6 research outputs found

    End-to-End Deep Lip-reading: A Preliminary Study

    Get PDF
    Deep lip-reading is the use of deep neural networks to extract speech from silent videos. Most works in lip-reading use a multi staged training approach due to the complex nature of the task. A single stage, end-to-end, unified training approach, which is an ideal of machine learning, is also the goal in lip-reading. However, pure end-to-end systems have so far failed to perform as good as non-end-to-end systems. Some exceptions to this are the very recent Temporal Convolutional Network (TCN) based architectures (Martinez et al., 2020; Martinez et al., 2021). This work lays out preliminary study of deep lip-reading, with a special focus on various end-to-end approaches. The research aims to test whether a purely end-to-end approach is justifiable for a task as complex as deep lip-reading. To achieve this, the meaning of pure end-to-end is first defined and several lip-reading systems that follow the definition are analysed. The system that most closely matches the definition is then adapted for pure end-to-end experiments. We make four main contributions: i) An analysis of 9 different end-to-end deep lip-reading systems, ii) Creation and public release of a pipeline to adapt sentence level Lipreading Sentences in the Wild 3 (LRS3) dataset into word level, iii) Pure end-to-end training of a TCN based network and evaluation on LRS3 word-level dataset as a proof of concept, iv) a public online portal to analyse visemes and experiment live end-to-end lip-reading inference. The study is able to verify that pure end-to-end is a sensible approach and an achievable goal for deep machine lip-reading

    End-to-end Lip-reading: A Preliminary Study

    Get PDF
    Deep lip-reading is the combination of the domains of computer vision and natural language processing. It uses deep neural networks to extract speech from silent videos. Most works in lip-reading use a multi staged training approach due to the complex nature of the task. A single stage, end-to-end, unified training approach, which is an ideal of machine learning, is also the goal in lip-reading. However, pure end-to-end systems have not yet been able to perform as good as non-end-to-end systems. Some exceptions to this are the very recent Temporal Convolutional Network (TCN) based architectures. This work lays out preliminary study of deep lip-reading, with a special focus on various end-to-end approaches. The research aims to test whether a purely end-to-end approach is justifiable for a task as complex as deep lip-reading. To achieve this, the meaning of pure end-to-end is first defined and several lip-reading systems that follow the definition are analysed. The system that most closely matches the definition is then adapted for pure end-to-end experiments. Four main contributions have been made: i) An analysis of 9 different end-to-end deep lip-reading systems, ii) Creation and public release of a pipeline1 to adapt sentence level Lipreading Sentences in the Wild 3 (LRS3) dataset into word level, iii) Pure end-to-end training of a TCN based network and evaluation on LRS3 word-level dataset as a proof of concept, iv) a public online portal2 to analyse visemes and experiment live end-to-end lip-reading inference. The study is able to verify that pure end-to-end is a sensible approach and an achievable goal for deep machine lip-reading

    Unsupervised video indexing on audiovisual characterization of persons

    Get PDF
    Cette thèse consiste à proposer une méthode de caractérisation non-supervisée des intervenants dans les documents audiovisuels, en exploitant des données liées à leur apparence physique et à leur voix. De manière générale, les méthodes d'identification automatique, que ce soit en vidéo ou en audio, nécessitent une quantité importante de connaissances a priori sur le contenu. Dans ce travail, le but est d'étudier les deux modes de façon corrélée et d'exploiter leur propriété respective de manière collaborative et robuste, afin de produire un résultat fiable aussi indépendant que possible de toute connaissance a priori. Plus particulièrement, nous avons étudié les caractéristiques du flux audio et nous avons proposé plusieurs méthodes pour la segmentation et le regroupement en locuteurs que nous avons évaluées dans le cadre d'une campagne d'évaluation. Ensuite, nous avons mené une étude approfondie sur les descripteurs visuels (visage, costume) qui nous ont servis à proposer de nouvelles approches pour la détection, le suivi et le regroupement des personnes. Enfin, le travail s'est focalisé sur la fusion des données audio et vidéo en proposant une approche basée sur le calcul d'une matrice de cooccurrence qui nous a permis d'établir une association entre l'index audio et l'index vidéo et d'effectuer leur correction. Nous pouvons ainsi produire un modèle audiovisuel dynamique des intervenants.This thesis consists to propose a method for an unsupervised characterization of persons within audiovisual documents, by exploring the data related for their physical appearance and their voice. From a general manner, the automatic recognition methods, either in video or audio, need a huge amount of a priori knowledge about their content. In this work, the goal is to study the two modes in a correlated way and to explore their properties in a collaborative and robust way, in order to produce a reliable result as independent as possible from any a priori knowledge. More particularly, we have studied the characteristics of the audio stream and we have proposed many methods for speaker segmentation and clustering and that we have evaluated in a french competition. Then, we have carried a deep study on visual descriptors (face, clothing) that helped us to propose novel approches for detecting, tracking, and clustering of people within the document. Finally, the work was focused on the audiovisual fusion by proposing a method based on computing the cooccurrence matrix that allowed us to establish an association between audio and video indexes, and to correct them. That will enable us to produce a dynamic audiovisual model for each speaker

    Sensory integration model inspired by the superior colliculus for multimodal stimuli localization

    Get PDF
    Sensory information processing is an important feature of robotic agents that must interact with humans or the environment. For example, numerous attempts have been made to develop robots that have the capability of performing interactive communication. In most cases, individual sensory information is processed and based on this, an output action is performed. In many robotic applications, visual and audio sensors are used to emulate human-like communication. The Superior Colliculus, located in the mid-brain region of the nervous system, carries out similar functionality of audio and visual stimuli integration in both humans and animals. In recent years numerous researchers have attempted integration of sensory information using biological inspiration. A common focus lies in generating a single output state (i.e. a multimodal output) that can localize the source of the audio and visual stimuli. This research addresses the problem and attempts to find an effective solution by investigating various computational and biological mechanisms involved in the generation of multimodal output. A primary goal is to develop a biologically inspired computational architecture using artificial neural networks. The advantage of this approach is that it mimics the behaviour of the Superior Colliculus, which has the potential of enabling more effective human-like communication with robotic agents. The thesis describes the design and development of the architecture, which is constructed from artificial neural networks using radial basis functions. The primary inspiration for the architecture came from emulating the function top and deep layers of the Superior Colliculus, due to their visual and audio stimuli localization mechanisms, respectively. The integration experimental results have successfully demonstrated the key issues, including low-level multimodal stimuli localization, dimensionality reduction of audio and visual input-space without affecting stimuli strength, and stimuli localization with enhancement and depression phenomena. Comparisons have been made between computational and neural network based methods, and unimodal verses multimodal integrated outputs in order to determine the effectiveness of the approach.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore