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ABSTRACT

The objective of this thesis is to quantify the improvement that can be obtained in

sensor agent localization accuracy as a function of the number of multipath components that

can be resolved. We assume that a known number sensor agents are located at unknown

coordinates within a rectangular grid having anchors at the corner locations, whose locations

are known. Further, we assume fading is Rayleigh and that the propagation constant is

constant but unknown. Also, we assume that modulation is spread spectrum and that either

the sensors or agents are capable of resolving multipath components down to the chip level

and are capable of measuring the received signal strength in each of the resolved multipath

components. An error function is formulated based upon the square of the distances between

the actual sensor locations and their model-predicted locations, which are functions of the

received signal strength of the various multipath components and the propagation constant,

and the optimal sensor location estimates and propagation constant are determined through

a multistage process of formulating and minimizing error functions. The effectiveness of this

approach is investigated via extensive simulations in which the Saleh-Valenzuela model is

used to generate multipath components. The simulation results indicate that for a given

fixed propagation constant, resolving multipath results in improved localization accuracy

and that this improvement is a non decreasing function of the propagation constant. For a

distance-squared propagation environment, the results indicate that resolving 6 multipath

components improves localization accuracy by at least 20%, the improvement being with

respect to the localization accuracy based on aggregate received signal strength.
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Chapter 1

INTRODUCTION

This work seeks to quantify the improvement that can be obtained in localization of

sensor nodes in a wireless sensor network as a function of number of resolvable multipath

components. We assume that multipath components arrive in clusters and fading follows

the Rayleigh model. We also assume that modulation technique used is direct sequence

spread sprectrum, and that the sensors can resolve the multipath components down to

the chip level and measure the received signal strength in each of the resolved multipath

components. We propose a method for localization that includes resolving multipaths and

reflecting the measurements to the minimum delay path. A cost function is formulated

and minimized to obtain an estimate of the agent location and propagation constant of the

environment.

The goal of localization is to determine the physical coordinates of a group of sensor

nodes in a wireless sensor network. In any wireless sensor network, there are a number of

anchor nodes, also known as beacon nodes, and multiple agent nodes. Anchor nodes are

simply ordinary sensor nodes that know their global coordinates a priori. This knowledge

could be hard coded, or acquired through some additional hardware such as a GPS receiver.

Based on the location information of the anchor nodes, other ordinary sensor nodes attempt

to localize themselves; such nodes are called agent nodes. As a specific example, suppose we

have a wireless sensor network with anchor nodes and agent nodes, then each of the agent’s

objective is to determine its exact location in global coordinates by using the global position

information and received signal strength from anchor nodes.
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We assume that a known number of agent nodes are located at random two-dimensional

coordinates within a rectangular grid and anchors at the corners, whose locations are known.

We assume that the propagation constant is an unknown constant value. An error function

is formulated based upon the square of the distances between the actual sensor locations

and their model-predicted locations, which are functions of the received signal strength

of the various multipath components and the propagation constant. The optimal sensor

location estimates and propagation constant are determined through a multistage process

of formulating and minimizing cost functions. The Saleh-Valenzuela channel model which is

a statistical multipath model, is used to generate the multipath components and path gains

of each of the components.

The localization accuracy of this approach is investigated via extensive simulations for

the single agent localization and the multiple agent localization case. The simulation results

indicate that for a given fixed propagation constant, resolving multipath results in improved

localization accuracy. Improvement in localization accuracy was found to be a non decreasing

function of number of multipaths that can be resolved and propagation constant of the

environment. We found that improvement due resolving additional multipath components

are marginal beyond 7 components.

1.1 Motivation and goals

Location-awareness is essential for many wireless network applications, such as the lo-

calization service in next generation cellular networks [1], search-and-rescue operations [2],

[3], logistics [4], and blue force tracking in battlefields [5] and many more. Each node is

equipped with a transmitter, receiver or a transceiver, and localization is accomplished us-

ing signals passed between agents and their neighboring anchors. Since resources such as

available power, bandwidth, size of the nodes and the equipments installed in a given node in

a network are limited, one may consider efficient methods of localizing agent nodes that does

not require bulky and expensive equipments. There are numerous RSS based localization
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techniques that have very large localization errors and similarly there are many localization

techniques that localize agent nodes efficiently however have computational complexity, re-

quire heavy and expensive processors and other equipments in sensor node. We investigate

a localization method that uses received signal strength information obtained from anchor

nodes, a simple efficient numerical computation, and does not require additional equipments

in sensors for processing.

The motivation of this thesis is to achieve higher localization accuracy for agent nodes

in a wireless sensor network using the received signal strength information, and to explore

the means by which they could be achieved in a simple decentralized fashion without the

burden of heavy computations and complex centralized network schemes. We then evaluate

the localization performance obtained from our methodology as a function of number of

resolvable multipaths.

1.2 State of the art

Location estimation is an important task in wireless cellular and sensor networks [6].

Most location technologies are based on either time-of-arrival (TOA), time-difference-of-

arrival (TDOA), angle-of-arrival (AOA), or received-signal-strength (RSS) measurements

[6], [7], [8], [9]. The RSS approach exploits signal attenuation with distance to determine

the source location. This technique has been employed in both cellular and sensor net-

works utilizing radio-frequency (RF) fading channel [10]. It is inexpensive compared with

TOA/TDOA and AOA-based approaches has been identified as the prime candidate [9] for

location estimation in wireless sensor networks.

In a wireless communication system the signals may travel through multiple paths be-

tween a transmitter and a receiver [11]. This effect is called a multipath propagation. Due

to the multiple paths, the receiver of the signal will observe variations of amplitude, phase

and angle of arrival of the transmitted signal. These variations originate the phenomenon

referred as multipath fading. The variations are characterized by large-scale and small-scale
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fading. The large-scale fading, refers to path loss caused by the effects of the signal traveling

over large areas. It characterizes the losses due to considerably big physical objects in the

signals path like hills or forests. On the other hand small-scale fading characterizes the ef-

fects of small changes in the separation between a transmitter and a receiver. These changes

can be caused by mobility of the transmitter, receiver or the intermediate objects in the path

of the signal. Small scale changes result in considerable variations of signal amplitude and

phase. Small-scale fading is also known as Rayleigh fading since the fluctuation of the signal

envelope is Rayleigh distributed when there is no predominant line of sight between the

transmitter and receiver. When there is a predominant line of sight between the transmitter

and receiver the fluctuations are statistically described by a Rician distribution [12].

Fundamental limits of localization accuracy of wideband wireless networks in harsh mul-

tipath environments that can be achieved with wideband localization is proposed in [13].

The localization accuracy is characterized in terms of a performance measure called the

squared position error bound (SPEB), and the notion of equivalent Fisher information has

been proposed to derive the SPEB in expressions. The methodology provides insights into

the essence of the localization problem by unifying localization information from individual

anchors and information from a priori knowledge of the agents position in a canonical form.

Their analysis begins with the received waveforms themselves rather than utilizing the signal

metrics extracted from these waveforms. The resulting SPEB serves as a fundamental limit

of localization accuracy [13].

Maximum likelihood estimator for ranging measurements exploiting the received signal

strength is proposed in [14]. The bias and uncertainties of the RSS based ranging procedure

are analyzed, considering a path loss model of an indoor ultra-wideband (UWB) network

under line of sight (LOS) conditions. The nonlinearity of the path loss model is first taken

into account and the statistics of the observed RSS are approximated by a Taylor sequence

of first order. The obtained metric describes the weighted least squares method, and the

metrics of the estimator are analytically derived in closed form. The performance of the

4



derived estimator is investigated in Monte-Carlo simulations and compared with a simple

least squares (LS) method and another method exploiting RSS fingerprints.

1.3 Outline of the thesis

The thesis is organized as follows. The next chapter is detailed study and analysis of the

Saleh-Valenzuela Channel model. Chapter 3 contains details of the localization techniques

that we have proposed. It presents detailed description of the approach and framework that

we have developed for localization. The analysis and performance in terms of number of

resolvable multipaths, propagation constant and the number of agent nodes, is demonstrated

by computer simulations and numerical plots in chapter 4. Chapter 5 concludes the thesis.
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Chapter 2

THE SALEH-VALENZUELA CHANNEL

MODEL

This chapter presents an overview of the channel model [15] we are using in our thesis. Its

detailed literature review and technical overview is presented, and concepts and terminology

related with the work is explained in detail.

