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Abstract 
 
Sensory information processing is an important feature of robotic agents that must 

interact with humans or the environment. For example, numerous attempts have 

been made to develop robots that have the capability of performing interactive 

communication. In most cases, individual sensory information is processed and 

based on this, an output action is performed. In many robotic applications, visual 

and audio sensors are used to emulate human-like communication. The Superior 

Colliculus, located in the mid-brain region of the nervous system, carries out 

similar functionality of audio and visual stimuli integration in both humans and 

animals.  

 

In recent years numerous researchers have attempted integration of sensory 

information using biological inspiration. A common focus lies in generating a single 

output state (i.e. a multimodal output) that can localize the source of the audio and 

visual stimuli. This research addresses the problem and attempts to find an 

effective solution by investigating various computational and biological 

mechanisms involved in the generation of multimodal output. A primary goal is to 

develop a biologically inspired computational architecture using artificial neural 

networks. The advantage of this approach is that it mimics the behaviour of the 

Superior Colliculus, which has the potential of enabling more effective human-like 

communication with robotic agents. 

 
The thesis describes the design and development of the architecture, which is 

constructed from artificial neural networks using radial basis functions. The 

primary inspiration for the architecture came from emulating the function top and 

deep layers of the Superior Colliculus, due to their visual and audio stimuli 

localization mechanisms, respectively. The integration experimental results have 

successfully demonstrated the key issues, including low-level multimodal stimuli 

localization, dimensionality reduction of audio and visual input-space without 

affecting stimuli strength, and stimuli localization with enhancement and 

depression phenomena. Comparisons have been made between computational 

and neural network based methods, and unimodal verses multimodal integrated 

outputs in order to determine the effectiveness of the approach.
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Chapter 1 

Introduction 

_________________________________________________________________ 

1.1. Overview 

The human brain performs numerous stimuli-based information-processing 

operations in order to enable a person to interact with the environment. Of these, 

sensory information processing is a significant task. Each part of the brain has its 

own vital activities such as sensing or response, or both in certain cases. As a 

result many researchers are involved in decoding brain processing states, which 

controls and co-ordinates human interaction with the environment.  

This research attempts to develop an understanding of the co-ordination involved 

in sensing the visual and audio stimuli that provide a mutual and controlled motor 

response to those stimuli. In particular, the Superior Colliculus, located in the mid-

brain of the human nervous system, is one such location which performs 

multimodal information processing. This thesis aims to develop an integration 

model inspired by the Superior Colliculus, so that audio and visual stimuli can be 

integrated to provide an efficient and controlled motor response. 

 

1.2. Motivation 

Humans and animals can effectively localize any visual or audio stimuli generated 

within range. This is a key feature for interaction, either with the environment, or 

with other humans or animals as stated in Appendix-A. There are several potential 

applications of intelligent robotics involving human-robot interaction where it would 

be desirable to have this feature. For example, in situations where a robot must 

respond to human instructions (such as “ASIMO” in a ‘tour guide’ robotic 
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application (Koide, 2004)), the simultaneous, rather than sequential, arrival of 

stimuli for both audio and visual information often takes place where significant 

noise is present (the so-called ‘cocktail party’ effect (Elhilali, 2006)).  

The equivalent human or animal response in such scenarios is effective and 

spontaneous. If a robotic agent is able to provide a similar response by attending 

to an individual requesting attention, it has the potential of making the interaction 

more human-like. One way of providing such efficiency would be by mimicking the 

biological processes carried out for integration. The Superior Colliculus (SC) 

region of the brain is responsible for providing audio-visual integration, as well as 

response generation. Hence, a computational architecture inspired by the SC has 

the potential to provide an effective platform for generating similar behaviour.  

In terms of development, the use of ‘sensor fusion’ methods such as the Kalman 

filter will provide an effective engineering-based integrated output according to the 

given inputs. However, an engineering or computational approach will provide the 

solution only for the defined platform. When it comes to using such engineering-

based agents, any irregularities in the defined input data set will not be addressed. 

To eliminate this, a platform independent approach is proposed. The aim is to 

develop an effective multisensory integration model inspired by the SC using a 

neural network platform, so that the simultaneous arrival of audio and visual stimuli 

will result in the effective localization of the source.  

 

1.3. Research Question 

Is it possible to create a computational architecture inspired by the Superior 

Colliculus of the mid-brain, using artificial neural networks, which enables the 

efficient integration of audio and visual stimuli arriving simultaneously at an agent, 

in order to localize the source of the stimuli? 
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1.4. Aim and Objectives 

The project aim is to design and develop an architecture for multisensory 

integration that is inspired by the functionalities of the SC when processing audio 

and visual information. 

The specific objectives are: 

1. To understand the biological way of multimodal functionalities of the SC. 

2. To review the literature on modelling the SC. 

3. To review different approaches to audio and visual extraction and 

integration. 

4. To examine neural network approaches to integration. 

5. To develop and design an architecture suitable for multimodal integration 

for a robotic platform. 

6. To test and evaluate the performance of the architecture.  

 
 

1.5. Research Contribution 

The main contribution lies in the reduction of dimensional space (audio and visual) 

to an integrated single space by using neural networks for processing stimuli 

integration mechanisms. The novelty lies in the form of the architecture and its 

ability to handle low intensity stimuli and generate an efficient and accurate 

integrated output, even in the presence of low audio and visual signals.   

 

1.6. Thesis Structure 

The remainder of this thesis is organized as follows: 

Chapter 2 is an overview of the SC and multimodality. Following a brief 

introduction to the SC from a biological perspective, stimulus processing in the SC 

is studied. How the SC exhibits multimodal behaviour is detailed in relation to 

stimuli processing and motor response. A review of existing literature in 
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understanding multimodal behaviour in different contexts is provided. Along with a 

theoretical analysis, computational implementation aspects of the SC are also 

discussed in order to identify the feasibility of considering multimodal behaviour. 

Chapter 3 details the methodology of the research carried out. It describes two 

different types of stimuli processing: unimodal and multimodal for audio and visual 

stimuli, along with a design strategy towards implementation. Starting with a 

briefing on existing literature concerning available design aspects of multimodal 

integration mechanisms, the architecture is proposed in order to generate a unique 

model that can perform integration of audio and visual stimuli. The architecture is 

based on a defined design strategy, which identifies the stimuli localization 

aspects. The importance of the learning mechanism and its use in the integration 

model is also discussed. 

Chapter 4 deals with the implementation of the model. Starting with the reasons 

behind developing a neural network platform, various issues that are significant 

when building a neural network with learning criteria and its implementation, 

including the advantages, are discussed. Along with theoretical aspects of the 

audio and visual integration model, the practical and implementation constraints, 

along with the biological inspiration for the model are also discussed. 

