224 research outputs found

    Local colourings and monochromatic partitions in complete bipartite graphs

    Full text link
    We show that for any 22-local colouring of the edges of the balanced complete bipartite graph Kn,nK_{n,n}, its vertices can be covered with at most~33 disjoint monochromatic paths. And, we can cover almost all vertices of any complete or balanced complete bipartite rr-locally coloured graph with O(r2)O(r^2) disjoint monochromatic cycles.\\ We also determine the 22-local bipartite Ramsey number of a path almost exactly: Every 22-local colouring of the edges of Kn,nK_{n,n} contains a monochromatic path on nn vertices.Comment: 18 page

    Ramsey numbers in complete balanced multipartite graphs. Part I: Set numbers

    Get PDF
    AbstractThe notion of a graph theoretic Ramsey number is generalised by assuming that both the original graph whose edges are arbitrarily bi-coloured and the sought after monochromatic subgraphs are complete, balanced, multipartite graphs, instead of complete graphs as in the classical definition. We previously confined our attention to diagonal multipartite Ramsey numbers. In this paper the definition of a multipartite Ramsey number is broadened still further, by incorporating off-diagonal numbers, fixing the number of vertices per partite set in the larger graph and then seeking the minimum number of such partite sets that would ensure the occurrence of certain specified monochromatic multipartite subgraphs

    Monochromatic connected matchings in 2-edge-colored multipartite graphs

    Full text link
    A matching MM in a graph GG is connected if all the edges of MM are in the same component of GG. Following \L uczak,there have been many results using the existence of large connected matchings in cluster graphs with respect to regular partitions of large graphs to show the existence of long paths and other structures in these graphs. We prove exact Ramsey-type bounds on the sizes of monochromatic connected matchings in 22-edge-colored multipartite graphs. In addition, we prove a stability theorem for such matchings.Comment: 29 pages, 2 figure

    Cycles are strongly Ramsey-unsaturated

    Full text link
    We call a graph H Ramsey-unsaturated if there is an edge in the complement of H such that the Ramsey number r(H) of H does not change upon adding it to H. This notion was introduced by Balister, Lehel and Schelp who also proved that cycles (except for C4C_4) are Ramsey-unsaturated, and conjectured that, moreover, one may add any chord without changing the Ramsey number of the cycle CnC_n, unless n is even and adding the chord creates an odd cycle. We prove this conjecture for large cycles by showing a stronger statement: If a graph H is obtained by adding a linear number of chords to a cycle CnC_n, then r(H)=r(Cn)r(H)=r(C_n), as long as the maximum degree of H is bounded, H is either bipartite (for even n) or almost bipartite (for odd n), and n is large. This motivates us to call cycles strongly Ramsey-unsaturated. Our proof uses the regularity method
    corecore