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Abstract

The field of biological and biomedical research has been changed rapidly with the

invention of microarray technology, which facilitates simultaneously monitoring of large

number of genes across different experimental conditions.

In this report a multi objective genetic algorithm technique called Non-Dominated

Sorting Genetic Algorithm (NSGA) - II based approach has been proposed for fuzzy

clustering of microarray cancer expression dataset that encodes the cluster modes and

simultaneously optimizes the two factors called fuzzy compactness and fuzzy separation

of the clusters. The multiobjective technique produces a set of non-dominated solutions.

This approach identifies the solution i.e. the individual chromosome which gives the op-

timal value of the parameters.

Keywords: Fuzzy Clustering; Microarray expression data; Multiobjective Optimiza-

tion
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1.1 Introduction

Real world clustering problems are naturally posed as multiobjective, but evolution-

ary algorithms have been used in the past to optimize single objectives of clusters. As

the name suggests, Multiobjective Optimization (MOO) is a process of optimizing sys-

tematically and simultaneously a collection of objective functions. For researchers and

engineers, multiobjective optimization is very popular area for work. But it doesn’t

mean that there are no questions in this area, there are many open questions. There is

no universally accepted definition of optimum, which makes it difficult to even compare

the result of two methods, because the decision of best answer depends upon the decision

maker. The potential to solve multiobjective optimization problem using evolutionary

algorithm was hinted as early as the late 1960s by Rosenberg [1]. And the first actual

implementation of Multiobjective Evolutionary Algorithm (MOEA) was produced until

the mid-1980s by David Schaffer in his doctoral dissertation [2].

1.2 Clustering

Clustering an unsupervised classification technique, is the process of grouping or or-

ganizing a set of objects into distinct group based on some similarity or dissimilarity

measure among the individual objects, such that the objects in the same group are more

similar to each other than those in other groups.

It is mainly employed in Data Mining, and a common technique of statistical data

analysis including the fields like Machine learning, Bioinformatics, Pattern Recognition,

Image Analysis.

Considering Microarray expression data, clustering is an important microarray anal-

ysis tool, which is used to identify co-expressed genes i.e. genes with similar expression

profiles.

Clustering can be mainly divided into two types Hard Clustering and Soft Clustering.

They have been discussed in the next subsections.

1.2.1 Hard Clustering

Hard Clustering is based on classical set theory, and in this method of clustering the ob-

ject either does or does not belong to a cluster [3]. In Hard clustering data is partitioned

into specified number of mutually exclusive subsets.



1.2.2 Soft (Fuzzy) Clustering

In Soft Clustering [4], unlike hard clustering the object doesn’t belong to a particular

cluster rather an object belongs to more than one cluster simultaneously with different

degree of membership and with every object there is an associated set of membership

levels. The membership level indicates the strength of the association between that

object and a particular cluster [5]. Objects on the boundaries between several classes

are assigned a membership value between 0 and 1 indicating partial membership rather

than they are not forced them to fully belong to a single cluster.

Using hard partitioning for algorithms based on analytic functional causes difficulties

because hard partitioning is discrete in nature and also since this functional are not

differentiable [6].

Unlike hard clustering, In fuzzy clustering, result is a K ∗ n membership matrix

U(X) = [ukj ], k = 1, ...,K and j = 1, ..., n, where ukj denotes the probability of assigning

xj to cluster Ck. For probalistic non-degenerate clustering 0 < ukj < 1 and ΣK
k=1ukj =

1, 1 ≤ j ≤ n [7].

1.3 Genetic Algorithm

Genetic Algorithm is a popular search heuristic which mimics the process of natural

evolution and also it belong to the larger class of Evolution Algorithms. It is used

to generate solutions to optimization problems using techniques inspired by natural

evolution and selection to find the fittest individual in term of evolution. It is guided

by the principle of Darwinian evolution, which considers a population which evolves

in a particular environment, and only the fittest get a chance for reproduction and

less fit solution got rejected due to environmental constraints. Genetic Algorithms find

application in Bioinformatics, Computational Science, Economics, Chemistry and other

fields.

1.4 Organization of the thesis

Chapter 1 Introduction

In this chapter general introduction about clustering and Genetic Algorithm is given.