Chapter 5 describes experimental work carried out with the model. It starts with 

the motivation behind the experimental setup and environment along with data 

collection of both unimodal and multimodal sensory audio and visual stimuli. This 

includes data set analysis, preparation of data sets and stability of the integrated 

outcome. Later the data sets are used to train the integration network, followed by 

verification with the test data.  

Chapter 6 presents a detailed analysis of the experimental results. It includes a 

critical analysis of training and testing, and unimodal and integration results are 

compared. A detailed performance evaluation is also undertaken.  
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Chapter 7 details the main conclusions resulting from the work, in the context of 

the research hypothesis and initial objectives. There is also a discussion of 

suggested future work. 
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Chapter 2 

Literature Review 

_________________________________________________________________ 
2.1.  Introduction 
Throughout the history of technology, there has been a constant transformation of 

biological inspirations to sustain modern requirements. This research of sensory 

stimuli processing, concerned with audio and visual information, has been inspired 

by information processing within the human nervous system, including the brain. 

When it comes to receiving visual and audio stimuli, the eyes and ears are the 

most widely used primary sensory organs. In this chapter, research into 

understanding the biological way of processing visual and audio stimuli in the 

human brain is described in the form of a detailed literature review on existing 

work of various researchers active in this area. The emphasis is on the region of 

the brain called the Superior Colliculus (SC). Also discussed is the feasibility of a 

conceptual transformation of the SC into a computational method. 

 

2.2.  Biological Overview of the Superior Colliculus 
In this section, a motivation was provided detailing the need for biological 

inspiration. During the process, the purpose for the SC was identified by 

answering several questions raised during the research. Later an investigation into 

the SC based on neuro-science aspects is detailed. 

2.2.1. The Biological Motivation: 

An early motivation behind the research was to investigate ways to integrate 

sensory stimuli such that the outcome or resultant could be in the form of a 

combined response. Questions that arose include: 
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• What is the need to have a combined response for sensory stimuli? 

• How is the combined response different from the individual responses? 

• How can this combined response be more useful than the individual 

responses? 

During research into autonomous intelligent robotics and industrial robots, there is 

always a requirement for sensors to acquire data from the environment as the 

robot performs its task. Every sensor is designed for its own specific purpose of 

information receiving and transmitting to a designated receiver. Later, using this 

response, the agent will perform the desired operation like movement etc. 

However in certain cases, the final action from the agent may not only depend on 

the response of a single sensor, but on the response of a group of sensors. For 

example, the control of an autonomous-guided robotic vehicle may require:  

• visual information from both the front and side views; 

• balancing the vehicle at the desired speed; 

• noise from a rear or side vehicle to be recognized and localized; 

In the above-mentioned scenario, use of a visual sensor and audio sensor, and 

balancing with gyro information, will be necessary to handle the acceleration and 

braking of the vehicle effectively. In such a case rather than a centralized network, 

a distributed network with individual processing units for dedicated functionalities 

will reduce overload of the network. During such circumstances sensory stimuli 

integration prior to the intended action is always an advantage when it comes to 

performance and accuracy of the system. Hence there is an advantage of 

integrating the sensory stimuli to reduce the processing time and time of response. 

Since the research is concerned with audio and visual stimuli, a small region of the 

human brain that performs a similar mechanism is of direct interest and relevance.  

When it comes to audio and visual information, there are two different kinds of 

response that are observed while studying the stimuli response mechanisms. 

Study of these mechanisms is essential as they represent the efficiency of the 

integration. They are:   
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• Voluntary response. 

• Involuntary response. 

In the human brain, involuntary responses are sudden and unplanned, and are 

frequently observed during action-response mechanisms. However the Superior 

Colliculus is one region of the human brain that is responsible for generating 

voluntary responses in terms of eye movements called saccades as an extension 

to head movements. In order to have a clear understanding of saccades, it is 

important to have a detailed and clear knowledge of the SC and its working 

mechanism. 

 

2.2.2. Neuroscience aspects of the Superior Colliculus 

The SC forms the rostral bumps located on either side of the dorsal aspects of the 

mid brain of the human as shown in figure 2.1. This forms a part of the roof of the 

midbrain. Unlike the Inferior Colliculus, which is audio centred, the SC is vision 

centred, with a reflexive mechanism as its central functionality.  
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Figure 2.1 Superior Colliculus region in the mid-brain: Superior Colliculus located in the mid-

brain region of the human brain. Image Courtesy of Medical Neurosciences 731 

The SC is a layered structure containing I-VII layers that can gather information 

from visual organs and extend to other layers, which can generate responses to 

perform centre activities such as saccade (section 2.3, page 10) generation (Juan, 

2008) is shown in figure 2.2.  

 

Figure 2.2: Schematic drawing of cat superior colliculus showing possible neuronal 

linkages in visuomotor transform: Thick arrows, major path; boxes outline representative slices 

of terminal fields from optic (retinal) tract and corticotectal tracts from areas 17, 18, 19, 21, C-B, 

and 7; shaded areas, major foci of degeneration after lesions to these areas. MBSC, medial 

brachium of superior colliculus; LBSC, lateral brachium of superior colliculus; NIC, interstitial 

nucleus of Cajal and adjacent reticular formation; C-B, Clare-Bishop area; D, nucleus of 
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Darkshevitch; OC, oculomotor nuclei; PAG, periaquiductal gray matter. Roman numerals represent 

the seven-collicular laminae (layers) of the Superior Colliculus signifying the arrangement inside 

the superior colliculus. (Source: From Ingle and Sprague 123.) 
The neuro-science interpretation of the SC is that the top, or superficial, layers are 

in direct contact with the optical tract, as shown in figure 2.3. Through this tract 

visual information is transmitted into the SC from the eyes. This visual information 

is received through the retina and visual cortex regions of the human eye. Due to 

this direct contact, the SC is the primary receiver of visual stimuli. This means that 

the SC is involved in the generation of involuntary or reflexive responses that are 

caused by visual stimuli. However, since the deep layers are in contact with the 

Inferior Colliculus (IC) (audio processing unit) and Somatosensory system (sense 

of touch), the SC responds to visual, audio and somatosensory stimuli.  

 

Figure 2.3 Control flow of the Superior Colliculus connectivity: Control flow diagram 

representing an internal connectivity of superior colliculus towards receiving visual stimuli directly 
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from optic tract along with an extension towards spinal cord for motor action. Image Courtesy by 

Medical Neurosciences 731 

Therefore, the SC cannot be considered as a vision-only centred processing unit. 