The Saleh-Valenzuela (SV) indoor channel model was proposed as the prototype for the

IEEE 802.15.3a reference channel. This model is a statistical multipath model, whose for-

mulation was based on the results of multipath delay spread and attenuation measurements

within a office building and some other indoor environments, carried out by Adel A. M. Saleh

and Reinaldo A. Valenzuela in 1987. This model is extendable (by adjusting its parameters)

to represent channels within other buildings and outdoor environment.

The Saleh-Valenzuela channel model is a statistical multipath model whose basic as-

sumption is that multipath components (MPCs) arrive in clusters, formed by the multiple

reflections from the objects in the vicinity of receiver and transmitter. The channel is rep-

resented by multiple paths or rays that have positive gains {βk}, propagation delays {τk},

and associated phase shifts {θk}, where k is the path index; in principle, k extends from 0

to ∞.

The complex, low-pass impulse response of the channel is given by

h (t) =
∞∑
l=0

∞∑
k=0

βkl expjθkl δ (t− Tl − τkl) , (2.1)
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where l is the cluster index, Tl is the arrival time of the lth cluster, τkl is the arrival time of

the kth ray measured from the beginning of the lth cluster, while βkl and θkl are the gain

and phase of the kth ray of the lth cluster. In principle, rays and clusters extend over an

infinite time, as signified by the double infinite sum.

The rays have independent uniform phases, and independent Rayleigh amplitudes with

variances that decay exponentially with cluster and ray delays [15]. The clusters, and the rays

within the cluster, arrive according to Poisson processes with different rates and have inter

arrival times that are exponentially distributed. The cluster arrival times Tl are modeled as

a Poisson arrival process with fixed rate Λ and ray arrival time τkl are modeled as another

Poisson process with fixed rate λ. Tl and τkl are described by the independent inter arrival

exponential probability density functions

fT̃l (Tl | Tl−1) = Λ exp [−Λ (Tl − Tl−1)] , l > 0, (2.2)

fτ̃kl
(
τkl | τ(k−1)l

)
= λ exp

[
−λ
(
τkl − τ(k−1)l

)]
, k > 0, (2.3)

where Λ and λ is the cluster and ray arrival rate, respectively and since each cluster contains

many rays, λ >> Λ.

The {θkl} are statistically independent uniform random variables over [0, 2π) and the cor-

responding path gains {βkl} are statistically independent positive random variables, whose

mean square values β2
kl are monotonically decreasing functions of {Tl} and {τkl}

β2
kl = β2 (Tl, τkl)

= β2 (0, 0) exp−Tl/Γ exp−τkl/γ, (2.4)

where β2 (0, 0) = β2
00 is the average power gain of the first ray of the first cluster, and Γ and

γ are power-decay constants for the clusters and rays, respectively. This β2 (0, 0) is directly
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related to the average multipath power gain

G (r) = G (1m) r−α,

where G (1m) can be approximated by

G (r) =
GT GR λ0

4π r2
, (2.5)

with r = 1m, where GT and GR are the gains of the transmitting and receiving antennas,

λ0 is RF wavelength, and r is the antenna separation and α is the propagation constant

which is different for different environments. Now,

G (r) = λ

∫ ∞
0

β2 (t) dt

' γλ β2 (0, 0)
L∑
l=0

exp−Tl/Γ . (2.6)

The summation term in (2.6) is usually dominated by the first term, ie. first cluster. By

using (2.2), we can see that the average value of the summation is 1+Γ Λ. The 1 corresponds

to the first cluster and Γ Λ to the subsequent clusters. It is found that 1 >> Γ Λ, hence the

Γ Λ due to subsequent clusters can be safely neglected, and we get

β2 (0, 0) ≈ (γλ)−1 G (1m) r−α. (2.7)

The power decays exponentially with cluster decay as well as excess delay within a cluster

as in Figure 2.1.
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Figure 2.1. A schematic representation of the model: exponentially decaying ray and cluster
average powers.

2.1 Model parameters and physical interpretations

In this section, a brief introduction of the parameters of the channel model and their

physical meaning is presented. The first arriving cluster of rays is formed by the transmitted

wave following a more-or-less direct path to the receiver. Such a path, which is not usually a

straight line, goes through a few, but not too many reflecting surfaces. Subsequent clusters

result from reflections from the building superstructures, large walls, trees, cars, etc. The

first cluster is always present, however subsequent clusters depends on the type environ-

ment. The number of clusters is a function both of the measurement bandwidth and of the

considered environments. The number of clusters in indoor environment varies from 1 to 4

for 2.4 GHz bandwidth around a 5 GHz carrier in indoor environments and an average of 5

clusters in office environments, however up to 14 clusters are found in outdoor environments

[16].

SV model assumes that the ray arrival rate for all the clusters are same, that is, all the

clusters have same λ. However, some UWB measurements indicate that the arrival rate is

larger for later clusters [16]. By resolving the individual rays in about 200 power profile

measurements, the 1/λ is estimated to be in the range 5-10 ns. The range unceratinity came

9



from the fact that the ray-resolving algorithm coupled with the measurement sensitivity was

unable to detect many weak rays, those falling near strong rays.

The expected value of the ray power as a function of time, measured from the arrival

point of the first ray of the first cluster, is given by

β2 (t) = β2 (0, 0)
L∑
l=0

exp−Tl/Γ exp−(t−Tl)/γ u (t− tl) , (2.8)

where u (t) is the unit step function.

The power level of each successive ray reaching the receiver is found to be proportional

to the time delay of that ray, which results in exponential power decay characteristic as

obtained in SV channel model.

The expected value of the path power gain was expressed as a function of the associated

cluster and ray delays Tl and τkl. A new assumption is then made, which is reasonably

supported by the observations, that the probability distribution of the normalized power

gain is independent of the associated delays, or for that matter, of the location. The cumu-

lative distribution of normalized power gain β2
kl/β

2
kl, is unity-mean exponential cumulative

distribution, which results in an exponential probability density function,

f˜̀(`;σ) =
1

σ
exp (−`/σ) , (2.9)

for the path power gain, where the ˜̀ = z̃2 = β̃2
kl and E

[
˜̀
]

= E [z̃2] = E
[
β̃2
kl

]
= σ.

Equivalently, the Rayleigh distribution is

fz̃ (z;σ) =
2z

σ
exp

(
−z2/σ

)
, (2.10)

for the magnitude of the path voltage gain.
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Chapter 3

LOCALIZATION METHODOLOGY

In this chapter, we discuss our localization method in the context of sensor network.

The chapter begins by stating the problem we are solving and introducing the system model

we are using. System parameters and assumptions are presented and then our localization

approach is described in detail. Later the formulation we have used for localization is

analyzed in terms of power received by receiver which is apart from a radiating transmitter

antenna and the objective functions are analytically derived. An algorithm for computing

received signal power and a second for formulating the cost function is presented. The

chapter ends with a brief discussion of the Python programming language which we are using

for the simulation and scipy.optimize.fmin powell used in optimization of cost functions.

The Problem addressed here is as follows: To localize sensor nodes in a Rayleigh fading

environment and to quantify the improvement that can be obtained in agent localization

accuracy as a function of the number of resolvable multipath components.

Simulation is the method used to quantify the improvements that can be obtained when

we resolve miultipath. Setting up a simulation requires modeling the system under study,

capturing the essential entities and their interactions, and then writing code to make the

model executable. A simulator provides, first, a framework with which the system can

be thoroughly studied in its current state and second, a framework that enables the user

to modify any parameters of his choice that might play any part in the efficiency of the

scheduler as well as controlling the way that those parameters are being used.

We set up a network model with a known number of agents located at unknown coor-

dinates within a rectangular grid of length X and width Y having anchors at the corners,
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whose locations are known. We assume that the transmitter signals reaches the receiver

through multiple paths. The Figure 3.1 shows a randomly generated sensor network with

X = 200 and Y = 100. Our target is to determine the exact location of the agent node using

the only received signal strength information. The actual coordinates of the agent node is

(x, y), which we want to localize.

Agent node Anchors

Figure 3.1. An example network with one agent node placed randomly in a rectangular area
with a anchor at each corner.

Anchors transmit beacons which is in the form of radio waves and the agent nodes receive

the transmitted signal. We assume that the propagation environment is same for all the

waves from all the anchors and hence the propagation coefficient is α for all of the rays.

In mathematics, optimization is the process of optimizing an objective function with

respect to some variables in the presence of constraints on those variables. The objective

function is the function that is to be minimized. A loss function or cost function is a function

that maps an event or values of one or more variables onto a real number intuitively repre-

senting some cost associated with the event. An optimization problem seeks to minimize a

loss function.