Chapter 2 Literature Review

In chapter 2, What all work has been done is described.

Chapter 3 Multiobjective Optimization



Here In this chapter the concept of Multiobjective optimization and Pareto domi-

nance has been described.

Chapter 4 Multiobjective Evolutionary Algorithms

In chapter 4, the detailed discussion about Evolutionary algorithms for multiobjec-

tive optimization has been done. And NSGA - II has been described in detail.

Chapter 5 Performance measure of NSGA - II

The performance measures of NSGA - II has been described.

Chapter 6 Application of NSGA - II in Microarray Gene Expression Data

In chapter 6, the application of NSGA - II on microarray expression data for opti-

mizing cluster parameter is described.

Chapter 7 Simulation & Results

This chapter contains the simulation details and results of simulations.

Chapter 8 Conclusions

The overall conclusion of the thesis is presented in this chapter.
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2.1 Literature Review

Genetic Algorithms have previously used for data clustering problems to develop efficient

clustering techniques [8], [9] as earlier, generally Genetic algorithm has been used for op-

timizing a single objective, and that was not equally applicable for all class of datasets.

And to solve problems, it might be some time necessary to optimize more than one

objective simultaneously. Coming on to the problem of clustering, it is a real world

problem, and clustering algorithms try to optimize validity measures like compactness,

separation among the clusters or both. But to find out the relevance of different clus-

tering criteria is unknown, so it is better to optimize the parameters separately rather

than combining them into a single measure to get optimized.

There are instance in literature that applied multiobjective techniques for data clus-

tering.

One of the recent approaches in this field is found in [10], where the objective func-

tions representing separation and compactness of the clusters were optimized in a crisp

clustering context and with a deterministic method.

In [11], a search based multiobjective criteria has been proposed, where the parti-

tioning criteria chosen are the within-cluster similarity and between cluster dissimilarity

and the technique used is based on cluster centers, as in [8].

In [12], [13] series of works on multiobjective clustering has been proposed, where

chromosome encoding of length equal to number of data points. And the two objectives

optimized were connectivity and compactness (overall deviation). And because of the

length of chromosomes become equal to number of data points n to be clustered, the

convergence become slower for large values of n [14] because of the chromosomes, and

hence search space, in such cases become large.

As discussed in [14], when the length of chromosomes becomes equal to number of

points n to be clustered, the convergence become slower for the large values of n. Be-

cause of the chromosomes and, hence search space, in such cases become large.

However in [13] a special mutation operator is used to reduce the effective search

space by maintaining a list of L nearest neighbors for each data point, where L is user

defined parameter. And this algorithm is intended for crisp clustering of continuous

data.

2.2 Motivation

Clustering of microarray gene expression data is very important topic. Different clus-

tering algorithms usually attempt to cluster the gene expression data but in this report



multiobjective optimization of cluster validity measures such as compactness and sep-

aration among clusters in microarray cancer data has been proposed. The relative

importance of different clustering criteria is unknown, so it is better to optimize com-

pactness and separation separately rather than combining them into a single measure

to be optimized.

The method proposed in this report uses a center(mode) based encoding strategy for

fuzzy clustering of microarray cancer data.

And, computation of cluster modes is costlier than that of cluster means, the algo-

rithm needs to find the membership matrices that takes a reasonable amount of time.

However, as fuzzy clustering is better equipped with to handle overlapping clusters, the

proposed technique can handle both overlapping and non-overlapping clusters. So, fuzzy

K-mode has been used in this proposed work.
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3.1 Overview

Many Real-world search and optimization problems in engineering are multiobjective in

nature, because at the same time they normally have more than one objective that must

be satisfied and those objectives may be possibly conflicting. And instead of finding

single solution the term optimum needs to be redefined in context of multiobjective

optimization, a set of good compromises or trade-offs needs to be produced and then

the decision maker choose one out of those many solutions.

3.2 Definitions

3.2.1 Single Objective Optimization Problem (SOOP)

An optimization problem that involves optimization of single objective is known as Single

Objective Optimization Problem.