This is due to its intermediate and deep layers, which are in contact with many 

other stimuli processors and sensory modalities, together with motor response 

units. For this reason the SC can receive sensory stimuli from various regions of 

the brain and can also receive and transmit motor responses. Hence it is sensitive 

to audio, visual and somatosensory (touch) stimuli. If the strategic alignment of 

layers and their influence on the stimuli is considered, it is understood that the 

deep layers play a major role in the motor response generated by the SC. 

However this influence is not completely exclusive. The SC extends towards the 

spinal cord through tectospinal tracts. Due to this extension, the SC is able to co-

ordinate reflexive movements such as eye and head movements.  

A neuroscience study of the SC reveals that the localization of audio and visual 

stimuli is carried out in the mid-brain region of the nervous system. As established 

earlier, the SC actions can be both voluntary and involuntary. However, voluntary 

actions are usually influenced by other regions of the brain such as the cerebellum 

and amygdale. Information from all these regions is used at SC to perform a 

voluntary saccade. However, involuntary saccades corresponding to audio and 

visual stimuli are mainly based on SC localization.  

Usually the auditory cortex region encodes auditory cues such as the time 

difference and level difference. These operations are performed in the Medial 

Superior Olive (MSO) region. However, higher order regions such as the SC, 

Inferior Colliculus (IC), and Planum Temporale (PT) are also capable of encoding 

such cues. The SC is the primary region of the human brain that responds to 

auditory and visual stimuli by generating a motor response to perform saccadic 

movement or subsequent head movement. On average, when it comes to 

efficiency of auditory localization, mammals can achieve an accuracy of ±10 in the 

horizontal axis and ±4-50 in the vertical axis (Hawkins, 1996).   
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2.3.  Multimodal Behaviour of the Superior Colliculus 

It is evident that the SC has the capability to receive audio, visual and 

somatosensory stimuli from various regions of the human brain. Neural activation 

experiments conducted by Stein and Meredith confirmed that the SC can generate 

responses for both audio and visual stimuli (King, 2004). The responses for such 

stimuli can be observed in terms of eye or head movements due to their 

connectivity with the spinal cord. Multimodal behaviour allows both animals and 

humans to perform effectively under noisy or multiple stimuli conditions.  

This behaviour need not always be associated with multi-modal stimuli. 

Sometimes stimuli arriving from different sources can also be handled by the SC. 

The visual stimuli transmitted through magnocellular and parvocellular retinal 

ganglion cells unite at various levels of the SC. These signals have the feature of 

multiple and parallel streams of information preservation. With such a capability, 

these signals are analyzed for various aspects of the visual environment 

individually (Waxman, 2009). Similarly the optic tract axons terminate in a highly 

synaptic space that can help in generating a map-like environment. The axons of 

ganglion cells along with optic tract extend to the SC, forming a retinotopic map. 

Due to an extension of the SC through the spinal cord via tectospinal tracts, the 

retinotopic map is used for stimuli localization with the help of eye, neck and head 

movements. These movements represent both involuntary and voluntary 

movements generated by the SC.  

Rapid movements of the eyes on a horizontal axis are often termed ‘saccadic 

movements’. Though their purpose is to rapidly fix the vision on a target, the type 

of fixation can be of various types. Saccadic movements can be commanded 

(general), fixation (on a target) and reflexive (involuntary). Reflexive movements 

are usually observed following the appearance of an object in the visual field of the 

eye, or any disturbance in the audio field of the ear. However, rather than the SC 

acting alone, the cerebellum also plays a vital role in the generation of fixation 

saccades. In either of these cases stimuli are localized using the above criteria by 

moving the eyes or head towards the direction of the source. Since saccades are 
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pursuit in their behaviour, they can stabilize the foveae of the eye continuously and 

clearly even on a moving object. 

From the above observations, it is evident that the SC performs sensory stimuli 

integration for generating saccadic movements. Stimuli can refer to a single 

stimulus of audio or visual, multiple visual stimuli, multiple audio stimuli and audio 

and visual stimuli together. The need for integration occurs when there is a 

simultaneous arrival of more than one audio and visual stimulus at the SC. 

Unimodal stimuli integration then takes place in the SC to identify an effective 

response. However when it comes to the simultaneous arrival of audio stimuli, due 

to interference effects, stimuli with similar audio properties will be interpreted as 

noise unless at least one of the stimuli has a unique property such as frequency or 

amplitude.  

Many techniques are designed to handle the so-called ‘cocktail party effect’. 

However when it comes to a classroom situation, for example, where students use 

low voice levels when generating audio stimuli, integration is a difficult task due to 

the recognition problem. This is not only with audio but also visual stimuli. Hence 

the strength of stimuli is one such property that can affect the SC response.  

There is an argument that the SC considers the priority of visual stimuli due to its 

direct contact with the eyes through the optic tract, but this is only when stimuli of 

different strengths arrive at different time intervals. If a human subject is seated on 

a swivel chair and rotated for some time, when the chair comes to a halt a visual 

stimulus received is overridden by any audio stimulus that arrives at the ear. In this 

particular case, initially the visual stimulus was overridden by the audio one. A 

later audio stimulus is also not effective when it comes to the integration process, 

due to the unstable state of receiving stations (eyes and ears). This signifies that 

for SC both the stimuli are equally prioritized when it comes to integration.  

In the following figure 2.4, integration process can be classified based on the input  
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Figure 2.4 Stimuli combinations for integration: Diagrammatic representation of various 

combinations formed with the weak and strong stimulus of audio and visual stimuli that are possible 

when integrating them.  

stimuli strength. The time of stimuli arrival, along with the strength of the stimuli, 

are the two major factors that influence the integration process. In figure 2.4, ‘W’ 

represents the weak stimuli and ‘S’ represents the strong stimuli of corresponding 

visual and audio stimuli. The representation shown illustrates the possible stimulus 

combinations that can emerge during the process of integration. 

When it comes to the outcome of these combinations, a weak combination need 

not always have to produce a weak response; similarly with a strong combination. 

Following the neural response experiments conducted on the SC of cats by Stein 

and Meredith (Meredith, 1986a), two different phenomena are proposed in 

understanding the integration process with stimuli strength:  

• Enhancement 

• Depression 

These two phenomena can be observed in most of the combinations of the weak 

and strong stimuli. However, from the stimuli classification obtained from figure 2.4, 

Audio	  Stimuli Visual	  Stimuli 

Strong	  Audio	   
+	   
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Weak	  Audio	   
+	   
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the occurrence of these phenomena can be understood. The phenomena of 

depression and enhancement are mainly based on the distance between stimuli 

along with their strength, irrespective of the type of stimulus. In the case of a weak 

and strong combination, a winner-takes-all criterion usually applies. This can be 

categorised under enhancement. During the combination of two strong and 

relatively close stimuli, there will be an enhancement of the integrated output 

rather than either of the individual ones. Similarly during the combination of two 

weak stimuli relatively closer in terms of stimuli intensity, there will be an 

enhancement in the integrated output rather than either or both of them. 