12



3.1 System parameters and assumptions

We begin with a randomly located agent node within a rectangular 2-dimensional space

with four corner anchors and a propagation constant for a given environment. We assume

that there is exactly one propagation constant for a given environment and its range of

possible values are [2, 4]. The value of α depends on specific propagation environment. In

free space, α = 2, and when obstructions are present, α will have a larger value [12].

Environment Path Loss Exponent, α

Free space 2

Urban area cellular radio 2.7 to 3.5

Shadowed urban cellular radio 3 to 5

Obstructed in building 4 to 6

Obstructed in factories 2 to 3

Since we are transmitting the signal, we know the transmitted signal power, PT. All

the agents are equipped with transceivers and hence can measure the received signal power,

PR. It is well known that the transmitted signals travel through multiple paths. In a real

scenario, at receiver, we cannot determine the actual number of multipaths and hence cannot

determine whether the received signal is from LOS path or NLOS path, but we can measure

the arrival power. Since no two environments are exactly the same, we consider a range of

possible values from 2 to 4.

Once we measure the path power gain of each image coming through multipaths at the

receiver antenna, we obtain error functions. Using those error functions, we develop cost

function and minimize it to localize the agent.

3.2 Location based on received signal power

The path voltage gain βkl are statistically independent positive random variables whose

mean square values βkl are monotonically decreasing functions of {Tl} and {τkl}. The mean
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square values of the gain are given by (2.4) as

β2
kl = β2 (Tl, τkl)

= β2 (0, 0) exp−Tl/Γ exp−τkl/γ, (3.1)

where β2 (0, 0) is the average power gain of the first ray of the first cluster, and Γ and

γ are power-decay constants for the clusters and rays, respectively. The power decays

exponentially with cluster delay as well as excess delay within a cluster.

We first get the path power gain for each arriving multipaths from an anchor node to

the agent node. We know the arrival time of all the ray images at the receiver. We calculate

the total elapsed time from the first image of the first cluster to the very last image of last

arriving cluster. Next, we divide the total time of ray arrival into different time bins of

width 20 ns (1 chip time at 50 Mc/s) and check the bins that have at least one image and

ignore the bins that have none. Now, in each bin, we sum the path power gains of all the

images, and average the path power gain, and fix its arrival time as exactly mid of each bin

width. Thus we get a single average path power gain for each bins. Thus from the (2.4),

β2
kl = β2 (0, 0) exp−Tl/Γ exp−τkl/γ, (3.2)

and

β2 (0, 0) = β2
kl expTl/Γ expτkl/γ . (3.3)

We denote average path power gain for bin b by β2
b , the start time of bth bin by Tb, the mid

point of bin b by τb and the average power gain of the first ray of the first cluster due to bth

bin by β2
b (0, 0). Since τb is always measured from the begining of bin b, τb = 10 ns. Thus,

β2
b (0, 0) = β2

b expTb/Γ expτb/γ, with b = {1, 2, 3, ....., N} , (3.4)
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where N is the total number of bins. This equation (3.4) maps each β2
b to β2

b (0, 0). Thus

we attain N different samples of β2
b (0, 0). Now we average over all N values of β2

b (0, 0) and

obtain a value β2
bavg

(0, 0) which has contribution from all the received ray images in each

bins;

β2
bavg

(0, 0) =
1

N

N∑
b=1

β2
b (0, 0). (3.5)

We have four anchors (A, B, C, D), located at (0,0), (0,X), (X,Y) and (0,Y), respectively

and an agent P at (x, y)

r

P

A
B

C
D

Agent node Anchors

Figure 3.2. An example network with one agent node placed randomly in a rectangular area
with a anchor at each corner. r is the distance between anchor A and agent P .

Using (2.7), we can write

β2 (0, 0) ≈ (γλ)−1 G (1m) r−α, (3.6)

r−α = β2 (0, 0) (γλ) G (1m)−1 ,

r =
[
β2 (0, 0) (γλ) G (1m)−1

]− 1
α
. (3.7)

(γλ) G (1m)−1 is a constant for a given scenario, and we can write (γλ) G (1m)−1 = K.

Hence

r =
[
K β2 (0, 0)

]− 1
α
. (3.8)
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This is the required equation that we will use to calculate errors in distance measurement

obtained from the channel model. Using r =
√
x2 + y2 in (3.8), we have

√
x2 + y2 =

[
K β2 (0, 0)

]− 1
α
, (3.9)

and

ε (x, y, α) =
√
x2 + y2 −

[
K β2 (0, 0)

]− 1
α
. (3.10)

Corresponding to each anchor node, we have a different value of β2
bavg

(0, 0) since

β2 (0, 0) = β2
bavg

(0, 0) .

Now the error function (3.10) becomes

ε (x, y, α) =
√
x2 + y2 −

[
K β2

bavg
(0, 0)

]− 1
α
. (3.11)

3.2.1 Cost function and minimization

Now using the above derived error function, (3.58), we generate four equations corre-

sponding to the four anchors for our cost function.

rA

rC

rB

r
D

P

A
B

C
D

Agent node Anchors

Figure 3.3. An example network with one agent node placed randomly in a rectangular area
with a anchor at each corner, showing distance between agent and anchors.
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Since β2
bavg

(0, 0) is different at the agent node for each anchor, we now add indexing to

differentiate for each anchor, and we can write

Kj = K β2
bjavg

(0, 0) for j ∈ {A,B,C,D} . (3.12)

The error function corresponding to jth anchor node is

εj (x, y, α) = rj −K
− 1
α

j for j ∈ {A,B,C,D}, (3.13)

which results in

εA (x, y, α) =
√
x2 + y2 −K−

1
α

A , (3.14)

εB (x, y, α) =

√
(X − x)2 + y2 −K−

1
α

B , (3.15)

εC (x, y, α) =

√
(X − x)2 + (Y − y)2 −K−

1
α

C , (3.16)

and

εD (x, y, α) =

√
x2 + (Y − y)2 −K−

1
α

D . (3.17)

Now we can write our cost function f (x, y, α) as

f (x, y, α) =
∑

j∈{A,B,C,D}

ε2j (x, y, α) . (3.18)

Once we have our cost function, we minimize the function and find the x̂, ŷ, and α̂ that

minimizes the cost function.

(x̂, ŷ, α̂) = argmin {f (x, y, α)} = argmin

 ∑
j∈{A,B,C,D}

ε2j (x, y, α)

 (3.19)

Thus obtained x̂, ŷ and α̂ is the estimate of agent’s location x, y and propagation constant
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α in our system.

In a real scenario, we have multiple number of agents and anchors as shown in Figure 3.4.

The same method and procedure is extended to localize the multiple agents simultaneously.

P1

P2

P3

P4

P5

P6

P7

P8

A
B

C
D

Agent node Anchors

Figure 3.4. An example network with multiple agent nodes placed randomly in a rectangular
area with a anchor at each corner.

For the given scenario with na agent nodes, error functions corresponding to the ith

agent as in (3.14), (3.15), (3.16), and (3.17) can be written as

εAi (xi, yi, α) =
√
x2
i + y2

i −K
− 1
α

Ai
,

εBi (xi, yi, α) =

√
(X − xi)2 + y2

i −K
− 1
α

Bi
,

εCi (xi, yi, α) =

√
(X − xi)2 + (Y − yi)2 −K−

1
α

Ci
,

and

εDi (xi, yi, α) =

√
x2
i + (Y − yi)2 −K−

1
α

Di
for Pi (xi, yi) . (3.20)

The cost function thus becomes

f (x1, y1, · · · , xna , yna , α) = ε2A1
(x1, y1, α) + ε2B1

(x1, y1, α) + · · ·+ ε2Cna (xna , yna , α) + ε2Dna (xna , yna , α) ,

=
∑

j∈{A,B,C,D}

na∑
i=1

ε2ji (xi, yi, α) . (3.21)
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Now minimizing the cost function will give us an estimate of all the agent locations and

the propagation constant of the environment.

3.3 Analysis of the cost function

The choice of routines for minimizing the cost function depends upon the characteristics

of the cost function itself. Since our cost function is nonlinear, it is of interest to know

whether or not the cost function is convex. In this section, we check the cost function

for convexity and find regions where the function is convex. Here we derive conditions of

convexity for one error function only, and similar conditions can be derived for all other

error functions as well.

If f (x) has a second derivative in [a, b], then a necessary and sufficient condition for the

function to be convex on that interval is that f
′′

(x) ≥ 0 for all x in [a, b]. For an agent

at (x, y), the error functions are given in (3.14), (3.15), (3.16) and (3.17). Those error

functions are a function of x, y and α. In order to get a feel for the difficulty of minimizing

the error function, we do a preliminary analysis of the error function to determine the region

over which it is convex within the rectangular grid in which the sensors are placed.