In general a single objective function can be defined as minimizing or maximizing

a function f(x) subject to inequality constraints g(x) ≥ 0, for all i = 1, 2, ...,m and

equality constraints h(x) = 0, for all j = 1, 2, ..., p, x ∈ Ω. So, the solution minimizes

or maximizes the function f(x), where x is a n-dimensional decision vector variable

x = (x1, ..., xn) from some universe Ω.

The inequality and equality constraints must be fulfilled while optimizing (minimizing

or maximizing) the objective function f(x).

In SOOP, only a single optimal solution is obtained. And either the maximum or

the minimum fitness value is selected as the optimal (best) solution depending upon the

problem.

3.2.2 The Multiobjective Optimization Problems (MOP)

The process of optimizing a physical system, which involves a set of conflicting objectives

subject to be optimized with certain constraints, is called MOP.

It can be defined as the problem of finding [15]: “A vector of decision variables which

satisfies constraints and optimizes a vector function whose elements represent the objec-

tive functions. These functions form a mathematical description of performance criteria

which are usually in conflict with each other. Hence, the term optimize means finding

such a solution which would give the values of all the objective functions acceptable to

the decision maker.”

The mathematical definition of a multiobjective problem (MOP) is important in pro-

viding a foundation of understanding between the interdisciplinary nature of deriving



possible solution techniques (deterministic, stochastic); i.e. search algorithms [16].

The single objective formulation is extended to reflect the nature of multiobjective

optimization problem where there is more than one objectives function which needs to

be optimizing [16]. Thus there is set of solutions instead of a single solution i.e. a

set of optimal solution and they are found using Pareto-optimality theory [428]. And

a decision maker is required in multiobjective problems to make a choice of x∗i values.

The selection is necessarily to be tradeoff of one complete solution x over another in

multiobjective space. Comparison between the set of solutions obtained is based on

dominance and non-dominance.

In a precise manner, MOPs are those problems where the goal is to optimize k

objective functions simultaneously. The set of k objective functions can be either all

maximize or all minimize or combination of both. The objective functions can be linear

or non-linear and continuous or discrete in nature. And also the objective function is a

mapping from the vector of decision variables to output vectors. The decision variable

can be continuous or discrete. General Definition of Multiobjective Optimization [17]

Finding the vector x̄∗ = [x∗1, x
∗
2, ..., x

∗
n]T of the decision variables such that it will

satisfy the m inequality constraints

gi(x̄) ≥ 0, i = 1, 2, ...,m

and the p equality constraints

hi(x̄) = 0, i = 1, 2, ..., p

and optimizes the vector function

f̄(x̄) = [f1(x̄), f2(x̄), ..., fi(x̄)]T

The constraints define the feasible region F which contains all the allowable solutions

[18]. Any solution which is outside this region is inadmissible since it violates one or

more constraints [19]. Vector x∗̄ represents an optimal solution in F . In multiobjective

optimization difficulty lies in the definition of optimality, since it is very rare that we

will find a situation where a single vector x∗̄ will represent the optimum solution with

respect to all the objective functions.

3.3 Pareto Terminology

The concept of Pareto optimality comes handy in the domain of multiobjective opti-

mization problem.



Formal Definition of Pareto Optimality from the viewpoint of minimization problem:

A decision vector x̄∗ is called Pareto optimal if and only if there is no x̄ that dominates

x̄∗, i.e., there is no x̄ such that

∀i ∈ 1, 2, ..., k, fi(x̄) ≤ fi(x̄∗)

and

∃i ∈ 1, 2, ..., k, fi(x̄) < fi(x̄
∗)

In general, Pareto optimum usually admits a set of solutions called the non-dominated

solutions.

3.3.1 Dominance

A solution is said to dominate other if it is better in all objectives than the other

solution. Mathematically, Solution vector x = (x1, x2, ..., xk) is said to dominate solution

vector y = (y1, y2, ..., yk) if and only if xi dominates yi for all i = 1, 2, ..., k

3.3.2 Non-dominance

A solution is said to be non-dominated if it is better than the other solutions in atleast

one objective. When Pareto points are plotted in objective space, the non-dominated

solutions generates the pareto fronts.

