612 research outputs found

    FAST Copper for Broadband Access

    Get PDF
    FAST Copper is a multi-year, U.S. NSF funded project that started in 2004, and is jointly pursued by the research groups of Mung Chiang at Princeton University, John Cioffi at Stanford University, and Alexander Fraser at Fraser Research Lab, and in collaboration with several industrial partners including AT&T. The goal of the FAST Copper Project is to provide ubiquitous, 100 Mbps, fiber/DSL broadband access to everyone in the US with a phone line. This goal will be achieved through two threads of research: dynamic and joint optimization of resources in Frequency, Amplitude, Space, and Time (thus the name 'FAST') to overcome the attenuation and crosstalk bottlenecks, and the integration of communication, networking, computation, modeling, and distributed information management and control for the multi-user twisted pair network

    Real-time dynamic spectrum management for multi-user multi-carrier communication systems

    Full text link
    Dynamic spectrum management is recognized as a key technique to tackle interference in multi-user multi-carrier communication systems and networks. However existing dynamic spectrum management algorithms may not be suitable when the available computation time and compute power are limited, i.e., when a very fast responsiveness is required. In this paper, we present a new paradigm, theory and algorithm for real-time dynamic spectrum management (RT-DSM) under tight real-time constraints. Specifically, a RT-DSM algorithm can be stopped at any point in time while guaranteeing a feasible and improved solution. This is enabled by the introduction of a novel difference-of-variables (DoV) transformation and problem reformulation, for which a primal coordinate ascent approach is proposed with exact line search via a logarithmicly scaled grid search. The concrete proposed algorithm is referred to as iterative power difference balancing (IPDB). Simulations for different realistic wireline and wireless interference limited systems demonstrate its good performance, low complexity and wide applicability under different configurations.Comment: 14 pages, 9 figures. This work has been submitted to the IEEE for possible publicatio

    Optimal multi-user spectrum balancing for digital subscriber lines

    Get PDF
    Crosstalk is a major issue in modern digital subscriber line (DSL) systems such as ADSL and VDSL. Static spectrum management, which is the traditional way of ensuring spectral compatibility, employs spectral masks that can be overly conservative and lead to poor performance. This paper presents a centralized algorithm for optimal spectrum balancing in DSL. The algorithm uses the dual decomposition method to optimize spectra in an efficient and computationally tractable way. The algorithm shows significant performance gains over existing dynamic spectrum management (DSM) techniques, e.g., in one of the cases studied, the proposed centralized algorithm leads to a factor-of-four increase in data rate over the distributed DSM algorithm iterative waterfilling

    Spectrum optimization in multi-user multi-carrier systems with iterative convex and nonconvex approximation methods

    Full text link
    Several practical multi-user multi-carrier communication systems are characterized by a multi-carrier interference channel system model where the interference is treated as noise. For these systems, spectrum optimization is a promising means to mitigate interference. This however corresponds to a challenging nonconvex optimization problem. Existing iterative convex approximation (ICA) methods consist in solving a series of improving convex approximations and are typically implemented in a per-user iterative approach. However they do not take this typical iterative implementation into account in their design. This paper proposes a novel class of iterative approximation methods that focuses explicitly on the per-user iterative implementation, which allows to relax the problem significantly, dropping joint convexity and even convexity requirements for the approximations. A systematic design framework is proposed to construct instances of this novel class, where several new iterative approximation methods are developed with improved per-user convex and nonconvex approximations that are both tighter and simpler to solve (in closed-form). As a result, these novel methods display a much faster convergence speed and require a significantly lower computational cost. Furthermore, a majority of the proposed methods can tackle the issue of getting stuck in bad locally optimal solutions, and hence improve solution quality compared to existing ICA methods.Comment: 33 pages, 7 figures. This work has been submitted for possible publicatio