3.3.1 Convexity with respect to x

In this section, we do a brief investigation of the characteristics of the error function at

specific points and over a few regions with respect to x. We begin with the equation (3.14)

εA (x, y, α) =
√
x2 + y2 −K−

1
α

A ,

ε2A (x, y, α) =
[√

x2 + y2 −K−
1
α

A

]2

, (3.22)
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and find its partial second derivative with respect to x.

∂

∂x
ε2A (x, y, α) =

∂

∂x

[√
x2 + y2 −K−

1
α

A

]2

∂

∂x
ε2A (x, y, α) = 2

(√
x2 + y2 −K−

1
α

A

) 1

2

2x√
x2 + y2

∂

∂x
ε2A (x, y, α) = 2

(
x−K−

1
α

A

x√
x2 + y2

)

Now using the first derivative, we find its second derivative

∂2

∂x2
ε2A (x, y, α) = 2

[
1−

(
K
− 1
α

A

1√
x2 + y2

− x x

(x2 + y2)
3
2

K
− 1
α

A

)]
,

∂2

∂x2
ε2A (x, y, α) = 2− 2

(
K
− 1
α

A

1√
x2 + y2

−K−
1
α

A

x2

(x2 + y2)
3
2

)
. (3.23)

For ∂2

∂x2 ε
2
A (x, y, α) ≥ 0,

(
K
− 1
α

A

1√
x2 + y2

−K−
1
α

A

x2

(x2 + y2)
3
2

)
≤ 1,

K
− 1
α

A√
x2 + y2

(
1− x2

x2 + y2

)
≤ 1,

K
− 1
α

A

y2

(x2 + y2)
3
2

≤ 1. (3.24)

This is the required condition under which the error function (3.14) is convex with respect

to x. Following similar steps for y as we did for x, we get a condition under which the error

function is convex with y

K
− 1
α

A

x2

(x2 + y2)
3
2

≤ 1. (3.25)

We next derive the regions where the condition (3.24) holds in our network layout. First,

we need to know a range of KA that we encountered in the simulation work. By evaluating

the values of KA encountered in the simulation for different agent locations and for different
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values of α, following is the observed range of KA,

10−4 ≤ KA ≤ 9.9× 10−2, forα = 2 (3.26)

10−6 ≤ KA ≤ 9.9× 10−4, forα = 3 (3.27)

10−8 ≤ KA ≤ 9.9× 10−4, forα = 4 (3.28)

The range of KA is different for different value of α used in the simulation. Using the KA,

now we derive the regions where the error function (3.14) is convex with respect to x. We

first consider the point (x, y) = (0, 0). On taking limit of in (3.24) as x and y go to zero,

the result is 0/0. Two applications of L’Hôpital’s rule shows that the function is not convex

at x = y = 0. Now we consider a region x > 0 and y = 0. On substituting the y in (3.24),

it reduces to

K
− 1
α

A

0

x3
≤ 1,

0 ≤ 1,

and the function is convex for all x > 0 and y = 0. Next, we consider the region where

x = 0 and y > 0. Putting those values in (3.24), reduces it to

K
− 1
α

A

y2

y3
≤ 1 ⇒ y ≥ K

− 1
α

A . (3.29)

Now using (3.26), (3.27) and (3.28), we find

3.7182 ≤ K
− 1
α

A ≤ 100, forα = 2,

10.03355 ≤ K
− 1
α

A ≤ 100, forα = 3,
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and

5.6375 ≤ K
− 1
α

A ≤ 100, forα = 4.

Along the x = 0 axis, for α = 2, if K
− 1
α

A = 3.7182, then the error function is convex in

the region y > 3.7182. But if the K
− 1
α

A = 100, the error function is not convex for the

given network layout. Along the x = 0 axis, depending upon the KA and α used, the error

function is convex in certain region or may not be convex at all. For all y = x with x > 0

and y > 0, the (3.24) reduces to

K
− 1
α

A

y2

(y2 + y2)
3
2

≤ 1 ⇒ y ≥ K
− 1
α

A

2
√

2
. (3.30)

Now using (3.26), (3.27), and (3.28), we find

1.3145 ≤ K
− 1
α

A

2
√

2
≤ 35.355, forα = 2,

3.547 ≤ K
− 1
α

A

2
√

2
≤ 35.355, forα = 3,

and

1.993 ≤ K
− 1
α

A

2
√

2
≤ 35.355, forα = 4.

The error function is convex for all x = y > 35.355 for all α. For α = 2, α = 3, and α = 4,

depending on the value of KA, the error function may be convex for other regions smaller

than x = y > 1.3145, x = y > 3.547, and x = y > 1.993, respectively.

Next, we consider the points where y = nx and x > 0, y > 0. We first evaluate the

points where y = 2x,

K
− 1
α

A

(2x)2(
x2 + (2x)2) 3

2

≤ 1 ⇒ y ≥ K
− 1
α

A

8

5
√

5
. (3.31)
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Now using (3.26) , (3.27), and (3.28), we find

2.66 ≤ K
− 1
α

A

8

5
√

5
≤ 71.55, forα = 2,

7.1794 ≤ K
− 1
α

A

8

5
√

5
≤ 71.55, forα = 3,

and

4.0338 ≤ K
− 1
α

A

8

5
√

5
≤ 71.55, forα = 4.

The error function is convex for all y = 2x > 71.55 for all α. For α = 2, α = 3, and α = 4,

depending on the value of KA, the error function may be convex for other regions smaller

than x = y > 2.66, y = 2x > 7.1794, and y = 2x > 4.0338, respectively. Using similar

evaluation for y = 3x, we find

y ≥ K
− 1
α

A

27

10
√

10
. (3.32)

Now using (3.26), (3.27), and (3.28), we find

3.17465 ≤ K
− 1
α

A

27

10
√

10
≤ 85.38, forα = 2,

8.566 ≤ K
− 1
α

A

27

10
√

10
≤ 85.38, forα = 3,

and

4.81338 ≤ K
− 1
α

A

27

10
√

10
≤ 85.38, forα = 4.

The error function is convex for all y = 3x > 85.385 for all α. For α = 2, α = 3, and α = 4,

depending on the value of KA, the error function may be convex for other regions smaller

than y = 3x > 3.17465, y = 3x > 8.566, and y = 3x > 4.81338, respectively. For all y = nx,
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the necessary condition for (3.24) to be convex with respect to x is

y ≥ K
− 1
α

A

n3

(n2 + 1)
3
2

. (3.33)

Using (3.26), (3.27), and (3.28), the range corresponding to different values of α is

3.7192
n3

(n2 + 1)
3
2

≤ K
− 1
α

A

n3

(n2 + 1)
3
2

≤ 100
n3

(n2 + 1)
3
2

, forα = 2,

10.03355
n3

(n2 + 1)
3
2

≤ K
− 1
α

A

n3

(n2 + 1)
3
2

≤ 100
n3

(n2 + 1)
3
2

, forα = 3,

and

5.6375
n3

(n2 + 1)
3
2

≤ K
− 1
α

A

n3

(n2 + 1)
3
2

≤ 100
n3

(n2 + 1)
3
2

, forα = 4.

The error function is convex for all y = nx >

(
100 n3

(n2+1)
3
2

)
for all α. For α = 2, α = 3, and

α = 4, depending on the value of KA, the error function may be convex for other regions

smaller than y = nx >

(
3.7192 n3

(n2+1)
3
2

)
, y = nx >

(
10.03355 n3

(n2+1)
3
2

)
, and y = nx >(

5.6375 n3

(n2+1)
3
2

)
, respectively.

For all x = n y and x > 0, y > 0, we proceed the same way we did for y = nx, and the

required condition for (3.24) to be convex with respect to x at x = n y is

y ≥ K
− 1
α

A

1

(n2 + 1)
3
2

. (3.34)

Using (3.26) , (3.27) and (3.28), the range corresponding to different values of α is

3.7192
1

(n2 + 1)
3
2

≤ K
− 1
α

A

1

(n2 + 1)
3
2

≤ 100
1

(n2 + 1)
3
2

, forα = 2,

10.03355
1

(n2 + 1)
3
2

≤ K
− 1
α

A

1

(n2 + 1)
3
2

≤ 100
1

(n2 + 1)
3
2

, forα = 3,
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and

5.6375
1

(n2 + 1)
3
2

≤ K
− 1
α

A

1

(n2 + 1)
3
2

≤ 100
1

(n2 + 1)
3
2

, forα = 4.