3.4 Summary

This chapter summarizes the basic definitions and formal notation of general multi-

objective optimization and concept of Pareto optimum that are adopted through the

thesis.
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4.1 Overview

Evolutionary Algorithms (EA) are used to solve real-world multiobjective optimization

problems due to their population based approach; a simple EA can be extended to

maintain a diverse set of solutions. As evolutionary algorithms are population-based

methods, it is easy to extend them to handle multiple objectives.

On the contrary, traditional search and optimization methods are difficult to ex-

tend to multiobjective case, since they generally deal with single solution. And due to

the increasing interest to solve multiobjective problems, researchers have also developed

new evolutionary algorithms based on real parameters. In this some of them are Non-

Dominated Sorting Genetic Algorithm (NSGA), Pareto Archived Evolution Strategy

(PAES) & Strength Pareto Evolutionary Algorithm (SPEA). If the problem is multiob-

jective then it gives rise to a set of optimal solutions known as Pareto Optimal Solution,

instead of a single solution. By emphasizing one particular Pareto-Optimal Solution at a

time, the classical optimization methods suggest to turn the multiobjective optimization

problem to single objective optimization problem. When such methods are applied to

find the solution, they are applied many times so that every time it results in hopefully

a different solution. When emphasized on moving forward towards true pareto-optimal

region, an EA can be used to find multiple Pareto-optimal solutions in one single run.

Two most desirable features of an Evolutionary Algorithm:

• Convergence to Pareto optimal front

To achieve convergence to Pareto optimal front, most Multiobjective Evolutionary

Algorithm (MOEA) use non-dominated sorting algorithms.

• Maintenance of Diversity (Representation of the entire Pareto optimal front) [20]

In this chapter, NSGA and NSGA - II has been discussed as how to apply it to

multiobjective optimization.

4.2 Non-Dominated Sorting Genetic Algorithm (NSGA)

The Non-dominated sorting Genetic Algorithm is a popular non-domination based ge-

netic algorithm for multiobjective optimization and is an instance of Evolutionary Al-

gorithms. Actually NSGA is an extension of Genetic Algorithm for solving multiple

objective function optimizations. It is related to other EAs of Multiobjective optimiza-

tion like Strength Pareto Evolutionary Algorithm (SPEA), Pareto Archived Evolution

Strategy (PAES).



NSGAs main objective is to improve the adaptive fitness of a population of candidate

solutions to a Pareto front constrained by a set of objective functions. The algorithm

uses an evolutionary process with surrogates for evolutionary operators including se-

lection, genetic crossover, and genetic mutation. After that population is sorted based

on the ordering of Pareto dominance. Similarity between members of each sub-group

is evaluated on the Pareto front, and the resulting groups and similarity measures are

used to promote a diverse front of non-dominated solutions.

Classical NSGA and the updated & currently canonical form NSGA - II [16] are the

two types of NSGA.Classical NSGA has been generally criticized for its computational

complexity, lack of elitism and for choosing the optimal parameter value for sharing

parameter σshare.

4.3 NSGA - II

A modified and updated version of NSGA is called NSGA - II [21] was developed, it has

better sorting, incorporates elitism and the sharing parameter need not to be chosen

a priori. The elitism feature favors the elites of a population i.e. the non-dominated

solution among the parent and child populations are directly propagated to the next

generation. In this way a good solution found early will never be lost unless a better

solution is discovered. The near-Pareto-Optimal string of the last generation provides

different solutions to the clustering problem.

4.3.1 Fast Non-Dominated Sorting

Generally non-dominated sorting is one of the main time-consuming parts of multiob-

jective evolutionary algorithm (MOEA) [22]. So, design of fast non-dominated sorting

algorithm is very necessary to improve the performance of a MOEA. And NSGA - II is

a fast non-dominated Sorting Algorithm which has been used in this report.

In fast non-dominated sorting approach, the population is sorted based on non-

domination. After initializing the population, it is sorted based on non-domination in

each front. The first front being completely dominant in the current population, the

individuals in the second front is only dominated by the individuals of first front and

the front goes on. The individuals are assigned rank (fitness) values or based on front

to which they belong. Individuals of first front are assigned rank 1 and individuals in

second front are assigned a value of 2 and so on.

In addition to rank also a second parameter called crowding distance is calculated

for every individual. Crowding distance measures how close an individual is to its neigh-

bors. Large crowding distance will maintain a better diversity in the population.



