in the DOM that have the potential to

leak sensitive data such as when the setAttribute and getAttribute functions of

an element are called; when a Text node is created and appended to a DOM and when

the innerHTML property of an element is used to access the text within an element;
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and finally when an XMLHttpRequest is made to load an external script, image, or

other media.

Note here, the setAttribute function and creation of the textNode are entry

points into the DOM. Here, we have to be careful not to render sensitive information

onto unwanted components like the src attribute of an image or script tag. We discuss

such a scenario in Section 3.4. On the other hand, once a value is rendered onto the

DOM, a script may try to access rendered values using the getAttribute function

and the innerHTML property.

We introduce an instance of the PolicyEnvironment prototype to the window

object. This gives access to Jeeves constructs within the DOM along with a policyMap

for each web page. We also introduce a facetedValueMap available as a global store

that associates textNodes or attributes of elements with corresponding faceted values.

The facetedValueMap is of type WeakMap that provides a loose mapping from objects

to values [34].

Figure 12 shows how creation of a text node for faceted values is handled within

the DOM. The function createTextNode creates a node that would eventually be

rendered onto a web page. At this point, we need to decide which facet of a faceted

value should be rendered. If the input to createTextNode() is faceted, then we

concretize that value to get a raw value to be rendered. Note, in the concretize

function we do not specify what the context object looks like. We talk about

this in detail in Section 3.5. Additionally, we add the faceted value itself to the

facetedValueMap with the textNode as key. We have added similar code in the

setAttribute function of an element with one distinction to the object that is used

as key for the facetedValueMap. Here we cannot use the node as the key since we

need to have different keys for different attributes of an element. So, we created an

object using the id of the element and the attribute name as follows:

25



1 // Convert the children of a node to an HTML string.
2 // This is used by the innerHTML getter
3 serialize: constant(function () {
4 var s = "";
5 for(var i = 0, n = this.childNodes.length; i < n; i++) {
6 var kid = this.childNodes[i];
7 if (kid in facetedValueMap) {
8 return facetedValueMap[kid];
9 }

10 .
11 .
12 .
13 }
14 .
15 .
16 .
17 }

Figure 11: Return faceted value if exists when the innerHTML property is accessed

1 createTextNode: function createTextNode(data) {
2 var dataString = data;
3 var dataIsFaceted = isFaceted(data);
4 if (dataIsFaceted) {
5 dataString = window.policyEnv.concretize ({...} , data);
6 }
7 var textNode = unwrap(this).createTextNode(String(dataString));
8 if (dataIsFaceted) facetedValueMap[textNode] = data;
9 return wrap(textNode);

10 },

Figure 12: Persisting faceted values for createTextNode

facetedValueMap[{id:this.id, attr:attributeName}] = value;

Figure 11 shows how access to the innerHTML property of an element would

return a faceted value instead of the actual content that was rendered on the web

page (lines 7-9). Note that serialize is a function called by the innerHTML getter.

We have similar code to return a faceted value in the getAttribute function of an

element with the key as shown above for the setAttribute function.
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3.4 A data exfiltration case study

We present a simple data exfiltration attack that succeeds in exfiltrating sensitive

data from the a web page to a server that the attacker owns. A direct XMLHttpRequest

to do this would be prevented by the same-origin policy of the web browser, but there

is a simple workaround. The same-origin policy does not restrict the source of a script

or image tag. Although you may use CSP (see Section 1.1.1) to restrict sources, it

becomes difficult to track what image sources to allow and so web developers tend to

keep the CSP of img-src as a wildcard (*), allowing all urls for images.

Figure 13 shows a screenshot of a simple web page we created that shows the

salary of the user currently logged-in and salaries of his subordinates. The helpful

greeting at the top right corner along with the nice background color is a due to

a third-party library that Trudy suggested would be a nice addition to make the

otherwise mundane user interface better. It turns out the third-party library also does

some malicious activity along with these ‘‘colorful’’ additions. Figure 14 shows the

code of the third party library. Here, lines 14-15 would get the message that displays

Manny’s salary. Lines 17-20 extract Manny’s name and salary and line 21 would result

in an attempt to asynchronously load an image with the name ‘‘Manny_10000.jpg’’

from ‘‘localhost:8081’’2 which is not the same as the origin of the web page as shown

in the address bar in Figure 13. This would happen anytime Manny clicks anywhere

on the web page. Now, although there is no image with the name ‘‘Manny_10000.jpg’’

at ‘‘localhost:8081’’, the attacker can access Manny’s salary by checking their http

access logs, as shown in Figure 15.

Now let us look at how policy-agnostic programming controls in the DOM would

prevent such an attack. Figure 16 shows a code snippet of the code that would display

a message similar to the one shown in Figure 13. Note, the string concatenation on
2Here, we are using a different port number to stand in for an alternate url such as ‘‘evil.com’’
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Figure 13: Web page that displays employee salaries

1 var d = new Date();
2 var time = d.getHours ();
3 var greetingNode = document.getElementById("greeting");
4 var message = "Good day!";
5 document.body.style.fontStyle.color = "black";
6 //This section sets background color and greeting based on the time
7 .
8 .
9 var welcomeText = document.createTextNode(message);

10 greetingNode.appendChild(welcomeText);
11 // Malicious code:
12 document.addEventListener("click", function () {
13 var salaryField = document.getElementById("OwnSalary");
14 var text = salaryField.innerHTML;
15 var malImg = document.createElement("img");
16 var commaPos = text.indexOf(",");
17 var dollarPos = text.indexOf("$");
18 var name = text.slice(3,commaPos);
19 var salary = text.slice(dollarPos +1);
20 var imgName = name + "_" + salary + ".jpg";
21 malImg.setAttribute("src","http :// localhost :8081/" + imgName);
22 //The following would violate the same origin policy:
23 //$.post(’http :// localhost :8081/ exfil.php ’,{message:text});
24 });

