4,149 research outputs found

    A Genetic Algorithm Based Finger Selection Scheme for UWB MMSE Rake Receivers

    Full text link
    Due to a large number of multipath components in a typical ultra wideband (UWB) system, selective Rake (SRake) receivers, which combine energy from a subset of multipath components, are commonly employed. In order to optimize system performance, an optimal selection of multipath components to be employed at fingers of an SRake receiver needs to be considered. In this paper, this finger selection problem is investigated for a minimum mean square error (MMSE) UWB SRake receiver. Since the optimal solution is NP hard, a genetic algorithm (GA) based iterative scheme is proposed, which can achieve near-optimal performance after a reasonable number of iterations. Simulation results are presented to compare the performance of the proposed finger selection algorithm with those of the conventional and optimal schemes.Comment: To appear in the Proc. IEEE International Conference on Ultrawideband (ICU-2005

    Dense multipath component polarization and wall attenuation at 1.35 GHz in an office environment

    Get PDF
    This paper presents an analysis of dense multipath components in office meeting rooms. Radio channel sounding measurements at 1.35 GHz were performed with transmitter and receiver in the same room (intra-room) and in adjacent rooms (inter-room). Specular and dense multipath components were estimated with the RiMAX maximum-likelihood algorithm. The dense multipath reverberation characteristics were found to be not significantly different between polarization subchannels for both the intra-room and the inter-room channels, supporting the validity of a scalar dense multipath model. The specular and dense multipath wall attenuation losses were found to be 12.0 and 5.4 dB, respectively

    Experimental analysis of dense multipath components in an industrial environment

    Get PDF
    This work presents an analysis of dense multipath components (DMC) in an industrial workshop. Radio channel sounding was performed with a vector network analyzer and virtual antenna arrays. The specular and dense multipath components were estimated with the RiMAX algorithm. The DMC covariance structure of the RiMAX data model was validated. Two DMC parameters were studied: the distribution of radio channel power between specular and dense multipath, and the DMC reverberation time. The DMC power accounted for 23% to 70% of the total channel power. A significant difference between DMC powers in line-of-sight and nonline-of-sight was observed, which can be largely attributed to the power of the line-of-sight multipath component. In agreement with room electromagnetics theory, the DMC reverberation time was found to be nearly constant. Overall, DMC in the industrial workshop is more important than in office environments: it occupies a fraction of the total channel power that is 4% to 13% larger. The industrial environment absorbs on average 29% of the electromagnetic energy compared to 45%-51% for office environments in literature: this results in a larger reverberation time in the former environment. These findings are explained by the highly cluttered and metallic nature of the workshop

    Polarimetric distance-dependent models for large hall scenarios

    Get PDF
    A comprehensive polarimetric distance-dependent model of the power delay profile (PDP) and path gain is proposed. The model includes both specular multipath components (SMCs) and dense multipath components (DMC), the latter being modeled with an exponential and power law. The parameters of the model were estimated from polarimetric measurements of a large hall radio channel under line-of-sight (LOS) conditions at 1.3 GHz with a dedicated procedure. The validity and robustness of the proposed approach are provided by the good agreement between the polarimetric data and models for the investigated transmitter-receiver distance range. Furthermore, the description of the radio channel with path loss models is discussed for cases where the DMC is included, and a two-step method to compute the path loss characteristics directly from the measured data is developed. The results of this contribution highlight the fact that a complete polarimetric description of all propagation mechanisms and related path loss models is desired to design faithful polarimetric radio channel models

    Rss Based Localization In A Rayleigh Fading Environment

    Get PDF
    The objective of this thesis is to quantify the improvement that can be obtained in sensor agent localization accuracy as a function of the number of multipath components that can be resolved. We assume that a known number sensor agents are located at unknown coordinates within a rectangular grid having anchors at the corner locations, whose locations are known. Further, we assume fading is Rayleigh and that the propagation constant is constant but unknown. Also, we assume that modulation is spread spectrum and that either the sensors or agents are capable of resolving multipath components down to the chip level and are capable of measuring the received signal strength in each of the resolved multipath components. An error function is formulated based upon the square of the distances between the actual sensor locations and their model-predicted locations, which are functions of the received signal strength of the various multipath components and the propagation constant, and the optimal sensor location estimates and propagation constant are determined through a multistage process of formulating and minimizing error functions. The effectiveness of this approach is investigated via extensive simulations in which the Saleh-Valenzuela model is used to generate multipath components. The simulation results indicate that for a given fixed propagation constant, resolving multipath results in improved localization accuracy and that this improvement is a non decreasing function of the propagation constant. For a distance-squared propagation environment, the results indicate that resolving 6 multipath components improves localization accuracy by at least 20 %, the improvement being with respect to the localization accuracy based on aggregate received signal strength

    Optimal and Suboptimal Finger Selection Algorithms for MMSE Rake Receivers in Impulse Radio Ultra-Wideband Systems

    Get PDF
    Convex relaxations of the optimal finger selection algorithm are proposed for a minimum mean square error (MMSE) Rake receiver in an impulse radio ultra-wideband system. First, the optimal finger selection problem is formulated as an integer programming problem with a non-convex objective function. Then, the objective function is approximated by a convex function and the integer programming problem is solved by means of constraint relaxation techniques. The proposed algorithms are suboptimal due to the approximate objective function and the constraint relaxation steps. However, they can be used in conjunction with the conventional finger selection algorithm, which is suboptimal on its own since it ignores the correlation between multipath components, to obtain performances reasonably close to that of the optimal scheme that cannot be implemented in practice due to its complexity. The proposed algorithms leverage convexity of the optimization problem formulations, which is the watershed between `easy' and `difficult' optimization problems.Comment: To appear in IEEE Wireless Communications and Networking Conference (WCNC 2005), New Orleans, LA, March 13-17, 200

    Measurement-based analysis of dense multipath components in a large industrial warehouse

    Get PDF
    This work presents a measurement-based polarimetric analysis of the specular- and dense multipath components (SMCs and DMC) in a large industrial warehouse. MIMO channel sounding measurements were carried out in a flower auction warehouse, and were processed with the RiMAX multipath estimation framework. In the analysis, we investigate the behavior of the SMCs and the DMC power as a function of both the polarization and the transmitter-receiver distance for 1507 distinct positions of the receiver. The cross-polar discrimination of the transmitted V and H polarizations were analyzed statistically for this environment, as well as the relative power ratio of the DMC, and the DMC reverberation time

    An Iterative Receiver for OFDM With Sparsity-Based Parametric Channel Estimation

    Get PDF
    In this work we design a receiver that iteratively passes soft information between the channel estimation and data decoding stages. The receiver incorporates sparsity-based parametric channel estimation. State-of-the-art sparsity-based iterative receivers simplify the channel estimation problem by restricting the multipath delays to a grid. Our receiver does not impose such a restriction. As a result it does not suffer from the leakage effect, which destroys sparsity. Communication at near capacity rates in high SNR requires a large modulation order. Due to the close proximity of modulation symbols in such systems, the grid-based approximation is of insufficient accuracy. We show numerically that a state-of-the-art iterative receiver with grid-based sparse channel estimation exhibits a bit-error-rate floor in the high SNR regime. On the contrary, our receiver performs very close to the perfect channel state information bound for all SNR values. We also demonstrate both theoretically and numerically that parametric channel estimation works well in dense channels, i.e., when the number of multipath components is large and each individual component cannot be resolved.Comment: Major revision, accepted for IEEE Transactions on Signal Processin
    corecore