    Performance Enhancement in Copper Twisted Pair Cable Communications

    Get PDF
    The thesis focuses on the area of copper twisted pair based wireline communications. As one of the most widely deployed communication media, the copper twisted pair cable plays an important role in the communication network cabling infrastructure. This thesis looks to exploit diversity to improve twisted pair channels for data communications in two common application areas, namely Ethernet over Twisted Paris and digital subscriber line over twisted pair based telephone network. The first part of the thesis addresses new approaches to next generation Ethernet over twisted pair cable. The coming challenge for Ethernet over twisted pair cable is to realise a higher data rate beyond the 25/40GBASE-T standard, in relatively short reach scenarios. The straight-forward approaches, such as improving cable quality and extending frequency bandwidth, are unlikely to provide significant improvement in terms of data rate. However, other system diversities, such as spectrum utilization are yet to be fully exploited, so as to meet the desired data rate performance. The current balanced transmission over the structured twisted pair cable and its parallel single-in-single-out channel model is revisited and formulated as a full-duplex multiple-in-multiple-out (MIMO) channel model. With a common ground (provided by the cable shield), the balanced transmission is converted into unbalanced transmission, by replacing the differential-mode excitation with single-ended excitation. In this way, MIMO adoption may offer spectrum utilization advantages due to the doubled number of the channels. The S-parameters of the proposed MIMO channel model is obtained through the full wave electromagnetic simulation of a short CAT7A cable. The channel models are constructed from the resulting S-parameters, also the corresponding theoretical capacity is evaluated by exploiting different diversity scenarios. With higher spectrum efficiency, the orthogonal-frequency-division-multiplexing (OFDM) modulation can significantly improve the theoretical capacity compared with single-carrier modulation, where the channel frequency selectivity is aided. The MIMO can further enhance the capacity by minimising the impact of the crosstalk. When the crosstalk is properly handled under the unbalanced transmission, this thesis shows that the theoretical capacity of the EoTP cable can reach nearly 200GBit/s. In order to further extend the bandwidth capability of twisted pair cables, Phantom Mode transmission is studied, aiming at creating more channels under balanced transmission operation. The second part of the thesis focuses on the research of advanced scheduling algorithms for VDSL2 QoS enhancement. For VDSL2 broadband access networks, multi-user optimisation techniques have been developed, so as to improve the basic data rate performance. Spectrum balancing improves the network performance by optimising users transmit power spectra as the resource allocation, to mitigate the impact from the crosstalk. Aiming at enhancing the performance for the upstream VDSL2 service, where the users QoS demand is not known by all other users, a set of autonomous spectrum balancing algorithms is proposed. These optimise users transmit power spectra locally with only direct channel state information. To prevent selfish behaviour, the concept of a virtual user is introduced to represent the impact on both crosstalk interference and queueing status of other users. Moreover, novel algorithms are developed to determine the parameters and the weight of the virtual user. Another type of resource allocation in the VDSL2 network is crosstalk cancellation by centralised signal coordination. The history of the data queue is considered as a time series, on which different smooth filter characteristics are investigated in order to investigate further performance improvement. The use of filter techniques accounts for both the instantaneous queue length and also the previous data to determine the most efficient dynamic resource allocation. With the help of this smoothed dynamic resource allocation, the network will benefit from both reduced signalling communication and improved delay performance.The proposed algorithms are verified by numerical experiments

    Green and fast DSL via joint processing of multiple lines and time–frequency packed modulation

    Get PDF
    In this paper, strategies to enhance the performance, in terms of available data-rate per user, energy efficiency, and spectral efficiency, of current digital subscriber lines (DSL) are proposed. In particular, a system wherein a group of copper wires is jointly processed at both ends of the communication link is considered. For such a scenario, a resource allocation scheme aimed at energy efficiency maximization is proposed, and, moreover, time–frequency packed modulation schemes are investigated for increased spectral efficiency. Results show that a joint processing of even a limited number of wires at both ends of the communication links brings remarkable performance improvements with respect to the case of individual point-to-point DSL connections; moreover, the considered solution does represent a viable means to increase, in the short term, the data-rate of the wired access network, without an intensive (and expensive) deployment of optical links

    Autonomous Spectrum Balancing for Digital Subscriber Lines

    Get PDF
    The main performance bottleneck of modern Digital Subscriber Line (DSL) networks is the crosstalk among different lines (users). By deploying Dynamic Spectrum Management (DSM) techniques and reducing excess crosstalks among users, a network operator can dramatically increase the data rates and service reach of broadband access. However, current DSM algorithms suffer from either substantial suboptimality in typical deployment scenarios or prohibitively high complexity due to centralized computation. This paper develops, analyzes, and simulates a new suite of DSM algorithms for DSL interference channel models called Autonomous Spectrum Balancing (ASB), for both synchronous and asynchronous transmission cases. In the synchronous case, the transmissions over different tones are orthogonal to each other. In the asynchronous case, the transmissions on different tones are coupled together due to intercarrier- interference. In both cases, ASB utilizes the concept of a 'reference line', which mimics a typical victim line in the interference channel. The basic procedure in ASB algorithms is simple: each user optimizes the weighted sum of the achievable rates on its own line and the reference line while assuming the interferences from other users as noise. Users then iterate until the target rate constraints are met. Good choices of reference line parameters are already available in industry standards, and the ASB algorithm makes the intuitions completely rigorous and theoretically sound. ASB is the first set of algorithms that is fully autonomous, has low complexity, and yet achieves near-optimal performance. It effectively solves the nonconvex and coupled optimization problem of DSL spectrum management, and overcomes the bottleneck of all previous DSM algorithms
    • …
    corecore