Figure 14: Third Party library with exfiltration code

line 4 would produce a faceted value of the form:

<"n"? <"s"?"Manny’s Salary is:10000":"Manny’s Salary is:0">:

<"s"?"JonDoe’s Salary is:10000":"JonDoe’s Salary is:0"> >
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Figure 15: Access log entry giving Manny’s salary information to the attacker

1 var domPolicyEnv = window.policyEnv;
2 var fName = domPolicyEnv.mkSensitive("n", "Manny", "JonDoe");
3 var fSalary = domPolicyEnv.mkSensitive("s" ,10000, 0);
4 document.body.appendChild(document.createTextNode(fName + "’s Salary

is:" + fSalary));

Figure 16: Code that would set the display message on the web page

Now, when the code from Figure 14 is run, the concatenation on line 21 would produce

a faceted value of the form:

<"n"? <"s"?"Manny_10000.jpg":"Manny_0.jpg">:

<"s"?"JonDoe_10000.jpg":"JonDoe_0.jpg"> >

So, with the correct policies in place (see Section3.5), the message displayed on the

web page would be ‘‘Manny’s Salary is:10000’’ and the image request would be for

‘‘JonDoe_0.jpg’’.

3.5 The context object and defining policies

In Section 2.2 we briefly touched upon the definition of a context object and

what it might look like in a health database application. Here, we define what a

context object would look like for our case study above and how it would be used by

policy functions. A context object contains all information that is relevant to define

the ‘‘context’’ of the output channel and varies based on the output channel. For

instance, the context object when an image load request is made by the browser could

be defined as:
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{time: new Date(), elementType: "img"}

When defining a policy for a sensitive value, the designer/developer needs to be aware

of where it is expected to flow to. A good approach to creating a policy is identifying

the two kinds of output channels: one where we expect our data to flow to, and the

other where we definitely do not want the data to leak to. For the channels where we

expect the data to flow to, we identify conditions under which we would allow the

private facet to be sent out. For all other cases, we allow only the public facet to be

seen. How you define a policy completely depends on your application and the data

you are trying to protect. In our example, we do not expect salaries to be used in

the image tag among other conditions so we need to define the policy accordingly.

Figure 17 shows what that policy might look like. Here, we specify three conditions:

one which defines we do not want salary data to flow to the image or script tag; the

second one specifies that any attempt to render or use salary data past 6:00 pm would

not be allowed; the third specifies the only condition in which salary data is allowed

to be rendered. Notice, in the third condition we are looking for an attribute that

is not part of the context object we have specified above. When createTextNode is

called the context object would look like the following:

{time: new Date(), URL:mycorp.org/salaryManager.php}

With this context, assuming time is less than 6:00 pm, and the policy in Figure 17,

the private facet will be rendered to the Text node.

3.6 Client-server interaction with policy-agnostic programming

Since we have seen the uses of policy-agnostic programming on both the server

(see Section 2.2.3) and client-side (see Section 3.3) we should talk about how we

imagine they would interact with each other. First thing to note is that policies on

the server-side would not be relevant to the client-side and vice-versa. This is mostly
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1 function (ctxt) {
2 if (ctxt.elementType && ctxt.elementType == "img" || ctxt.

elementType == "script") {
3 return false;
4 } else if (ctxt.time && ctxt.time.getHours () > 18) {
5 return false;
6 } else if (ctxt.URL && ctxt.URL == "mycorp.org/salaryManager.php")

{
7 return true;
8 }
9 return false;

10 }

Figure 17: Example of a policy function for the salary faceted value

due to the fact the output context in both cases will be different and the kind of

information leaks they are trying to prevent will also be different. To visualize this

notion, we present an example that demonstrates the interaction of faceted values

between the server and client-side. Suppose, the server of an application stores location

information of a user as a faceted value of the form:

<"serverlabel"?

<"clientlabel"?"Psychiatric center, 4th St.":"Bermuda triangle">:

<"clientlabel"?"Doctor’s office":"Bermuda triangle">

Note, the policy function for ‘‘serverlabel’’ would be in the policyEnvironment

of the server, while the policy function for the ‘‘clientlabel’’ would be in the

policyEnvironment of the client. When the location data is to be sent to a client, the

context object here would be the currently logged in user and the policy function could

be defined such that only the Doctor of the user is able to access the private facet

while other users would get access to the public facet. Here, the partialConcretize

function from Section 3.2 would be useful since we do not want to concretize to a

raw value. We will have different policies on the client side that define what facet is

rendered on the browser.
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CHAPTER 4

Future Work and Conclusion

We explored the use of policy-agnostic programming in the DOM. Another

interesting area to explore on the client-side would be frameworks like Angular.js

(angular). Since, angular is an MVC framework, the policy-agnostic programming

solution for it should be similar to what Yang et al. [2] have demonstrated with

Jacqueline.

We saw how robust information flow controls can help prevent leaking of sensitive

data and how it has seen very slow adoption because of the programmer burden to

write and maintain policy code. Policy-agnostic programming is a promising approach

to implement information flow controls in your system with very limited programmer

burden.

We explored how policy agnostic programming would look like on the client-side.

Through our Javascript implementation in Narcissus and dom.js we were successful

in demonstrating how it helped prevent a known exfiltration attack to which most

modern browsers are vulnerable.
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