On the other hand, depression is the phenomenon where the system is left in a 

state of confusion in determining the angle for localization. During the combination 

of two strong stimuli, which are far away from one another, the integrated output 

generated will be more depressed, than either stimulus. Hence the outcome will be 

in the same state as before, which is empty. Similarly during the combination of 

two weak stimuli relatively far from one another, although the inputs are detected, 

the integrated output will be strongly depressed. This results in no output being 

generated. 

 

2.4.  Literature on Multisensory Integration 
This section reviews neuroscience research based on a similar criterion of 

exploring the multisensory behaviour of the SC. It is carried out in the context of 

this thesis and how useful it is to support the research hypothesis, and hence the 

design and development of the computational model. 

Stanford evaluates the neuroscience view of the computations carried out by 

neurons of the SC for multimodal integration of sensor stimuli (Stanford, 2005). 

Neuron responses are not considered as “high” or “low”, but are ‘super additive’, 

‘additive’ and ‘sub additive’. These responses can be used to explain the maximum 

responses that the SC can produce in modality-specific cases. Modality-specific 

study provides an opportunity to observe the computations that take place in cases 

of low response and high response. This research provides a platform for 
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explaining the enhancement of integrated output for audio and visual integration in 

the SC. 

According to Beauchamp, biological evidence exists for multimodal integration that 

takes place for audio and visual information in the deep layers of the human brain 

system (Beauchamp, 2004). The author describes the integration with a focus on 

behavioural tasks and their influence in different aspects that are encountered 

during the process. However, it is not clearly stated that how the decision is made 

in determining the final outcome of the integration in terms of audio and visual input 

information. 

Gilbert demonstrates how spatial information about the source of a stimulus is 

available at the receptor surface for visual and audio sensory systems (Gilbert, 

2008). To support this, a pit viper example is considered where integration takes 

place between visual information and mechanoreceptor information. 

Mechanoreceptors (available both on skin and hair) are the sensory detectors that 

can determine the change in air pressure or vibration. They are also sensitive 

towards odours.  For instance, pit vipers use infrared information from pit organs 

along with visual information, which then travel together for summation of inputs in 

two modalities. Since the odour detected by the mechanoreceptors is not sufficient 

to determine the direction of the source, visual cues are used in the integration 

process to localize pray. Variation in the integration also occurs when the angular 

velocity of the prey is recognised along with the change in the intensity of smell in 

the air of the source. At this point, when the source is recognised, a high body 

saccade is noticed. The visual field of the animal, with the source viewed in same 

field, has a strong influence in the body saccades. 

 

2.5.  Literature Review on Integration of Audio and Visual Data 

This section reviews literature describing various modelling techniques for 

performing audio and visual integration. In the following all such literature is 

provided with a classification based on the implementation technique used. 

Different researchers implement the concept of multimodal integration on various 
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platforms based on their requirements. Through this literature review these 

techniques are analysed so that the observations can be used during the design 

and development of the integration network. 

 

2.5.1. Probabilistic Approach 

Anastasio proposed an integration model based on the assumption that “SC 

neurons that show inverse effectiveness, compute the probability of the target 

present for moving the saccades” (Anastasio, 2000). The principle of inverse 

effectiveness is stated as an increase in the strength of multisensory integration in 

response to the decrease of individual sensory stimuli (Holmes, 2009). The 

proposed model for multisensory integration provides an explanation for the 

inverse effectiveness phenomenon. When it comes to spontaneous bimodal 

probabilities, the model has produced non-conclusive evidence for inverse 

effectiveness. The authors try to show that SC neurons use probabilities for the 

localization of stimuli sources. Figure 2.5 is a diagrammatic representation of the 

integration model discussed. In the figure, probability ‘p’ is the chances of occurring 

audio and visual given both the stimuli arrive at the Superior Colliculus. When 

designing a multimodal integration model of the SC, Bayes’ probability concepts 

may be useful when working on the enhancement of output stimuli, but the authors 

have not given a reason for the behaviour, or why only inverse effectiveness is 

considered when determining the enhancement, which may be due to the 

contradictory effect shown in a small number of neurons.  
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Figure 2.5 Anastasio’s model of the SC for multimodal integration of audio and visual 

stimuli: Pictorial Representation of Anastasio’s Model of superior colliculus for multimodal 

integration of audio and visual stimuli. This image depicts the transmission of both audio and visual 

stimuli through their sensory aid to the SC. Here Anastasio’s probabilistic model will perform 

integration. 

The tracking model developed by Wilhelm et al., uses vision and sonar-based 

components on account of their low cost for mass production (Wilhelm, 2004). A 

Gaussian distribution is used to model the skin colour for making it easy to identify 

the face in the visual sequence. For the detection of colour, automated colour 

calibration and a white balancing algorithm are used. Sonar sensors that cover 360 

degrees in dual levels with a pre-processed mechanism are used for eliminating 

noise. Thus obtained sonar data is used in locating the face in the visual data.  

Hence, the sensor fusion described in this report of Wilhelm uses a stochastic 

motion model with a Gaussian distribution.  This system is able to track the 

localized face (image) even if there are people moving in the environment. Though 

the system is able to track the image, it is only based on its location. If the object is 

moving during localization then the proposed tracking is not suitable, as it keeps 

changing from frame to frame. However, it is well suited for a fixed source. 

Xiaotao Zou and Bir Bhanu have described two different approaches for 

multimodal integration using audio and visual data. First, a Time Delay Neural 

Network (TDNN) extracts audio and video data at feature level separately and then 

fuses both data forms. Second, a Bayesian Network (BN) jointly models audio and 

video signals and tracks humans by Bayes inference. According to Stork, detection 
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of motion that handles sequential data during multimodal function is possible with 

the fusion of audio and visual data at feature level (Stork, 1992). Normalized cross-

correlation for feature selection in the TDNN architecture is considered as being 

efficient for identifying the difference between successive images. A sound 

spectrogram is used to break down the sound into steps for audio inputs to the 

network (Zou, 2005).  

Bayesian networks may be useful when processing graphical representations with 

probability models. This model can be enhanced to handle time series data using a 

Dynamic Bayesian Network. A statistical model, a Transformed Mixture of 

Gaussians, is used to model the frames. Assuming all the probabilities are 

Gaussian, audio data is generated using the time of arrival to the microphones. A 

static Bayesian Network (BN) is used to link the sequential audio and visual data 

involving the covariance matrix and parameter estimation with an expectation 

maximization algorithm based on the standard Bayes’ rule. High accuracy and less 

training time are achieved in detecting the object in the BN (Zou, 2005). 