The error function is convex for all x = n y >

(
100 1

(n2+1)
3
2

)
for all α. For α = 2, α = 3,

and α = 4, depending on the value of KA, the error function may be convex for other

regions smaller than x = n y >

(
3.7192 1

(n2+1)
3
2

)
, x = n y >

(
10.03355 1

(n2+1)
3
2

)
, and

x = n y >

(
5.6375 1

(n2+1)
3
2

)
, respectively.

Since the x and y are interchangeable in (3.24) and (3.25), we can obtain similar regions

where the error function (3.14) is convex with respect to y, as it is with respect to x. Thus,

we conclude that the error function is convex with respect to x and y in some regions and

it is non-convex in some other regions, which depends on the value of α used. The region

where the error function is convex with respect to x and y varies greatly with the values of

α.

3.3.2 Evaluation with respect to α

In this section, we do a brief investigation of the characteristics of the error function with

respect to α.

∂

∂α
ε2A (x, y, α) =

∂

∂α

[√
x2 + y2 −K−

1
α

A

]2

(3.35)

The KA in the equation is always a positive quantity, smaller than 1. Here we define

KA = exp−λA ⇒ λA = − ln (KA) . (3.36)
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Substituting KA in equation (3.35) gives

∂

∂α
ε2A (x, y, α) =

∂

∂α

[√
x2 + y2 − exp

λA
α

]2

= 2
(√

x2 + y2 − exp
λA
α

) λA
α2

exp
λA
α ,

and

∂2

∂α2
ε2A (x, y, α) =

∂

∂α

[
2
(√

x2 + y2 − exp
λA
α

) λA
α2

exp
λA
α

]
= 2
√
x2 + y2 λA

∂

∂α

(
exp

λA
α

α2

)
− 2λA

∂

∂α

(
exp

2λA
α

α2

)

= 2
√
x2 + y2 λA

(
−2

α3
exp

λA
α −λA

α4
exp

λA
α

)
− 2λA

(
−2

α3
exp

2λA
α −2λA

α4
exp

2λA
α

)
= −4

√
x2 + y2

λA
α3

exp
λA
α −2

√
x2 + y2

λ2
A

α4
exp

λA
α +

4λA
α3

exp
λA
α +

4λ2
A

α4
exp

2λA
α

= −2
λA
α3

exp
λA
α

(
2
√
x2 + y2 +

√
x2 + y2

λA
α
− 2 exp

λA
α −2

λA
α

exp
λA
α

)
.

(3.37)

For ∂2

∂α2 ε
2
A (x, y, α) ≥ 0,

−2
λA
α3

exp
λA
α

(
2
√
x2 + y2 +

√
x2 + y2

λA
α
− 2 exp

λA
α −2

λA
α

exp
λA
α

)
≥ 0,

λA

(
2
√
x2 + y2 +

√
x2 + y2

λA
α
− 2 exp

λA
α −2

λA
α

exp
λA
α

)
≤ 0. (3.38)

In terms of KA as specified in (3.36), we find

− ln [KA]

(
2
√
x2 + y2 +

√
x2 + y2

(−) ln [KA]

α
− 2 exp

(−) ln[KA]
α −2

(−) ln [KA]

α
exp

(−) ln[KA]
α

)
≤ 0,

ln [KA]

(
2
√
x2 + y2 −

√
x2 + y2

ln [KA]

α
− 2 exp

− ln[KA]
α +2

ln [KA]

α
exp

− ln[KA]
α

)
≥ 0.
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Here the KA is a positive quantity and KA < 1. This makes ln [KA] always a negative

quantity. Hence

(
2
√
x2 + y2 −

√
x2 + y2

ln [KA]

α
− 2 exp

− ln[KA]
α +2

ln [KA]

α
exp

− ln[KA]
α

)
≤ 0. (3.39)

The (3.39) can be evaluated in similar manner, as we did in previous subsection and

different regions where (3.14) is convex with respect to α can be obatined. As we saw in

above section, the error function (3.14) is convex with respect to x and y in some regions

and it is non-convex in some other regions, which varies greatly with the values of α. We

conclude that the error function is convex with respect to α in certain interesting regions,

as it is with respect to x and y .

3.3.3 Summary of convexity findings

In this subsection, we are listing all the necessary conditions for the error function (3.14)-

(3.17) to be convex with respect to x, y, and α, respectively. The the observed range of

value of KA, KB, KC , and KD encountered in the simulation for different agent locations

and for different values of α is same. Thus we can write

10−4 ≤ Kj ≤ 9.9× 10−2, forα = 2,

10−6 ≤ Kj ≤ 9.9× 10−4, forα = 3,

and

10−8 ≤ Kj ≤ 9.9× 10−4, forα = 4,

where j ∈ {A,B,C,D}. The range of KA is different for different value of α used in the

simulation. Using the KA, now we derive the regions where the error function (3.14) is

convex with respect to x. The required condition for equation (3.14) to be convex with
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respect to x, y, and α are

K
− 1
α

A

y2

(x2 + y2)
3
2

≤ 1, (3.40)

K
− 1
α

A

x2

(x2 + y2)
3
2

≤ 1, (3.41)

and

(
2
√
x2 + y2 −

√
x2 + y2

ln [KA]

α
− 2 exp

− ln[KA]
α +2

ln [KA]

α
exp

− ln[KA]
α

)
≤ 0. (3.42)

Following similar steps, required conditions for equation (3.15) to be convex with x, y,

and α, respectively are

K
− 1
α

B

y2(
(X − x)2 + y2

) 3
2

≤ 1, (3.43)

K
− 1
α

B

(X − x)2(
(X − x)2 + y2

) 3
2

≤ 1, (3.44)

and

(
2

√
(X − x)2 + y2 −

√
(X − x)2 + y2

ln [KB]

α
− 2 exp

− ln[KB ]
α +2

ln [KB]

α
exp

− ln[KB ]
α

)
≤ 0.

(3.45)

Required condition for equation (3.16) to be convex with x, y, and α, respectively are

K
− 1
α

C

(Y − y)2(
(X − x)2 + (Y − y)2

) 3
2

≤ 1, (3.46)

K
− 1
α

C

(X − x)2(
(X − x)2 + (Y − y)2

) 3
2

≤ 1, (3.47)

28



and

(
2

√
(X − x)2 + (Y − y)2 −

√
(X − x)2 + (Y − y)2 ln [KC ]

α
− 2 exp

− ln[KC ]
α +2

ln [KC ]

α
exp

− ln[KC ]
α

)
≤ 0.

(3.48)

Required condition for equation (3.17) to be convex with respect to x, y, and α, respec-

tively are

K
− 1
α

D

(Y − y)2(
x2 + (Y − y)2) 3

2

≤ 1, (3.49)

K
− 1
α

D

x2(
x2 + (Y − y)2) 3

2

≤ 1, (3.50)

and

(
2

√
x2 + (Y − y)2 −

√
x2 + (Y − y)2 ln [KD]

α
− 2 exp

− ln[KD]
α +2

ln [KD]

α
exp

− ln[KD]
α

)
≤ 0.

(3.51)

3.3.4 Convexity of the overall cost function

We know that the sum of any two or more convex functions is a convex function. If

we are able to show that the error functions are convex with respect to x, y, and α, the

cost function will also be convex with x, y, and α. We derived the condition of convexity

for (3.14) only and obtained the regions where it is convex with respect to x. Similar

approach can be used for (3.15), (3.16) and (3.17), and all the necessary conditions and

regions where they are convex can be obtained. Given that our analysis shows that the error

function is not convex over the entire region of interest, a systematic way of verifying the

correctness of the numerical results may be needed. It is possible that a theoretical method

of establishing the corectness of the numerical results can be developed, but developing such

a method is beyond the scope of this thesis. Instead, we rely on numerical investigations,
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and defer development of a formal method of proving optimality to future work. The means

by which we checked optimality are mentioned in Section 3.6, of this thesis.

3.4 Channel parameterization and simulation procedure

In this section, an algorithm to simulate the channel between a transmitter and receiver

at a distance r, with channel model parameters Λ, λ, Γ and γ is presented. In what follows,

nc is the number of arriving clusters and nrc is the number of rays in cth cluster with

l ∈ {0, 1, 2, · · · , nc − 1} and k ∈ {0, 1, 2, · · · , nrc − 1}. nA = 4 is the number of anchor

nodes, and na is the number of agent nodes in the network. j is the anchor index and i is

the agent index, where j ∈ {A,B,C,D} and i ∈ {1, 2, · · · , na}. rij is distance between ith

agent node and jth anchor. This is followed by our algorithm to localize agent nodes for a

single agent case.

