671 research outputs found

    Managing a Fleet of Autonomous Mobile Robots (AMR) using Cloud Robotics Platform

    Get PDF
    In this paper, we provide details of implementing a system for managing a fleet of autonomous mobile robots (AMR) operating in a factory or a warehouse premise. While the robots are themselves autonomous in its motion and obstacle avoidance capability, the target destination for each robot is provided by a global planner. The global planner and the ground vehicles (robots) constitute a multi agent system (MAS) which communicate with each other over a wireless network. Three different approaches are explored for implementation. The first two approaches make use of the distributed computing based Networked Robotics architecture and communication framework of Robot Operating System (ROS) itself while the third approach uses Rapyuta Cloud Robotics framework for this implementation. The comparative performance of these approaches are analyzed through simulation as well as real world experiment with actual robots. These analyses provide an in-depth understanding of the inner working of the Cloud Robotics Platform in contrast to the usual ROS framework. The insight gained through this exercise will be valuable for students as well as practicing engineers interested in implementing similar systems else where. In the process, we also identify few critical limitations of the current Rapyuta platform and provide suggestions to overcome them.Comment: 14 pages, 15 figures, journal pape

    Ultra-reliable communications for industrial internet of things : design considerations and channel modeling

    Get PDF
    Factory automation is the next industrial revolution. 5G and IIoT are enabling smart factories to seamlessly create a network of wirelessly connected machines and people that can instantaneously collect, analyze, and distribute real-time data. A 5G-enabled communication network for IIOT will boost overall efficiency, launching a new era of market opportunities and economic growth. This article presents the 5G-enabled system architecture and ultra-reliable use cases in smart factories associated with automated warehouses. In particular, for URLLC-based cases, key techniques and their corresponding solutions, including diversity for high reliability, short packets for low latency, and on-the-fly channel estimation and decoding for fast receiver processing, are discussed. Then the channel modeling requirements concerning technologies and systems are also identified in industrial scenarios. Ray tracing channel simulation can meet such requirements well, and based on that, the channel characteristic analysis is presented at 28 and 60 GHz for licensed and unlicensed band frequencies to exploit the available degrees of freedom in the channels. © 2012 IEEE. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Muhammad Imran” is provided in this record*

    Creating a Worldwide Network For the Global Environment for Network Innovations (GENI) and Related Experimental Environments

    Get PDF
    Many important societal activities are global in scope, and as these activities continually expand world-wide, they are increasingly based on a foundation of advanced communication services and underlying innovative network architecture, technology, and core infrastructure. To continue progress in these areas, research activities cannot be limited to campus labs and small local testbeds or even to national testbeds. Researchers must be able to explore concepts at scale—to conduct experiments on world-wide testbeds that approximate the attributes of the real world. Today, it is possible to take advantage of several macro information technology trends, especially virtualization and capabilities for programming technology resources at a highly granulated level, to design, implement and operate network research environments at a global scale. GENI is developing such an environment, as are research communities in a number of other countries. Recently, these communities have not only been investigating techniques for federating these research environments across multiple domains, but they have also been demonstration prototypes of such federations. This chapter provides an overview of key topics and experimental activities related to GENI international networking and to related projects throughout the world

    Study on the Performance of TCP over 10Gbps High Speed Networks

    Get PDF
    Internet traffic is expected to grow phenomenally over the next five to ten years. To cope with such large traffic volumes, high-speed networks are expected to scale to capacities of terabits-per-second and beyond. Increasing the role of optics for packet forwarding and transmission inside the high-speed networks seems to be the most promising way to accomplish this capacity scaling. Unfortunately, unlike electronic memory, it remains a formidable challenge to build even a few dozen packets of integrated all-optical buffers. On the other hand, many high-speed networks depend on the TCP/IP protocol for reliability which is typically implemented in software and is sensitive to buffer size. For example, TCP requires a buffer size of bandwidth delay product in switches/routers to maintain nearly 100\% link utilization. Otherwise, the performance will be much downgraded. But such large buffer will challenge hardware design and power consumption, and will generate queuing delay and jitter which again cause problems. Therefore, improve TCP performance over tiny buffered high-speed networks is a top priority. This dissertation studies the TCP performance in 10Gbps high-speed networks. First, a 10Gbps reconfigurable optical networking testbed is developed as a research environment. Second, a 10Gbps traffic sniffing tool is developed for measuring and analyzing TCP performance. New expressions for evaluating TCP loss synchronization are presented by carefully examining the congestion events of TCP. Based on observation, two basic reasons that cause performance problems are studied. We find that minimize TCP loss synchronization and reduce flow burstiness impact are critical keys to improve TCP performance in tiny buffered networks. Finally, we present a new TCP protocol called Multi-Channel TCP and a new congestion control algorithm called Desynchronized Multi-Channel TCP (DMCTCP). Our algorithm implementation takes advantage of a potential parallelism from the Multi-Path TCP in Linux. Over an emulated 10Gbps network ruled by routers with only a few dozen packets of buffers, our experimental results confirm that bottleneck link utilization can be much better improved by DMCTCP than by many other TCP variants. Our study is a new step towards the deployment of optical packet switching/routing networks

    Secure data sharing and analysis in cloud-based energy management systems

    Get PDF
    Analysing data acquired from one or more buildings (through specialist sensors, energy generation capability such as PV panels or smart meters) via a cloud-based Local Energy Management System (LEMS) is increasingly gaining in popularity. In a LEMS, various smart devices within a building are monitored and/or controlled to either investigate energy usage trends within a building, or to investigate mechanisms to reduce total energy demand. However, whenever we are connecting externally monitored/controlled smart devices there are security and privacy concerns. We describe the architecture and components of a LEMS and provide a survey of security and privacy concerns associated with data acquisition and control within a LEMS. Our scenarios specifically focus on the integration of Electric Vehicles (EV) and Energy Storage Units (ESU) at the building premises, to identify how EVs/ESUs can be used to store energy and reduce the electricity costs of the building. We review security strategies and identify potential security attacks that could be carried out on such a system, while exploring vulnerable points in the system. Additionally, we will systematically categorize each vulnerability and look at potential attacks exploiting that vulnerability for LEMS. Finally, we will evaluate current counter measures used against these attacks and suggest possible mitigation strategies
    corecore