The non-domination sorting is used in NSGA - II is fast because compare to other

MOEAs, NSGA - II has been designed in such a way that the time complexity is small,

hence the non-domination process is fast.

For population size of P and number of objective function O, fast non-dominated

can defined as follow [21]

For each individual p, two entities are calculated

• Domination Count, np the number of individuals (solutions) which dominates the

individual p, and

• Sp, a set of solutions which the individual p dominates.

All solutions in the first non-domination front will have np = 0. Then for every

individual q in Sp, reduce the domination count by one and in doing so, if for any

individual the domination count becomes zero then we put it into separate list Q, and

the second front is identified. The process is continued until all fronts are identified.

The total complexity of the fast non-domination procedure is OP 2, whereas the

complexity of normal non-domination sorting is OP 3.

4.3.2 Fitness Assignment Ranking Based on Non-Domination Sorting

Each individual of the population is assigned a rank (fitness) value based on the non-

domination sorting procedure. After calculating the rank, for the individuals of same

front crowding distance is also calculated.

4.3.3 Diversity Mechanism

The non-domination sorting algorithm converge the solution to the Pareto optimal

front. But along with the convergence one more desirable feature of MOEA needs to be

maintain, the diversity of the front i.e. a good spread of the solutions along the Pareto

optimal front. The original NSGA uses a well-known sharing parameter which sets the

desired extent of diversity. But this method makes the computation complex and also

increased the dependence of the method on value of sharing parameter chosen. But In

NSGA - II, the use of crowded comparison approach eliminated the above difficulties to

some extent.

Density Estimation - Crowding Distance Assignment

Calculate the average distance of two points on either side of the point along each of

the objective so as to get an estimate of the density of solutions surrounding a particular

solution in the population. Crowding distance is assigned front wise and comparing the



crowding distance between two individuals in different front is meaningless. Crowding

distance helps in obtaining uniform distribution.

The basic idea behind the crowding distance is finding the Euclidean distance between

individual in a front based on their o objectives in the m dimensional hyper space.

The individuals in the boundary are always selected since they have infinite distance

assignment.

Crowded Operator based sorting

Crowded comparison operator (�n) is used to guide the process of selection at the

various stages of the algorithm toward a uniformly spread-out Pareto optimal front.

Assume that every individual i in the population has two attributes:

• Non-domination rank (irank)

• Crowding Distance (idistance)

Now, between two individuals i and j, the individual with lower rank will be se-

lected(i.e. irank < jrank) or if both individual belongs to the same front then their

crowding distance is compared, and individual with greater crowding distance i.e. an

individual located in a lesser crowded region is selected.

4.3.4 Elitism

The most characteristic part of NSGA - II is its elitism operation, where the non-

dominated solutions among the parent and the child populations are propagated to the

next generation.

4.4 Summary

The attractive feature of NSGA - II (MOEA) is their ability to find a wide range of

non-dominated solutions which are close to the Pareto optimal solutions. Evolutionary

algorithms process a population of solutions in every iteration, thereby making them

ideal candidates for finding multiple trade-off solutions in one single simulation run.
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There exist many different MOEAs, so it is necessary that their performance needs

to be quantified on a number of test problems. There are two goals in MOO, i.e.

the performance evaluation of a multiobjective evolutionary algorithm is based on two

metrics:

• Convergence Metric

• Diversity Metric

The performance parameters can be said that they are orthogonal to each other. The

Convergence parameter search towards the Pareto-optimal region, while the diversity

parameter requires a search along the Pareto-optimal front. They have described in the

below sections.

5.1 Convergence Metric

The convergence metric γ measures the extent of convergence to a known set of Pareto-

optimal solutions [21]. Convergence metric explicitly computes a measure of the closeness

of set Q of N solutions from a known set of the true Pareto-optimal set P ∗. Convergence

Metric finds an average distance of Q, from P ∗, as follow

γ = avg(Σ(mindistance))

γ =
ΣNi=1di
N

where, di is the Euclidean distance (in the objective space) between the solution

i ∈ Q and the nearest member of P ∗.

di = min
|P |
k=1sqrt(Σ

M
m=1(f

(i)
m − f∗km )2)

where, f
∗(k)
m is the mth objective function value of the kth member of P ∗. When all

the obtained solutions lies exactly on P ∗ chosen solutions, this metric takes a value of

zero.

5.2 Diversity Metric

The diversity preservance mechanism avoids that the entire population converges to a

single solution. Deb [21] the metric called the diversity metric, to measure spread of



solutions obtained by an algorithm directly. The measure of diversity can be separated

into two different measures of extent i.e. along the spread of extreme solutions and

distribution i.e. the relative distance among the obtained solutions given by

∆ =
ΣMm=1d

e
m+ΣNi=1|di−d̄|

ΣMm=1d
e
m+N (̄d)

where, di can be any distance measure between neighboring solutions and d̄ is the

mean value of these distance measure. The parameter dem is the distance between the

extreme solutions of P ∗ and Q corresponding to mth objective function.

For the most widely and uniformly spread out set of non-dominated solutions, the nu-

merator of ∆ would be zero, making the metric value to zero. For any other distribution,

the value of the metric would be greater than zero.

5.3 Summary

There are many other performance metrics but convergence metric and diversity

metric are the two most important metrics to measure the performance of evolutionary

algorithms like NSGA - II.
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6.1 Overview

A microarray is an array of DNA molecules that permit many hybridization experi-

ments to be performed in parallel. The progress in Microarray technology facilitates the

monitoring of expression profile of a large number of genes across different experimen-

tal conditions simultaneously. Clustering of microarray gene expression data is used to

identify the sets of co-expressed genes with similar expression profile.

A microarray gene expression data having g genes and h time points are typically

organized in a 2D matrix E = [eij ] of size g x h. Each element eij gives the expression

level of ith gene at jth time point. Microarray technology has many applications in the

field of biological research, medical diagnostics, drug discovery and development, and

toxicology [23]. In this report, a method has been proposed, which combines the feature

of Multiobjective Genetic Algorithm based fuzzy clustering for optimization for fuzzy

compactness and fuzzy separation of clusters of microarray cancer data.

6.2 Leukemia

Leukemia is a type of blood cancer characterized by an abnormal increase of immature

white blood cells called blasts. Leukemia affects the bone marrow. The white blood

cells help to fight infections and other diseases. Normally, the cell produce in an orderly

way, but people that have leukemia the cell production gets out of control. The marrow

produces too many immature white blood cells, which are differently shaped and cant

carry out their usual duties. Leukemia is broad term covering range of diseases.

6.2.1 Dataset

The dataset that has been used in this work is probably the most famous gene

expression cancer dataset (Golub et al.), containing information on gene-expression in

samples from human acute myeloid (AML) and acute lymphoblastic leukemias (ALL).

The original data set has 7129 genes and 72 samples but preprocessed data with 50

genes and 72 sample has been used.



6.3 Multiobjective Algorithm Non Dominated Sorting Ge-

netic Algorithm - II

In this work NSGA - II is used as the multiobjective algorithm for optimization of clus-

ter parameters. NSGA - II is well known multiobjective genetic algorithm which can

maintain diversity on the Pareto front well. The chromosomes in this study are real

coded.

The procedure of NSGA - II has been explained below:

Initialize the population by encoding K cluster modes in each chromosome by ran-

domly selecting K objects from dataset. The process is repeated for every P chromo-

somes in the population, where P is the population size. Each chromosome is a sequence

of attribute values representing the K cluster modes. Since K, cluster modes are en-

coded, and then the length of the chromosome will be K x p, where K is the number

of clusters and p is the number of attribute in one sample. Then the values for the ob-

jective functions are calculated then the population is sorted based on non-domination

in to front. The first front shows non-domination set in the current population and the

second front being dominated by the individuals of the first front only and the front

goes on. Each individual is assigned rank (fitness) values. In addition to rank, one

more parameter called crowding distance is calculated for each individual. The selection

method for selecting parents used here is Binary Tournament Selection based on rank

and crowding distance. An individual is selected if its rank is lesser than the other and

if both individuals have the same rank then their crowding distance is compared and the

individual with larger crowding distance got selected. The selected individuals generate

offsprings Qt using simulated binary crossover and polynomial mutation operators. The

population Rt generated by combining the current population Pt and the current off-

spring Qt, is sorted again based on non-domination and only the best P individuals are

selected, where P is the population size. This is repeated until the condition is met.

6.3.1 Optimization using NSGA - II

Genetic Algorithms have been previously used for clustering. And to solve real world

problems, many times multiple objectives need to be optimized simultaneously. Clus-

tering algorithms attempt to optimize the validity measures of a cluster such as com-

pactness, separation among clusters.

The main contribution or objective of this work is to propose a multiobjective ge-

netic algorithm (NSGA - II) based fuzzy clustering of Microarray Cancer data. NSGA

- II will be used to optimize the two cluster validity measures compactness (fuzzy) and



separation (fuzzy) of the clusters simultaneously. The chromosomes used in this study

are real coded.

6.3.2 Problem Formulation

A constrained optimization problem can be formulated as follow:

Minimize f(x̄)

Subject to gj(x̄) ≥ 0, j = 1, 2, ..., J

hk(x̄) = 0, k = 1, 2, ..K

Here, f(x̄) is the objective function, gj(x̄) and hk(x̄) are the inequality and the

equality constraints respectively.

Objective Functions in this Proposed work

Minimize: Fuzzy Compactness (π) = ΣK
i=1

σi
ni

Maximize: Fuzzy Separation (Sep) = ΣK
i=1ΣK

j=1,j 6=iµijD(zi, zj)

Subject to 0 ≤ uik ≤ 1, 0 ≤ i ≤ K, 1 ≤ k ≤ n,
ΣK

1 uik = 1, 1 ≤ k ≤ n,

and

0 < Σn
1uik < n, 1 ≤ i ≤ K

where,

σi is the variation of the ith cluster.

ni is the cardinality

µij is the membership degree of each mode zj encoded with respect to other encoded

modes zi in a chromosome

uik is the membership matrix

K is the number of clusters

n is the number of samples / objects in the dataset.

6.3.3 Computation of Objective function

A fuzzy clustering algorithm produces a membership matrix U(X) = [ukj ], k =

1, ...,K and j = 1, ..., n, where ukj denotes the probability of assigning object xj to

cluster Ck. The global compactness (π) [24] of the clusters and fuzzy separation Sep

[24] have been considered the two objectives in this work, they need to optimize simul-

taneously. For computing the two measures, the modes encoded in the chromosome



are extracted. Let these be denoted as v1, v2, ..., vK . The membership matrix (U) is

calculated as follow [25]:

U = [uik]

uik = 1

ΣKj=1

D(zj ,xk)

D(zj ,xk)

1
m−1

, for 1 ≤ i ≤ K, 1 ≤ k ≤ n

where,

D(zi, xk) and D(zj , xk) are the dissimlarity measure between zi & xk and zj & xk,

and m is the weighing coefficient.

[Note that while computing uik using equ, if D(zj , xk) is equal to zero for some j, then

uik is set to zero for all i = 1, ...,K, i 6= j, while ujk is set equal to 1].

The variation σi and fuzzy cardinality ni of the ith cluster i = 1, 2, ...,K are calculated

using the equation [24]

σi = Σn
k=1u

m
ikD(zi, xk), 1 ≤ i ≤ K

and

ni = Σn
k=1uik, 1 ≤ i ≤ K

So, global compactness π of the solution represented by the chromosome is then com-

puted as [24]

π = ΣK
i=1

σi
ni

To compute fuzzy separation we need the membership degree of each encoded mode

with other modes encoded in that chromosome. Hence membership of each vj to vi,

j 6= i is computed as [24]

µij = 1

ΣKl=1,l 6=j
D(zj ,zi)

D(zj ,zl)

1
m−1

, i 6= j

Fuzzy Separation can be defined as [24],

Sep = ΣK
i=1ΣK

j=1,j 6=iD(zi, zj)

And in order to obtain compact cluster, compactness π should be minimized and to

get well separated clusters, the measure fuzzy separation should be maximized [26].



6.3.4 Genetic Operators

Real coded GAs use Simulated Binary Crossover (SBX) [27], [28] operator for crossover

and polynomial mutation [27], [29].