Using a probabilistic approach Bennewitz has determined on which person 

attention is focused by the agent in multiple people conversations (Bennewitz, 

2005). For that decision, this approach uses visual and speech input. In getting the 

information of a person in the visual path, the technique (feature extraction using 

the dark parts of the eyes and cheeks etc) is effective for images of considerable 

brightness. As the number of persons in the conversation increases, it becomes 

more difficult to detect the correct person. The speech information is processed 

with automata and state machines using lexical analysis, limited to only a few 

words or phrases. As the number of words or phrases increases, the slower the 

automaton machine becomes. This is due to the gaze direction technique, which 

helps to find the traces from the remaining input in the case of multiple stimuli. 

Hence this approach is potentially a good technique for multimodal scenarios. This 

paper is a good demonstration of human-robot interaction, especially in scenarios 

involving conversations, meetings and discussions in small groups. 
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For the development of a multimodal robot interaction system, a model for speech 

communication in human-robot interaction has been developed with the use of 

simple linguistics, irrespective of grammar, along with gestures and contextual 

scene knowledge (Huwel et al., 2006). A Hidden Markov Model is used for parsing 

the speech and a semantic parsing algorithm used for determining its meaning. 

The model focuses more on speech analysis and generating the action, depending 

on the semantic parsing. A system called “Control” is designed in such a way that 

the multimodal processing is done at this stage for all types of communications. 

The BIRON robotic system is used to verify the above-mentioned concepts in an 

experimental environment. It is not clearly explained how the multimodal 

understanding of speech and the contextual scene are combined. Also, this model 

shows that human robot understanding can be improved when speech is combined 

with contextual space and gestures. 

 

2.5.2. Neural Network Approach 

The model proposed by Trappenberg (1998) is mainly focused on a competitive 

neural network with spiking neurons of short range (excitatory) and long range 

(inhibitory) firing rates. Due to the lack of consideration of 4 types of neurons 

responsible for saccade generation in SC, the acquired results from the simulation 

are not close enough compared to the results that are observed from animal 

testing. This is due to consideration of only fixation and burst neurons. An average 

firing neuron network is more sensitive to further updates and modifications 

compared to a spiking neural network. If the same spiking network is trained using 

winner-takes-all (competitive) learning, its performance is improved, which further 

generates outputs that will have more chance of producing similar results to animal 

experiments done by Stein and Meredith (1993). A spiking neural network with all 

four neurons (fixation, burst, build up and excitatory) can form a more apt and 

realistic full functional model (Trappenberg, 1998) and (Kyriakos and Jurgen, 2007).  

Quaia et al., (1999) provides a model for a saccadic system where the functionality 

of the SC is minimal compared to cerebellum circuitry (Quaia, 1999). According to 
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the authors, the role of the SC is only to provide the directional drive towards the 

target for the eyes. However it is up to the cerebellum to determine the 

appropriateness and accuracy of the directional drive. The burst, build up and 

fixation neurons available in the deep layers of the SC are used to determine the 

direction. The processing from the cerebellum is used to improve the directional 

drive, track the target, and end the saccade. 

Two contrasting models for multimodality, with and without integration of human 

information processing, are evaluated in experiments conducted by Dominic W 

Massaro (2004). The paper shows that the Fuzzy Logic Model of Perception 

(FLMP) predictions are quite supportive for many experimental cases on BALDI, an 

embodied conversational agent. The Single Channel Model (SCM), which is a non-

integration model, processes the stimuli in single channels only. A particular time 

scale is considered and information is processed through either visual or audio 

processing channels, but not both. The fusion of visual and audio information in 

FLMP does not follow any sort of pattern, which means it can be synchronous or 

asynchronous with the time frame. The fusion may be early or late. In either case 

integration will have an influential effect on the outcome. Another model is fusion at 

the feature-level or decision-level. The influence of these fusion models can have 

improvement on Embodied Conversational Agents (ECAs) than human machine 

interactions. 

According to Wolf and Bugmann, Natural Language Processing is a slow process 

compared with Image Processing when considering long sentences, rather than 

just action words (Wolf and Bugmann, 2006). Hence the use of time scale for 

semantics determination is a suggestive idea when developing a multimodal 

system that can process the above inputs. The proposed constraint algorithm for 

multimodal input processing is effective for applications where the knowledge set is 

constrained, but the platform for implementation is not. When including time 

semantics, a network that can be sensitive towards minor changes in the input, 

along with quick processing and response generation, is required. Hence a 

platform like a neural network is effective as far as semantic mapping and timing is 

concerned. In the proposed future algorithm, the scope of the network can also be 
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extended to unconstrained environments, as linguistic processing is time 

consuming with the growth in sentences. This will contradict the time and mapping 

semantics of the algorithm. 

Jolly et.al., propose a Compounded Artificial Neural Network (CANN) for making 

quick and more effective decisions in a dynamic environment like robot soccer 

(Jolly et al., 2006). The learning of the Artificial Neural Network (ANN) is carried out 

with an Evolutionary Algorithm (EA) with crossover and mutation, as well as back 

propagation techniques. However as the population grows, the performance of the 

EA decreases due to the increase in the decision space. ANN logical decisions are 

made according to the rule base. As the network grows, accuracy in prediction 

decreases. To eliminate it, the primary level (before the input layer) is added to 

generate the inputs from trained ANNs of nC2 combinations, where n is the number 

of robots in the team. This determines that for the successful generation of output 

at least 2 inputs are necessary. With this CANN model, however, the problem of 

space verses accuracy is not resolved, but comparatively high accuracy in 

decision-making with increase in population size is achieved. As the number of 

robots increases in a team, for example 10-11 players for soccer, the primary level 

is so huge that the inputs have to reach the main network with some delay, in 

which the final decision, though accurate, may not be appropriate due to the delay 

in processing. So in this case, expanding the team is limited. 

Cuppini has provided a mathematics-based neural network model of multimodal 

integration in the SC along with an insight into possible mechanisms that underpin 

it, as shown in the figure 2.6. This model details the enhancement and depression 

phenomena, along with cross modality, similar modality and inverse effectiveness. 

Unimodal neuron activity characterized by non-linear phenomena is easy to study 

by considering quantitative mathematical tools such as probability. Gaussian 

functions are used for the spatial representation of neuronal and synapse activity. 

Using a Mexican hat function the strength of the activity is assigned to the 

corresponding activity function so that the activity of the final multimodal output can 

be determined. The disposition of the hat from unimodal to multimodal explains the 

enhancement and depression phenomena either in between the modalities or 
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within a modality. It is considered that the stimuli are always sigmoidal and non-

linear (Cuppini et.al., 2007).  

