2 research outputs found

    Modeling and Optimal Operation of Hydraulic, Wind and Photovoltaic Power Generation Systems

    Get PDF
    The transition to 100% renewable energy in the future is one of the most important ways of achieving "carbon peaking and carbon neutrality" and of reducing the adverse effects of climate change. In this process, the safe, stable and economical operation of renewable energy generation systems, represented by hydro-, wind and solar power, is particularly important, and has naturally become a key concern for researchers and engineers. Therefore, this book focuses on the fundamental and applied research on the modeling, control, monitoring and diagnosis of renewable energy generation systems, especially hydropower energy systems, and aims to provide some theoretical reference for researchers, power generation departments or government agencies

    Multiobjective Optimization of a Fractional-Order PID Controller for Pumped Turbine Governing System Using an Improved NSGA-III Algorithm under Multiworking Conditions

    No full text
    In order to make the pump turbine governing system (PTGS) adaptable to the change of working conditions and suppress the frequency oscillation caused by the “S” characteristic area running at middle or low working water heads, the traditional single-objective optimization for fractional-order PID (FOPID) controller under single working conditions is extended to a multiobjective framework in this study. To establish the multiobjective FOPID controller optimization (MO-FOPID) problem under multiworking conditions, the integral of the time multiplied absolute error (ITAE) index of PTGS running at low and high working water heads is adopted as objective functions. An improved nondominated sorting genetic algorithm III based on Latin hypercube sampling and chaos theory (LCNSGA-III) is proposed to solve the optimization problem. The Latin hypercube sampling is adopted to generate well-distributed initial population and take full of the feasible domain while the chaos theory is introduced to enhance the global search and local exploration ability of the NSGA-III algorithm. The experimental results on eight test functions and a real-world PTGS have shown that the proposed multiobjective framework can improve the Pumped storage units’ adaptability to changeable working conditions and the proposed LCNSGA-III algorithm is able to solve the MO-FOPID problem effectively
    corecore