Simulated Binary Crossover. Simulated Binary Crossover simulates the binary

crossover observed in nature and is given as below

c1,k = 1
2(1− βk)p1,k + (1 + βk)p2,k]

c2,k = 1
2(1 + βk)p1,k + (1− βk)p2,k]

where, ci,k is the ith child with kth component, pi,k is the selected parent and βk (≤ 0)

is a sample from a random number generated having the density

p(β) = 1
2(ηc + 1)βηc , if 0 ≤ β ≤ 1

p(β) = 1
2(ηc + 1) 1

βηc , if β > 1

This distribution can be obtained from a uniformly sampled random number u be-

tween (0, 1). ηc is the distribution index for crossover. That is

β(u) = (2u)
1

ηc+1

β(u) = 1
(2(1−u))ηc+1

6.3.5 Polynomial Mutation

ck = pk + (puk − plk)δk

where, ck is the child and pk is the parent with puk being the upper bound on the parent

component, plk is the lower bound and δk is small variation which is calculated from a

polynomial distribution by using

δk = (2rk)
1

ηm+1 − 1, if rk < 0.5

δk = 1− (2(1− rk))
1

ηm+1 , if rk > 0.5

where, rk is an uniformly sampled random number between (0, 1) and ηm is mutation

distribution index.



6.4 Summary

This chapter summarise the procedure of NSGA - II for multiobjective optimization

and give detailed description of Genetic operators used in NSGA - II.
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7.1 Simulation

7.1.1 Hardware & Software Configuration

Hardware Configuration

• Operating System of Machine Windows 7 Professional

• RAM 3GB

• Processor Speed 2.40GhZ

For running the simulation the software used is

• MATLAB R2010b

7.1.2 Parameters Involved

Parameters Value

Number of Generation Variable

Population Size 100

Distribution Index for crossover ηc 20

Distribution index for mutation ηm 20

Number of Objectives 2

Pool Size 50

Tournament Size 2

The simulation has been run many time by fixing all of the parameters except one

parameter i.e. number of generations. And results of simulations has been discussed in

the next section.

7.2 Results

The graph plotted for the simulation shows the plot of the two objective function -

compactness and separation on x-axis and y-axis repectively.

The graph plotted is of the pareto optimal solutions obtained.



7.2.1 Simulation 1

Number of Generations = 50

Figure 7.1: Pareto Optimal front solution, Generation = 50

Execution Time = 34.055 seconds

Optimal solution found at 1st Chromosome with K = 2 modes with indices of the

object 41, 14

Minimum Compactness = 0.4605 unit

Maximum Separation = 9.7004 unit



7.2.2 Simulation 2

Number of Generations = 100

Figure 7.2: Pareto Optimal front solution, Generation = 100

Execution Time = 67.687 seconds

Optimal solution found at 2nd Chromosome with K = 2 modes with indices of

the object 57, 65

Minimum Compactness = 0.4578 unit

Maximum Separation = 9.9834 unit



7.2.3 Simulation 3

Number of Generations = 500

Figure 7.3: Pareto Optimal front solution, Generation = 500

Execution Time = 326.428 seconds

Optimal solution found at 1st Chromosome with K = 2 modes with indices of the

object 41, 14

Minimum Compactness = 0.4471 unit

Maximum Separation = 11.0226 unit



7.2.4 Simulation 4

Number of Generations = 1000

Figure 7.4: Pareto Optimal front solution, Generation = 1000

Execution Time = 667.170 seconds

Optimal solution found at 2nd Chromosome with K = 2 modes with indices of the

object 57, 65

Minimum Compactness = 0.4435 unit

Maximum Separation = 11.4837 unit



The property of the four plotted graph clearly shows that when compactness is mini-

mized then separation between clusters maximizes.
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8.1 Conclusion

The Algorithm NSGA - II for multiobjective optimization of cluster measures - com-

pactness and separation for Leukemia cancer dataset, is working correct. From the

simulations it is easily able to conclude that with the increase in the number of gen-

erations the solution is getting more and more optimized, it is optimizing both the

objectives simulatneously. And the optimal values of compactness and separation are

obtained at the same individual/solution which suggests the cluster validity measures

are getting optimized.

8.2 Future Work

This proposed method can be applied on other type of microarray cancer data and other

microarray gene expression data.
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