 
Figure 2.6  Crisiano Cuppini’s neural network based integration model: Recurrent neural 

network with feed forward mechanism from unimodal to integrated output and vice versa 

The model of Cutsuridis mainly identifies issues of how the saccades are 

generated once the motor command is activated, especially for targeted and 

voluntary saccades. Irrespective of its complexity, Cutsuridis has used the concept 

of an anti-saccade task in developing a decision-making model of the SC 

(Cutsuridis et.al., 2007). Anti-saccade is the time taken for the eye to actually 

deviate in the opposite direction from the source. This model identifies that there 

are other cells that take part in saccade generation just before their actual firing. 

These cells can be studied with this anti-saccade task. By using this information, 

decision-making in the SC is explained. 

This concept is quite convincing at a theoretical level, but may not be effective in 

implementation since all the inputs are considered to be linear. No biological 

evidence is available for supporting this inference. The model is expected to 

perform well only when the synaptic currents (neuron activity) is high. It is a new 

concept, but for a decision making task in the SC a huge complex network model is 
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suggested.  Furthermore, the anti-saccade concept might be used to support some 

intermediate layers of the SC in decision-making, as those are the places where 

the integration (final decision) is expected to emerge. 

In another article the author demonstrates the functionality of the SC, focusing 

mainly on real-time audio source localization (Trifa et.al., 2007). Audio localization 

is calculated using Interaural Time Difference (ITD) and Interaural Level Difference 

(ILD), with a cross-correlation function on a spiking neural network for biological 

resemblance in functionality. This model pre-processes signals before they arrive 

at the actual network for noise reduction purposes and then localizes using 

Generalized Cross Correlation (GCC) with phase transformation. Finally, an 

integrated distributed control framework is developed. The network can use the 

visual data for carrying other modalities, such as recognition, identification and 

tracking. The paper describes a sensitive model for audio localization in noisy 

environments. However the concept of multimodality is not utilized as far as source 

localization is concerned. The focus is mainly on noisy audio inputs and their 

localization. The result is also compared with ITD, ILD and GCC models, but not 

with the integrated models. As in the former case, accuracy and precision is high. 

According to Armingol use of AI techniques such as Genetic Algorithms and 

Search Algorithms in a driving application for visual processing with colour 

enhancements is effective (Armingol et.al., 2007). It covers many possible 

situations such as pedestrians crossing, speeding and traffic signalling that helps a 

driver to make decisions. However, the camera covers only the straight road ahead 

of the vehicle - it does not cover the back or side views. In the case of the mirror 

image, either a back camera with audio support, or an existing camera, should be 

adjusted to an angle so that a mirror image comes into view which can be used to 

identify the vehicles at the back.  However the extraction may not be efficient as 

the back mirrored image appears very small and is not enough to run the extraction 

algorithm for identifying fast moving vehicles. Hence audio is used along with a 

rear camera to integrate with visual processing, which will be useful in heavy traffic 

situations, changing lanes and overtaking, contributing to a Driver Assistance 

System. 
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In a paper by Casey and Pavlou, a neural network model is designed to simulate 

the behaviour of the SC (Casey and Pavlou, 2008) as shown in the figure 2.7. It 

involves processing audio and visual stimuli that are non real-world discrete inputs, 

since the authors are testing the integrated results as spatial representations and 

comparing them with biological data. Rate-coded algorithms are used for 

representing sensory topographical Self Organising Maps (SOMs). According to  

 

Figure 2.7  Casey and Pavlou’s self organizing maps based integration model: SOM neural 

networks for topographical representation of multimodal stimuli where the input layers are 

connected with hebbian linkage that helps to learn the audio and visual stimuli. 

the authors, alignment of sensory maps can be successful even with multimodal 

representations due to the mapping feature of SOM network.  

Concatenating the individual modalities provides the comparison of multiple 

modalities. Though SOMs can provide a first approximation to the neuroscience 

view (Kohonen, 1982), a rate-coded algorithm has its limitations and hence the 

model is more static in its range of processing the inputs. The range of inputs 

covered is 35% - 46% towards the integration from the whole input data collected 

(Casey, 2009). If the model is trained on real-world inputs then this can be further 
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decreased due to additive integration technique. If the inputs taken are very few 

then limited accuracy can be achieved. This model can support suppression and 

enhancement of integrated output, as a first high-level approach towards 

multimodal integration (Stein, 1993). The applicability of the model is limited at this 

stage due to the narrow input stimuli range. 

 

2.5.3. Application-driven Approach 

In a paper by Stiefelhagen, the audio and video features are integrated separately 

such that the individual contributions of microphones and cameras will not affect 

the final decision of the tracking system (Stiefelhagen, 2002). Particle filters for 

audio and visual data are used for localizing the speaker. This paper is focused on 

audio and visual perception in a smart lecture room. In a specific example like this, 

where performance of the integration model is a critical issue, individual tracking of 

audio and visual data provides a more specific localization. Consider the case 

where a lecturer is in focus and a student stands and speaks simultaneously. In 

this case the multimodal system will help to track the person.  This is a good 

example of where the applicability of a multimodal system can provide accurate 

and efficient results in making the decision with limited complexity (Stiefelhagen et. 

al, 2006). In another case, such as a group discussion, a multimodal system can 

direct the cameras to decide which person to focus on. 

In their research on wearable devices Hanheide provide a novel idea for human 

computer interaction by integrating visual and inertial data processing (Hanheide 

et.al., 2005). Integration with head gestures can provide rich vocabularies 

necessary for communication. In a way the multimodal integration of visual and 

head gestures with inertial data can provide better communication between human 

and robot with the help of wearable sensory and computing devices. This system 

uses the head (holding a camera) for movements to generate commands by 

interacting with the environment. In case the user wants to change the selection of 

his choice, the way for navigating to the choice is not available. In this proposed 

paradigm items visible in the environment have to be assigned semantics so that 
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they can trigger the commands. However, as the environment grows, the 

semantics set increases. In the case of the appearance of a new item that is not 

known, it is not clear what the action is.   

The work of Cucchiara proposes a different type of Multimedia Surveillance 

System using biometric technology for visual feature extraction for person 

identification in a closed circuit television application (Cucchiara, 2005). 

Contradicting issues like safety, privacy and ethics are well grounded with various 

practical examples that are currently in operation across the world. The 

multimodality (multi input dimensions) is used in a way to extract the best features 

from the various cameras including thermal, fixed, distributed and omni-directional. 

The omni-directional camera can be integrated with audio such that it can project 

the trajectory. The multimodality concept can be used for identification and tracking 

the person as an integrated mechanism in the surveillance system.  

Designing a multi agent system for an intelligent multisensor surveillance system is 

in principle not a difficult task. However, according to Pavon, when it comes to the 

efficiency achieved by agents in co-operating and co-ordinating all the sensors, 

integrating the information is slow (Pavon et.al., 2007). In the case of centralizing 

all the systems, the limitations of the centralization architecture come to focus. The 

author has proposed a combination of centralized and distributed systems. 