Algorithm 1: Algorithm for computing received signal power

1: Choose Λ, λ, Γ and γ
2: for all nA do
3: Set nc and nrc
4: for all na do
5: Compute rij
6: end for
7: for all nc do
8: Generate T1 , T2, · · · , Tnc−1 using (2.2) with T0 = 0
9: for all nrc do
10: Generate τkl using (2.3) with τ0l = 0
11: if k = 0 and l = 0 then
12: Compute β2(0, 0) using (3.6)
13: end if
14: Generate βkl using (2.10), with β2

kl given by (2.4).
15: end for
16: end for
17: end for
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Algorithm 2: Algorithm to formulate the cost function

1: Generate network with nA and na .
2: Choose Λ, λ, Γ and γ .
3: for all nA do
4: Set nc and nrc.
5: for all na do
6: Compute rij.
7: end for
8: for all nc do
9: Generate T1, T2, · · · , Tnc−1 using (2.2) with T0 = 0.
10: for all nrc do
11: Generate {τkl} using (2.3) with τ0l = 0.
12: if k = 0 and l = 0 then
13: Compute β2(0, 0) using (3.6).
14: end if
15: Generate βkl using (2.9), with β2

kl given by (2.4).
16: end for
17: end for
18: Compute τd = τ(nrc−1)(nc−1) − τ00.
19: Divide the τd into bins of width 20 ns. This gives N non-empty bins.
20: for all N do
21: Find average path power gain β2

b in each bins.

22: Position the β2
b at mid of the corresponding bin.

23: Reflect the β2
b to β2

b (0, 0) using (3.4).
24: end for
25: Obtain β2

bavg
(0, 0) of the N obtained β2

b (0, 0).

26: Compute PR from the β2
b (0, 0).

27: Create error function using the PR and distance formula.
28: end for
29: Create cost function from error functions.
30: Minimize the cost function and obtain x̂, ŷ and α̂.
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3.5 A second look at mapping multipath resolution

The transmitted signal power(PT) is

PT = lim
T→∞

1

T

∫ T

0

s2 (t) dt, (3.52)

where s (t) is the transmitted signal. Power received by a receiving antenna which is sepa-

rated from a radiating transmitter antenna by a distance d, is given as

PR =
PT GT GR λ

2

(4π)2 dα L
, (3.53)

where PT is the transmitted power, PR is the received power, GT is the transmitter antenna

gain, GR is the receiver antenna gain, λ is wavelength in meters, α is the propagation

coefficient of the environment and d is transmitter-receiver separation in meters.

PR =
PT K

dα
, (deterministic quantity) (3.54)

where k = GT GR λ
2

(4π)2 L
.

d
1

d
2d0

P

A
B

C
D

Agent node Anchors

Figure 3.5. An example network with one agent node placed randomly in a rectangular area
with a anchor at each corner, showing multipaths between the agent and anchor A.
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In reference to the above figure, we can write

PR0 =
PT K

dα0
, PR1 =

PT K

dα1
, and PR2 =

PT K

dα2
.

Here d0 is the shortest, ie. LOS path, and PR0 is the received power through the LOS path,

d1 is the first reflected path (NLOS) and PR1 is the received power corresponding to the first

NLOS path and d2 is the second reflected path (NLOS) between the anchor node A and the

agent node P, and PR2 is the received power corresponding to the second reflected path.

Now, we express the PR0 in terms of PR1 ,

PR0 =
PT K

dα0

=
PT K

dα1

(
d1

d0

)α
=
PT K

dα1

(
1 +

∆d1

d0

)α
PR0 ≈ PR1 exp

∆d1
d0

α
. (3.55)

Similarly,

PR0 ≈ PR2 exp
∆d2
d0

α
.

Hence we can write

PR0 ≈ PRi exp
∆di
d0

α
,

where i is the multipath index.

Next we consider Rayleigh fading,

P̃Ri = PRi x̃i,

where x̃i ∼ E [1], and PRi is the real average power received over a path of length di. At
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distance d0, this would be larger. We have samples of PR0 given by

PRi = PR0 exp
−∆di

d0
α
x̃i,

so that

PRi exp
∆di
d0

α
= PR0 x̃i.

Let n be total number of multipath components from anchor A to the agent node. Summing

over all the multipaths, we find

1

n

n∑
i=1

P̃Ri exp
∆di
d0

α
=

1

n
PR0

n∑
i=1

xi,

so that

E

[
1

n

n∑
i=1

P̃Ri exp
∆di
d0

α

]
= E

[
1

n
PR0

n∑
i=1

xi

]
= PR0 . (3.56)

Because E [xi] = 1 and since

PR0 =
PT K

dα0
,

we have

d0 =

(
PT K

PR0

) 1
α

=

 PT K

1
n

∑n
i=1 P̃Ri exp

∆di
d0

α

 1
α

. (3.57)

We know d0 =
√
x2 + y2. Hence

√
x2 + y2 =

 PT K

1
n

∑n
i=1 P̃Ri exp

∆di
d0

α

 1
α

,
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and

ε (x, y, α) =
√
x2 + y2 −

 PT K

1
n

∑n
i=1 P̃Ri exp

∆di√
x2+y2

α

 1
α

, (3.58)

where P̃Ri is the measured power of each ray images that we get from SV channel model.

Thus we could define an error function at each corner in this way and find the best x, y, α

from a sum of square of errors. ε (x, y, α) is the error that comes up due to the difference in

actual distance and the approximate distance obtained from the channel model.

3.5.1 Cost function

In this section, we formulate the cost function by using the error functions.

d
A1

d
A

2

dA0

dC
0

d C
2

dC1

d
B0

d
B
2

dB1

P

A
B

C
D

Agent node Anchors

Figure 3.6. An example network with one agent node placed randomly in a rectangular area
with a anchor at each corner, showing multipaths between the agent and anchor A, B and C.

Error corresponding to anchor A

εA (x, y, α) =
√
x2 + y2 −

 PT K

1
nA

∑nA
i=1 P̃RAi exp

∆dAi√
x2+y2

α


1
α

, (3.59)

where nA is the number of multipath images from anchor A, P̃RAi is the received power of

the ith image at the agent node due to anchor A and dAi is the path length of the ith image.
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Similarly,

εB (x, y, α) =

√
(X − x)2 + y2 −

 PT K

1
nB

∑nB
i=1 P̃RBi exp

∆dBi√
(X−x)2+y2

α


1
α

, (3.60)

where nB is the number of multipath images from anchor B, P̃RBi is the received power of

the ith image at the agent node due to anchor B and dBi is the path length of the ith image.

Also,

εC (x, y, α) =

√
(X − x)2 + (Y − y)2 −

 PT K

1
nC

∑nC
i=1 P̃RCi exp

∆dCi√
(X−x)2+(Y−y)2

α


1
α

, (3.61)

where nC is the number of multipath images from anchor C, P̃RCi is the received power of

the ith image at the agent node due to anchor C and dCi is the path length of the ith image.

Also,

εD (x, y, α) =

√
x2 + (Y − y)2 −

 PT K

1
nD

∑nD
i=1 P̃RDi exp

∆dDi√
x2+(Y−y)2

α


1
α

, (3.62)

where nD is the number of multipath images from anchor D, P̃RDi is the received power of

the ith image at the agent node due to anchor D and dDi is the path length of the ith image.

Now we can write our cost function f (x, y, α) as

f (x, y, α) = ε2A (x, y, α) + ε2B (x, y, α) + ε2C (x, y, α) + ε2D (x, y, α) ,

and

(x̂, ŷ, α̂) = argmin {f (x, y, α)} = argmin

{∑
j

ε2j (x, y, α)

}
, (3.63)
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where j ∈ {A,B,C,D}. Once we have our cost function, we minimize the obtained cost

function and get the required x̂, ŷ, and α̂ value that minimizes the cost function. Thus

obtained x̂, ŷ, and α̂ is the estimate of the agent location and propagation constant, respec-

tively.

3.6 Optimization method and programming language

We are using Python for our simulation purpose. Python is an interpreted, object-

oriented, high-level programming language. Python supports modules and packages, which

encourages program modularity and code reuse. The fundamental package for scientific

computing in Python is Numerical Python (NumPy), and Scientific Python (SciPy) is also

a package which provides a lot of scientific routines that runs on top of NumPy. Since

our earlier examination of the cost function shows that it is not convex, it is necessary to

choose an optimization routine that does not depend on convexity. We chose a sub-package

of Scipy, optimize for our optimization purposes and within optimize routines that do not

depend upon the cost function being convex.

