1,201 research outputs found

    Multiple Criteria Decision-Making Preprocessing Using Data Mining Tools

    Full text link
    Real-life engineering optimization problems need Multiobjective Optimization (MOO) tools. These problems are highly nonlinear. As the process of Multiple Criteria Decision-Making (MCDM) is much expanded most MOO problems in different disciplines can be classified on the basis of it. Thus MCDM methods have gained wide popularity in different sciences and applications. Meanwhile the increasing number of involved components, variables, parameters, constraints and objectives in the process, has made the process very complicated. However the new generation of MOO tools has made the optimization process more automated, but still initializing the process and setting the initial value of simulation tools and also identifying the effective input variables and objectives in order to reach the smaller design space are still complicated. In this situation adding a preprocessing step into the MCDM procedure could make a huge difference in terms of organizing the input variables according to their effects on the optimization objectives of the system. The aim of this paper is to introduce the classification task of data mining as an effective option for identifying the most effective variables of the MCDM systems. To evaluate the effectiveness of the proposed method an example has been given for 3D wing design.Comment: International Journal of Computer Science Issues at http://ijcsi.org/articles/Multiple-Criteria-Decision-Making-Preprocessing-Using-Data-Mining-Tools.ph

    Multiobjective optimization of cluster measures in Microarray Cancer data using Genetic Algorithm Based Fuzzy Clustering

    Get PDF
    The field of biological and biomedical research has been changed rapidly with the invention of microarray technology, which facilitates simultaneously monitoring of large number of genes across different experimental conditions. In this report a multi objective genetic algorithm technique called Non-Dominated Sorting Genetic Algorithm (NSGA) - II based approach has been proposed for fuzzy clustering of microarray cancer expression dataset that encodes the cluster modes and simultaneously optimizes the two factors called fuzzy compactness and fuzzy separation of the clusters. The multiobjective technique produces a set of non-dominated solutions. This approach identifies the solution i.e. the individual chromosome which gives the optimal value of the parameters

    A Survey on Soft Subspace Clustering

    Full text link
    Subspace clustering (SC) is a promising clustering technology to identify clusters based on their associations with subspaces in high dimensional spaces. SC can be classified into hard subspace clustering (HSC) and soft subspace clustering (SSC). While HSC algorithms have been extensively studied and well accepted by the scientific community, SSC algorithms are relatively new but gaining more attention in recent years due to better adaptability. In the paper, a comprehensive survey on existing SSC algorithms and the recent development are presented. The SSC algorithms are classified systematically into three main categories, namely, conventional SSC (CSSC), independent SSC (ISSC) and extended SSC (XSSC). The characteristics of these algorithms are highlighted and the potential future development of SSC is also discussed.Comment: This paper has been published in Information Sciences Journal in 201

    Clustering Algorithms: Their Application to Gene Expression Data

    Get PDF
    Gene expression data hide vital information required to understand the biological process that takes place in a particular organism in relation to its environment. Deciphering the hidden patterns in gene expression data proffers a prodigious preference to strengthen the understanding of functional genomics. The complexity of biological networks and the volume of genes present increase the challenges of comprehending and interpretation of the resulting mass of data, which consists of millions of measurements; these data also inhibit vagueness, imprecision, and noise. Therefore, the use of clustering techniques is a first step toward addressing these challenges, which is essential in the data mining process to reveal natural structures and iden-tify interesting patterns in the underlying data. The clustering of gene expression data has been proven to be useful in making known the natural structure inherent in gene expression data, understanding gene functions, cellular processes, and subtypes of cells, mining useful information from noisy data, and understanding gene regulation. The other benefit of clustering gene expression data is the identification of homology, which is very important in vaccine design. This review examines the various clustering algorithms applicable to the gene expression data in order to discover and provide useful knowledge of the appropriate clustering technique that will guarantee stability and high degree of accuracy in its analysis procedure

    A survey on handling computationally expensive multiobjective optimization problems with evolutionary algorithms

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this record.Evolutionary algorithms are widely used for solving multiobjective optimization problems but are often criticized because of a large number of function evaluations needed. Approximations, especially function approximations, also referred to as surrogates or metamodels are commonly used in the literature to reduce the computation time. This paper presents a survey of 45 different recent algorithms proposed in the literature between 2008 and 2016 to handle computationally expensive multiobjective optimization problems. Several algorithms are discussed based on what kind of an approximation such as problem, function or fitness approximation they use. Most emphasis is given to function approximation-based algorithms. We also compare these algorithms based on different criteria such as metamodeling technique and evolutionary algorithm used, type and dimensions of the problem solved, handling constraints, training time and the type of evolution control. Furthermore, we identify and discuss some promising elements and major issues among algorithms in the literature related to using an approximation and numerical settings used. In addition, we discuss selecting an algorithm to solve a given computationally expensive multiobjective optimization problem based on the dimensions in both objective and decision spaces and the computation budget available.The research of Tinkle Chugh was funded by the COMAS Doctoral Program (at the University of Jyväskylä) and FiDiPro Project DeCoMo (funded by Tekes, the Finnish Funding Agency for Innovation), and the research of Dr. Karthik Sindhya was funded by SIMPRO project funded by Tekes as well as DeCoMo
    corecore