However in this case, as the system grows, the more complex the design becomes. 

This reduces the performance of the system with time. Since it is a surveillance 

system, reaction times should be high.  

In such cases, grouping similar sensors and considering them as an agent with a 

distributed network and then centralizing all the agents will improve speed and 

productivity. When it comes to the size of the group, scalability is an issue that 

needs to be dealt with for a distributed network at the sensor level. When it comes 

to designing such a system, there is a requirement for a high level language that 

can establish co-operation and co-ordination among the agents without 

compromising performance, scalability and efficiency. For the structure proposed 
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by the author for managing the agents, a huge network is required for processing 

and maintaining control. 

When designing an integration model for security purposes, it is important to have 

certain features that can determine authentication of the input. Palavinel and 

Yagnanarayana have provided an approach using different inputs such as speech, 

images of the face, and both for authentication of an individual (Palanivel, 2008). 

The model discussed in this paper is an Auto Associative Neural Network (AANN) 

that receives inputs such as visual, acoustic and visual-speech (both audio and 

visual stimuli from the same source simultaneously). The focus is on authentication 

of the target for maximum security. For visual data images, feature extraction and 

detection is carried out on various facial features such as the eyes, the centre of 

the mouth and skin colour. Normalized vector data is used for both acoustic and 

visual-speech extraction with segmental levels. The AANN uses both the visual-

speech and visual data for the total authentication. The results are more accurate 

for multimodal authentication than with a single input. However, more run time 

memory is required and the time of execution is greater. This is because it is 

necessary to carry out feature extraction from different features of the face 

individually and then provide them to the network for the integration.  

Feature extraction is carried out directly on the input images, which are distorted 

after the process. Since the input is not replicated, every extraction needs a re-

consideration of the input. When demanding high sophisticated security, memory is 

not an issue. However with speed comes efficiency, which cannot be effectively 

achieved due to the time-consuming extraction process. Hence it contradicts the 

model. 

 

2.5.4. Conceptual Approach 

The Integration methodology proposed by Coen proposes that perceptual stimuli 

processing is more viable than unimodal processing during multimodal integration 

(Coen, 2001). This may be right when the modalities are limited and there is some 

correspondence in their processing levels, including time. But when it comes to a 
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live environment, as the modalities increase, the complexity increases in finding 

the similarities between the processing levels, and sometimes there may not be 

similar levels. In such instances similarities are determined using Individual 

Processing Channels. In the proposed multimodal system shown in figure 2.8, it 

was said that the input might appear at any level. This signifies that the received 

input is considered as its own irrespective of the source of input. By doing so the 

criteria of differentiating between signal and noise of each and every modality for 

which the model was developed is not met.  

 

Figure 2.8  Individual processing channels based multimodal integration:	   Post-perceptual 

Integration system. Input information received from various stations across the network is 

individually processed at the specific station that transmitted for the integration of stimuli.	  

Building such a vast, complex system for limited modalities and a limited 

environment is possible, but it is doubtful when the modalities increase or the 

environment grows. The “assumptions described by Piaget (1954) about 

multimodality in the real human world”, are the only supportive evidence for the 

main concept in the paper. Apart from the Piaget assumptions, no other support is 

provided for explaining how “the stimulus is processed as perceptual processing 
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levels, not as individual processing levels in the human or animal brain system” 

(Coen, 2001). 

A paper by Schauer is based on early fusion of audio and visual information for 

providing an integrated output (Schauer, 2004). The authors are inspired by the 

audio information pathway of the Inferior Colliculus along with the visual and 

multimodal pathways that are processed at the SC of the mid brain. Evidence 

shows that the sound stimulus is processed in the Inferior Colliculus. However the 

visual processing is carried out in superficial layers along with deep layers of the 

SC, and intermediate layers are responsible for multimodality. This shows that 

stimuli are processed to some extent in the corresponding units, and after 

integration (King, 2004) and (Stein and Meredith, 1993).  For this early integration 

a novel network is proposed that can generate individual spatial maps of visual 

fields and audio stimuli. These maps are further integrated and a final multimodal 

map is generated. This multimodal map generation is based on a parameter 

optimization technique, which is an effective computational methodology to achieve 

the behaviour.  

Yavuz provides solutions to various design issues and proves that optimizing the 

multimodal components at a computational level for integration in intelligent agents 

is effective (Yavuz, 2007). The focus is on efficient decision making at various 

levels to increase the efficiency at all possible levels including data acquisition, 

sensor information, further processing, dealing with various algorithms, and finally 

performance. The design proposed is huge as all possible performance levels and 

possible constraints are included.  

Hardware considerations represent one main issue when optimizing the design. 

This paper considers mobility, navigation and autonomy of hardware.  Along with 

hardware, various possible and alternative software that are compatible and 

optimal without compromising on performance are also adapted. Various systems 

are integrated to a single intelligent autonomous robot. They include electronic and 

mechanical interconnections of the various equipment. This conceptual system is 

complex when it comes to building it. The author recommends fuzzy logic based 
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behaviour integration where efficiency is expected to be more than any other 

system. 

In a paper by Paleari, the author demonstrates human-computer interaction 

compared to human-human communication, including all the features and gestures 

usually followed (Paleari, 2006). A framework is described for multimodal emotion 

recognition. Fusion can be performed at feature level and at decision level. The 

extracted features are extrapolated with audio and visual data. However in the 

case of emotion, a gesture is added as in Scherer’s theory to the extraction. This 

whole fusion can be provided from a multimodal fusion of the above-required 

modalities.  

 

 

2.6.  Summary and Discussion 

This chapter provides an introduction at a conceptual level to the Superior 

Colliculus, stimuli localization, and the integration process carried out in the SC. A 

literature review has been undertaken on work carried out in understanding the SC 

integration, along with various attempts to perform a process for audio and visual 

data integration. Through this review three different implementation techniques are 

studied. Pros and cons of these techniques are examined and are used in 

subsequent further chapters of stimuli integration system development. 

The biological importance of the SC is also described due to its presence in the 

mammalian brain system. This introduction describes the flow of stimuli 

information from the environment to the SC through sensory stimuli receivers such 

as the eyes and ears. It also reveals how the stimuli are transmitted into the SC 

along with the various changes the stimuli undergo during the generation of motor 

responses transmitted from the SC towards generating saccades and head 

movements. During this literature review interesting facts have been identified. 

These include biological evidence that suggest multimodal integration of sensory 

stimuli in the SC. 
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The chapter also provides a brief description of the motor response generated by 

the SC, its importance, and its role in the development of the multimodal 

integration system. In the next chapter a brief literature analysis of this area is 

provided so that a methodology can be derived, which is useful in identifying the 

effectiveness of the model.  

