22 research outputs found

    On Hierarchical Threshold Secret Sharing

    Get PDF
    Recently, two novel schemes have been proposed for hierarchical threshold secret sharing, one based on Birkoff interpolation and another based on bivariate Lagrange interpolation. In this short paper, we propose a much simpler solution for this problem

    Ideal hierarchical secret sharing schemes

    Get PDF
    Hierarchical secret sharing is among the most natural generalizations of threshold secret sharing, and it has attracted a lot of attention from the invention of secret sharing until nowadays. Several constructions of ideal hierarchical secret sharing schemes have been proposed, but it was not known what access structures admit such a scheme. We solve this problem by providing a natural definition for the family of the hierarchical access structures and, more importantly, by presenting a complete characterization of the ideal hierarchical access structures, that is, the ones admitting an ideal secret sharing scheme. Our characterization deals with the properties of the hierarchically minimal sets of the access structure, which are the minimal qualified sets whose participants are in the lowest possible levels in the hierarchy. By using our characterization, it can be efficiently checked whether any given hierarchical access structure that is defined by its hierarchically minimal sets is ideal. We use the well known connection between ideal secret sharing and matroids and, in particular, the fact that every ideal access structure is a matroid port. In addition, we use recent results on ideal multipartite access structures and the connection between multipartite matroids and integer polymatroids. We prove that every ideal hierarchical access structure is the port of a representable matroid and, more specifically, we prove that every ideal structure in this family admits ideal linear secret sharing schemes over fields of all characteristics. In addition, methods to construct such ideal schemes can be derived from the results in this paper and the aforementioned ones on ideal multipartite secret sharing. Finally, we use our results to find a new proof for the characterization of the ideal weighted threshold access structures that is simpler than the existing one.Peer ReviewedPostprint (author's final draft

    On the optimization of bipartite secret sharing schemes

    Get PDF
    Optimizing the ratio between the maximum length of the shares and the length of the secret value in secret sharing schemes for general access structures is an extremely difficult and long-standing open problem. In this paper, we study it for bipartite access structures, in which the set of participants is divided in two parts, and all participants in each part play an equivalent role. We focus on the search of lower bounds by using a special class of polymatroids that is introduced here, the tripartite ones. We present a method based on linear programming to compute, for every given bipartite access structure, the best lower bound that can be obtained by this combinatorial method. In addition, we obtain some general lower bounds that improve the previously known ones, and we construct optimal secret sharing schemes for a family of bipartite access structures.Peer ReviewedPostprint (author's final draft

    On the representability of the biuniform matroid

    Get PDF
    Every biuniform matroid is representable over all sufficiently large fields. But it is not known exactly over which finite fields they are representable, and the existence of efficient methods to find a representation for every given biuniform matroid has not been proved. The interest of these problems is due to their implications to secret sharing. The existence of efficient methods to find representations for all biuniform matroids is proved here for the first time. The previously known efficient constructions apply only to a particular class of biuniform matroids, while the known general constructions were not proved to be efficient. In addition, our constructions provide in many cases representations over smaller finite fields. © 2013, Society for Industrial and Applied MathematicsPeer ReviewedPostprint (published version

    On the representability of the biuniform matroid

    Get PDF
    Every biuniform matroid is representable over all sufficiently large fields. But it is not known exactly over which finite fields they are representable, and the existence of efficient methods to find a representation for every given biuniform matroid has not been proved. The interest of these problems is due to their implications to secret sharing. The existence of efficient methods to find representations for all biuniform matroids is proved here for the first time. The previously known efficient constructions apply only to a particular class of biuniform matroids, while the known general constructions were not proved to be efficient. In addition, our constructions provide in many cases representations over smaller finite fields. © 2013, Society for Industrial and Applied MathematicsPeer ReviewedPostprint (published version

    Generalized threshold secret sharing and finite geometry

    Get PDF
    In the history of secret sharing schemes many constructions are based on geometric objects. In this paper we investigate generalizations of threshold schemes and related finite geometric structures. In particular, we analyse compartmented and hierarchical schemes, and deduce some more general results, especially bounds for special arcs and novel constructions for conjunctive 2-level and 3-level hierarchical schemes

    On the optimization of bipartite secret sharing schemes

    Get PDF
    Optimizing the ratio between the maximum length of the shares and the length of the secret value in secret sharing schemes for general access structures is an extremely difficult and long-standing open problem. In this paper, we study it for bipartite access structures, in which the set of participants is divided in two parts, and all participants in each part play an equivalent role. We focus on the search of lower bounds by using a special class of polymatroids that is introduced here, the bipartite ones. We present a method based on linear programming to compute, for every given bipartite access structure, the best lower bound that can be obtained by this combinatorial method. In addition, we obtain some general lower bounds that improve the previously known ones, and we construct optimal secret sharing schemes for a family of bipartite access structures.Postprint (author’s final draft

    A Note on Non-Perfect Secret Sharing

    Get PDF
    By using a recently introduced framework for non-perfect secret sharing, several known results on perfect secret sharing are generalized to non-perfect secret sharing schemes with constant increment, in which the amount of information provided by adding a single share to a set is either zero or some constant value. Specifically, we discuss ideal secret sharing schemes, constructions of efficient linear secret sharing schemes, and the search for lower bounds on the length of the shares. Similarly to perfect secret sharing, matroids and polymatroids are very useful to analyze these questions

    Joint Compartmented Threshold Access Structures

    Get PDF
    In this paper, we introduce the notion of a joint compartmented threshold access structure (JCTAS). We study the necessary conditions for the existence of an ideal and perfect secret sharing scheme and give a characterization of almost all ideal JCTASes. Then we give an ideal and almost surely perfect construction that realizes such access structures. We prove the asymptotic perfectness of this construction by the Schwartz-Zippel Lemma
    corecore