We chose scipy.optimize.fmin powell for minimization of cost functions. This method

minimizes a function of N variables using modified Powell’s method. Powell’s conjugate

direction method, commonly known as Powell’s method, is an efficient method for find-

ing the minimum of a function of several variables without calculating derivatives [17].

This method is used for unconstrained minimization. To get more confidence that our

cost functions were minimized properly, we thoroughly compared the results obtained from

Powell’s method with the results of two other methods; namely scipy.optimize.fmin and

scipy.optimize.fmin l bfgs b, separately.

The scipy.optimize.fmin uses a Nelder-Mead simplex algorithm to find the minimum

of function of one or more variables. This algorithm has a long history of successful use

in applications. But it is slower than an algorithm that uses first or second derivative

information. In practice it can have poor performance in high-dimensional problems and is
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not robust to minimizing complicated functions. Additionally, there currently is no complete

theory describing when the algorithm will successfully converge to the minimum, or how fast

it will if it does [17]. This method is also used for unconstrained minimization.

The scipy.optimize.fmin l bfgs b minimizes a function using the L-BFGS-B algorithm.

The L-BFGS-B algorithm extends L-BFGS (Limited-memory Broyden-Fletcher-Goldfarb-

Shanno) to handle simple bound constraints on variables; that is, constraints of the form

li ≤ zi ≤ ui where li and ui are per-variable constant lower and upper bounds, respectively

(for each zi, either or both bounds may be omitted). The method works by identifying

fixed and free variables at every step (using a simple gradient method), and then using the

L-BFGS method on the free variables only to get higher accuracy, and then repeating the

process [17].

We chose Powell’s method over the other two methods, as convergence time taken by

the Powell’s method was less, and this method converged even when the scipy.optimize.fmin

failed to converge. Powell’s method and L-BFGS-B include gradient-based search methods,

both the methods converge quickly, but the minimum values obtained using Powell’s method

are better than the ones from L-BFGS-B method [18].

We also verified those routines by doing numerical checks over the entire grid. We first

divided the network grid into subgrids of dimension 1× 1. This gave us 201× 101 = 20301

coordinate pair over the entire grid. We next evaluated the cost function throughout the

entire 20301 points, and recorded the minimum value of cost function and corresponding

coordinate pair that was giving the minimum. Thus obtained coordinate pair were equal

to the results obtained by minimizing the same cost function using the Python minimizing

routines.
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Chapter 4

NUMERICAL RESULTS

In the previous chapter, our localization strategy was developed, the cost functions were

analytically derived and were evaluated to see if they are convex. The parameters and

settings used to carry the simulations, the channel model, and our localization technique

was presented. In this chapter, the procedure and approach used in the simulations are

described. The simulation results and related discussions conclude the chapter.

We investigated performance of our method for two cases. In first case, we evaluate the

technique with one agent placed at a random position. For this, we investigated a large

sample of received signals at the same location and saw how well that worked. The variables

are the propagation constant, the location, and the number of multipaths resolved. We then

plotted localization error as a function of number of multipath resolutions as a function of

some anchor nodes.

In the other case, we have multiple randomly generated user agents and we resolve all of

their locations using a single measurement set. This time the parameters are the propagation

constant, number of user agents, and number of multipaths resolved. We obtained a sample

by fixing the propagation constant, the number of user agents, and the number of mutipath

resolutions, but placing the user agents at random locations. In real world cases, we cannot

measure time any better than the resolution of the chips, and we have modeled the images

as individual multipath components instead of clusters.
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4.1 Single agent case

We begin with a randomly generated agent node, four anchor nodes and a propagation

constant (α) for the given environment. Setting the number of resolvable multipaths, for

the agent location, we run the simulation 100 times and measure 100 different samples of

recieved signals and in turn, 100 different sets of x̂raw, ŷraw and α̂raw that minimizes the cost

functions. We term those result sets as ‘raw data’. In those 100 raw data sets, some of the

locations obtained are very close to the actual agent location but some of them are distinctly

different from the original agent location. However, the obtained minimized alpha values

α̂raw are closer to each other and usually fall in a range of values lower than the original α,

ie. α̂raw < α.

We now use an iterative approach to improve the raw data sets and obtain more accurate

revised data sets. Since finding the exact agent location is our primary objective, we use an

arbitrary method of averaging all the values of α̂raw and set the value of obtained average

as α̂.

Replacing the original α by α̂ and re-minimizing all the 100 cost functions to obtain an

estimate of agent location only, we get a new revised data set of 100 values of x̂ and ŷ. The

new sets of x̂, ŷ and α̂ are termed as ‘revised data’ and those data sets are, in general, closer

to the original agent location than raw data sets.

Now we check accuracy of our localization procedure by investigating the position er-

ror (ep) for agent locations with number of resolvable multipaths, the agent location, and

propagation constant as parameters.

ep =
√

(x− x̂)2 + (y − ŷ)2, (4.1)

which is expressed in meters. By running our simulation for different agent locations and

for different values of α, we have found that if we are able to choose α̂ accurately by some

other methods, the localization error is almost zero.
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4.1.1 Position error as a function of number of resolvable multi-

paths

By running our simulation 100 times for an agent location corresponding to each number

of resolvable multipaths from 1 to 7, with fixed propagation constant (α = 2), we obtained

the minimum position error (epmin
), the maximum position error (epmax) and the average

position error (E [ep]). The number of clusters varies from 1 to 4 for a 2.4 GHz bandwidth

in indoor environments and an average of 5 clusters in office environments, however up

to 14 clusters are found in outdoor environments [16]. We set the maximum number of

resolvable multipaths to 7 and the minimum number of resolvable multipaths to 1. We

have plotted the errors obtained from raw data and from revised data as a function of

number of resolvable multipaths for six different agent locations. The agent locations that we

have used are (P1, P2, P3, P4, P5, P6), at (42.472, 23.907), (11.529, 76.381), (32.151, 96.089),

(177.340, 46.573), (185.115, 43.491) and (167.731, 94.984), respectively.

Figure 4.1. Observed minimum, maximum, and average position errors of raw data for a
system with propagation constant 2 as a function of resolvable multipaths for six arbitrarily
chosen locations in a 200× 100 meter grid.

41



Figure 4.2. Observed minimum, maximum, and average position errors of revised data for a
system with propagation constant 2, as a function of resolvable multipaths for six arbitrarily
chosen locations in a 200× 100 meter grid.

From the Figure 4.1 and Figure 4.2, we can clearly see that as the number of resolv-

able multipaths increases, the position error gradually decreases. The larger the number of

resolvable multipaths, the higher is the localization accuracy. We can also see that local-

ization errors in the revised data are smaller then the errors for the raw data. The revision

of propagation constant has definitely contributed to better localization, however the im-

provement is very small, on the order of a few meters. However, if we are able to develop an

efficient method to choose the exact value of α̂ from α̂raw, we would see great improvement

in localization accuracy with revised data sets.

We next want to examine how the values of α̂raw are distributed, and we have plotted

the cumulative distribution α̂raw as a function of number of resolvable multipaths. From

Figure 4.3, we can see that for every agent location, for the same propagation constant and

for the same number of resolvable multipaths, α̂raw values seem to be distributed over a

narrow range. For the number of resolvable multipaths equals 1, we can see distribution of

α̂raw in one narrow range and for the number of resolvable multipaths equals 4, there is a
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different narrow range of distribution of α̂raw, irrespective of the agent location.

Figure 4.3. Observed cumulative distribution of α̂raw for a system with propagation constant
2, resolvable multipaths as 1 and 4 for six arbitrarily chosen locations in a 200 × 100 meter
grid.

Figure 4.4. Observed cumulative distribution of α̂raw for a system with propagation constant
2, as a function of resolvable multipaths for an arbitrarily chosen location P1 in a 200 × 100
meter grid.
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Figure 4.5. Observed cumulative distribution of α̂raw for a system with propagation constant
2, as a function of resolvable multipaths for an arbitrarily chosen location P6 in a 200 × 100
meter grid.

Figure 4.4 and Figure 4.5 show the cumulative distribution of α̂raw obtained by varying

the number of resolvable multipaths from 1 to 7 for two different agent locations. The

values of α̂raw obtained are gradually decreasing with the increase in number of resolvable

multipaths.

We also studied the nature of localization errors obtained as a function of propagation

constant of the environment with the number of resolvable multipaths fixed. We plotted

the localization errors as a function of α of the environment for two different systems with

an arbitrarily generated agent locations. For an agent location, with number of resolvable

multipaths as 6 and running our simulation for 100 times as before, we have obtained

minimum, average and maximum position errors of revised data as a function of α.

From Figure 4.6 and Figure 4.7, we can see that position error gradually decreases as

the value of propagation constant increases from 2 to 4. The larger the propagation constant

of the environment, the smaller is the localization errors obtained.
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Figure 4.6. Observed minimum, maximum, and average position errors for a system having
6 resolvable multipaths as a function of propagation constant for an arbitrarily chosen agent
P7, located at (90.768418, 27.294762) in a 200× 100 meter grid.

Figure 4.7. Observed minimum, maximum, and average position errors for a system having
6 resolvable multipaths as a function of propagation constant for an arbitrarily chosen agent
P8, located at (112.54376, 97.430651) in a 200× 100 meter grid.

4.2 Multiple agents case

We generate a network layout with multiple agents, create a cost function using measured

signal information of all the agents and minimize it to obtain location of all the agents

and propagation constant. The number of resolvable multipaths is a parameter. We take a

single measurement corresponding to each resolvable multipath for each agent in the system.
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Since we are localizing na arbitrarily chosen agent nodes in a system, agents located at a

larger distance have larger position errors and the agents at smaller distance have smaller

localization errors, it seems that plotting the actual ep would not be sufficient. Instead of

plotting location errors of each nodes, we calculate a root mean square error (erms) for each

system using location errors corresponding to each agent, and plot the root mean square

error of different system as a function of number of resolvable multipaths. epi is the location

error corresponding to ith agent in a network, where i ∈ {1, 2, · · · , na}. Then the erms of

the system (network) is

erms =

√√√√ 1

na

na∑
i=1

e2
pi

(4.2)

We generated 10 different networks each with 10 arbitrarily generated agent nodes, com-

puted the erms of each system using (4.2) and plotted them as a function of number of

resolvable multipaths. As we can see in Figure 4.8, for all the systems, erms decreases with

the increase in number of resolvable multipaths.

Figure 4.8. Observed erms for 10 different systems having propagation constant as 2, as a
function of resolvable multipaths, for 10 arbitrarily chosen agent locations in a 200×100 meter
grid, all agents localized at once.

For each system, we localized each agent node in the network separately using individual
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cost functions as done in the single agent case, and compared the localization accuracy

measured in terms of erms of a system obtained in group localization with erms obtained

for the system when localizing each agents individually. The observed erms for individual

localizations are shown in Figure 4.9.

Figure 4.9. Observed erms for 10 different systems having propagation constant as 2, as a
function of resolvable multipaths, for 10 arbitrarily chosen agent locations in a 200×100 meter
grid, all agents localized individually.

Performance of group localization and individual localization in terms of erms of each

system is found to be similar. For some networks, group localization yields smaller root

mean square errors and for other networks individual agent localization performs better.

Based on this, we can say that performance of our localization technique is similar for single

as well as multiple agent localization.

We worked with 100 different systems, 50 of those with 10 arbitrarily chosen agent

locations and another 50 with 20 arbitrarily chosen agent locations. We then computed root

mean square errors (erms) of each system by varying the number of resolvable multipaths

from 1 to 7 for each of the system. From the computed erms, we obtained maximum (ermsmax),

minimum (ermsmin
), and average ( E [erms]) root mean square errors throughout all the systems
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and plotted them as a function of number of resolvable multipaths in Figure 4.10. As we

can see, the ermsmax , E [erms] and ermsmin
gradually decreases with increase in the number of

resolvable multipaths.

Figure 4.10. Observed ermsmax , E [erms] and ermsmin from 100 different systems with propagation
constant 2, as a function of resolvable multipaths for 10 and 20 arbitrarily chosen location in
a 200× 100 meter grid.

We also plotted the observed cumulative distribution of erms of same 100 networks as

a function of number of resolvable multipaths in Figure 4.11. We can see that the larger

the number of resolvable multipaths, the smaller is the root mean square errors for all the

systems.

From all the plots, we see that the increase in the number of resolvable multipaths

improves the localization accuracy in our systems, which was expected.

In Figure 4.12, we have plotted cumulative distribution of α̂ obtained as a function of

number of resolvable multipaths for those 100 systems with group localization. Similar to the

distribution of α̂raw observed in single agent localization case, the observed α̂ are distributed

in a small range of values and with the increase in number of resolvable multipaths, the α̂

is decreasing.
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Figure 4.11. Observed cumulative distribution of erms of 100 different systems with propagation
constant 2, as a function of resolvable multipaths for 10 and 20 arbitrarily chosen location in
a 200× 100 meter grid.

Figure 4.12. Observed cumulative distribution of α̂, that minimizes the cost functions of 100
different systems with propagation constant 2, as a function of resolvable multipaths for 10
and 20 arbitrarily chosen location in a 200× 100 meter grid.

We also studied the nature of individual location errors corresponding to each agents

observed with those 100 systems. We studied to see if there is any distribution pattern for

the location errors of agents when plotted as a function of actual distance from one of the
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anchor A. The localization errors of 50 systems with 10 agent nodes are plotted in a scatter

plot and with 20 agent nodes are plotted in another scatter plot.

Figure 4.13. Observed scatter plot of localization errors of all the agents of 50 different systems
with propagation constant 2, resolvable multipaths 6, for 10 arbitrarily chosen location in a
200× 100 meter grid.

Figure 4.14. Observed scatter plot of localization errors of all the agents of 50 different systems
with propagation constant 2, resolvable multipaths 6, for 20 arbitrarily chosen location in a
200× 100 meter grid.

Figure 4.13 belongs to the 50 systems that have 10 agents and Figure 4.14 belongs to
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rest of the systems each containing 20 arbitrarily chosen agents. From the plots, we could

not see any specific distribution pattern of localization errors as a function of distance from

anchor A. The errors are distributed equally at all the distances from the anchor. However,

we observed that maximum value of location errors observed in systems that have larger

number of agents is larger than the systems that have smaller number of agents when all of

the agents are localized at once. This is to be expected since the error sizes are random and

an increase in the number of samples naturally leads to selection of more outliers. Similarly,

the maximum value of location error obtained with all the systems is about 60 m, and

maximum number of agents have location error of about 30 m or below 30 m.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

A received signal strength based localization method was formulated for multipath in-

duced fading in wireless channel. An analysis to determine conditions under which the error

function is complex was presented in Chapter 3. We were able to establish that the er-

ror function is not convex over the entire region of interest. Therefore, we minimized the

error function using multiple techniques and also conducted a number of experiments to

verify that the minimization procedures are delivering the minimum of the error function.

In future work, we intend to examine this issue in greater detail and develop a verification

approach through which the error function is minimized with certainty. One possibility is

to take advantage of the callback feature of some of the minimization routines to manage

minimization. Optimal sensor location estimates and propagation constant were determined

through a multistage process of formulating and minimizing error functions. Python was

used for simulation and scipy.optimize.fmin powell for minimization of cost functions.

Investigation of the performance of our localization technique was done for a single agent

case and multiple agent case. Localization errors obtained in both the cases were presented

as a function of number of multipath components that can be resolved, and propagation

constant of the environment. The simulation results indicate that the larger the number of

resolvable multipaths for a given fixed propagation constant, the better is the localization

accuracy achieved. Similarly, for a fixed number of resolvable multipaths, the localization

accuracy is a increasing function of propagation constant. As the number of resolvable

multipaths increases beyond 4, the improvement in localization accuracy of this approach
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is reasonably low, which signifies that later arriving clusters do not contribute much in

localization information.

Our localization technique is capable of giving reasonably accurate localization results

in some cases and large errors in other. In worst case, we are getting position error of about

60 m, and an average position error is about 30 m and less. This error decreases as the

number of resolvable multipaths increases. The localization error ranges from a few cm to

tens of meters. Although we have not verified it through rigorous tests, performance of

our localization method seems to be poor in the regions where cost function is non-convex.

Because the range of localization error is so large, it would be good to develop a technique

to quantify the quality of localization for each specific node. For example, in a real sensor

network, the number of resolvable multipath would be different for each sensor. Therefore

the localization error quality will vary. In future work, this issue should be analyzed to

determine how to take advantage of this fact.

In the analysis, we use a simple statistical multipath channel model; an interesting

extension would be to study the system under different channel models including shadow

fading for the wireless channel. Exact conditions and regions where the cost function are

convex as a function of x, y and α could be studied to see if the minimization can take

advantage of convexity over regions. Furthermore, an extension could be carried out for

3-dimensional localization. It could be interesting to use different cluster delay rate and

multipath delay rate for individual anchors instead of using same rates for all the anchors.

It could also be extended to implement cooperative localization between agent nodes, but

this will be left for future work.
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