371 research outputs found

    Stability Analysis of Frame Slotted Aloha Protocol

    Full text link
    Frame Slotted Aloha (FSA) protocol has been widely applied in Radio Frequency Identification (RFID) systems as the de facto standard in tag identification. However, very limited work has been done on the stability of FSA despite its fundamental importance both on the theoretical characterisation of FSA performance and its effective operation in practical systems. In order to bridge this gap, we devote this paper to investigating the stability properties of FSA by focusing on two physical layer models of practical importance, the models with single packet reception and multipacket reception capabilities. Technically, we model the FSA system backlog as a Markov chain with its states being backlog size at the beginning of each frame. The objective is to analyze the ergodicity of the Markov chain and demonstrate its properties in different regions, particularly the instability region. By employing drift analysis, we obtain the closed-form conditions for the stability of FSA and show that the stability region is maximised when the frame length equals the backlog size in the single packet reception model and when the ratio of the backlog size to frame length equals in order of magnitude the maximum multipacket reception capacity in the multipacket reception model. Furthermore, to characterise system behavior in the instability region, we mathematically demonstrate the existence of transience of the backlog Markov chain.Comment: 14 pages, submitted to IEEE Transaction on Information Theor

    Interference-Based Optimal Power-Efficient Access Scheme for Cognitive Radio Networks

    Full text link
    In this paper, we propose a new optimization-based access strategy of multipacket reception (MPR) channel for multiple secondary users (SUs) accessing the primary user (PU) spectrum opportunistically. We devise an analytical model that realizes the multipacket access strategy of SUs that maximizes the throughput of individual backlogged SUs subject to queue stability of the PU. All the network receiving nodes have MPR capability. We aim at maximizing the throughput of the individual SUs such that the PU's queue is maintained stable. Moreover, we are interested in providing an energy-efficient cognitive scheme. Therefore, we include energy constraints on the PU and SU average transmitted energy to the optimization problem. Each SU accesses the medium with certain probability that depends on the PU's activity, i.e., active or inactive. The numerical results show the advantage in terms of SU throughput of the proposed scheme over the conventional access scheme, where the SUs access the channel randomly with fixed power when the PU is sensed to be idle

    Throughput of a Cognitive Radio Network under Congestion Constraints: A Network-Level Study

    Full text link
    In this paper we analyze a cognitive radio network with one primary and one secondary transmitter, in which the primary transmitter has bursty arrivals while the secondary node is assumed to be saturated (i.e. always has a packet waiting to be transmitted). The secondary node transmits in a cognitive way such that it does not impede the performance of the primary node. We assume that the receivers have multipacket reception (MPR) capabilities and that the secondary node can take advantage of the MPR capability by transmitting simultaneously with the primary under certain conditions. We obtain analytical expressions for the stationary distribution of the primary node queue and we also provide conditions for its stability. Finally, we provide expressions for the aggregate throughput of the network as well as for the throughput at the secondary node.Comment: Presented at CROWNCOM 201

    Channel-Aware Random Access in the Presence of Channel Estimation Errors

    Full text link
    In this work, we consider the random access of nodes adapting their transmission probability based on the local channel state information (CSI) in a decentralized manner, which is called CARA. The CSI is not directly available to each node but estimated with some errors in our scenario. Thus, the impact of imperfect CSI on the performance of CARA is our main concern. Specifically, an exact stability analysis is carried out when a pair of bursty sources are competing for a common receiver and, thereby, have interdependent services. The analysis also takes into account the compound effects of the multipacket reception (MPR) capability at the receiver. The contributions in this paper are twofold: first, we obtain the exact stability region of CARA in the presence of channel estimation errors; such an assessment is necessary as the errors in channel estimation are inevitable in the practical situation. Secondly, we compare the performance of CARA to that achieved by the class of stationary scheduling policies that make decisions in a centralized manner based on the CSI feedback. It is shown that the stability region of CARA is not necessarily a subset of that of centralized schedulers as the MPR capability improves.Comment: The material in this paper was presented in part at the IEEE International Symposium on Information Theory, Cambridge, MA, USA, July 201
    corecore