The literature review is classified into four different types based on the type of 

methodology followed in implementing the multimodal concept. From each 

author’s work, conclusions are drawn, which are later used in design and 

development of the integration model in this project. From the literature research, 

the probabilistic approach is considered unsuitable for this project due to the 

aspects of uncertainty intrinsic within it. This is because of a lack of biological 

influence or motivation on the model in both processing and development. Hence, 

considering into account the biological similarities extracted from the functionality 

of the Superior Colliculus detailed in chapter-2, a biological influenced model is 

proposed. The architecture of the model is derived from the Superior Colliculus 

neural findings described in chapter-3 section 3.2. This literature has laid the 

neural network platform for the architecture. The design and development aspects 

defined in chapter-4 justify the usage of neural network methods in particular RBF 

network. Similar is the state with experimentation and evaluation methodology. 

Observation and inferences that are made in this chapter are significantly used 

during the course of project. 
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Chapter 3 

Methodology and Design Architecture of the 
Integration Model 
_______________________________________________________________ 
 

3.1 Introduction 

This chapter describes the transformation of the biological functionality of the 

Superior Colliculus (SC) into a computational model. The approach aims mainly at 

generating an integrated response for audio and visual stimuli. In this context, 

artificial neural networks (ANNs) are particularly attractive for this modelling 

because of their biological nature, learning and simultaneous processing. The 

focus lies in the design of the architecture of the integration model. This 

methodology considers the core problem and supports the solution with a feasible 

design of the architecture. Through this architecture the goal of the project can be 

achieved and validated. 

The process of sensory information integration is an important task due to the 

complexity involved in transforming the biological model into a computational 

model. In this case, with audio and visual sensory information, the methodology 

plays a critical role in understanding how the research question is being analysed 

and evaluated. In this process both qualitative and quantitative approaches are 

followed, which helps in the transformation and design of the model.  

 

3.2 Literature on Design and Architecture 

The literature classifies different types of methodologies and approaches used for 

integrating audio and visual data as follows:  

• Conceptual.  

• Artificial Neural network.  
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• Probabilistic.  

These approaches are unique in their own circumstances and are capable of 

providing feasible output. However, for this research a combination of these 

approaches is used at various levels, in order to satisfy the research question. 

According to the conceptual approach, it is important that the design and 

architecture is based on the central motivation of the research, which in this case 

is concerned with the SC. Hence, the methodology follows the audio and visual 

stimuli flow pattern of the SC, from the point of stimuli arrival, to the generation of 

motor control. Due to the relative similarity of neuron processing in the human 

brain, neural networks are considered to be a suitable architecture. This is 

because they enable parallel processing of audio and visual stimuli, together with 

control signal generation following integration of those stimuli. 

 

In contrast, the above implementation could also be carried out based on a simple 

computational approach. Here a computational model could be constructed that 

can process the stimuli and generate a control command, which can integrate the 

audio and visual stimuli in both static and dynamic conditions. However, a 

computational approach can provide a solution to the problem only in static 

conditions.  

 

In contrast, a neural network approach provides an ongoing solution where the 

problem changes dynamically with the environment (Stergiou, 2007).  A neural 

network approach will have the advantage of an adapting learning mechanism, so 

that as the network is trained the output generated is also improved due to the 

error control criteria in the network processing. This is because the network is 

suitable for dynamic environments where learning can be adapted at any point 

during the training.  

 

Hence, a neural network is considered as a base architecture for processing and 

integrating audio and visual stimuli, in order to generate motor control. In principle 

the architecture should contain three individual processing platforms, where audio, 

visual and integration mechanisms are carried out. Audio and visual units are 

connected to the integration layer, so that the stimuli flow towards audio and 

visual layers can be transmitted to the integration layer.  
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Hearing is a widely used means of localizing targets within the environment in the 

animal world (Chan, 2009). Due to the location of an ear on either side of the head, 

each with a capability to receive audio stimuli generated within a 1800 range, the 

resulting 3600 range gives the modality an advantage in terms of scope. This 

helps in detecting the target over a large field. The approach proposed is different 

from existing acoustic-based robotic applications. Many existing applications use 

computational Digital Signal Processing (DSP) techniques with the help of a large 

number of microphones in analyzing and capturing the sound stimuli. In contrast, 

the mechanism proposed here is based on a biological motivation using the 

mammalian acoustic system, which utilizes the audio data from the regions such 

as the IC, along with audio cortex principles, in receiving and analysing stimuli 

from the environment.  

 

3.2.1 Audio Angle Determination 

When it comes to localization of sound stimuli, azimuth is the primary factor that 

needs to be determined. In this context, azimuth is the angle at which the target 

stimuli are generated relative to a fixed frame of reference such as the centre of 

the eyes. This centre is always considered as 00, dividing the left ear side and 

right ear side as negative and positive directions of azimuth, as shown in Figure 

3.1. In the figure Ɵ is the angle of incidence of audio stimuli at the centre of agent. 

 

The direction of the audio source, either to the left or right side of the frame of 

reference, can be calculated using the Time Difference Of Arrival (TDOA) of the 

sound waves at the left and right ends of the receiving terminal. However, this 

computational TDOA is equivalent to the biological ITD of audio localization in the 

cortex of the brain system (McAlpine, 2003). When it comes to calculating TDOA it 

is important to identify two identical points in the left and right audio waveform in 

order to ensure accuracy. This similarity identification process is initially carried on 

the first sound waveform that is received at the same side of the stimuli source  
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Figure 3.1 Audio localization visualization of stimuli transmission for left and right ear: The 

angle (Ɵ) of received sound stimulus is determined from a fixed frame of reference located at the 

centre of both ears perpendicular to the base. A generated sound stimulus is received at the left 

(L) and right (R) side of the frame of reference. ITD is calculated based on the time gap available 

between the L and R locations for a particular stimulus at an instant of time. 

 

(ipsilateral) and later to the waveform of the opposite side of the source (contra-

lateral) through the process of cross-correlation.  

 

3.2.2 Cross-correlation 

Cross-correlation is the process of identifying the location/region at which the 

signals exhibit similarity. However, in order to localize audio stimuli, the signals 

received at the left and right ear should be computed for the point of maximum 

similarity, or maximum correlation, when the stimuli are super-imposed. Hence, 

using the technique of cross-correlation, the point of maximum similarity of the left 

and right sound signals is calculated. Using this correlation value, the length of the 

vector stimuli is determined for both left and right ears.  

 

On obtaining the vector length of the left and right stimuli the distance of the 

sound source from the centre of the ears is determined. TDOA is calculated using 

the variation of a signal from the point of maximum similarity. By doing so, the time 
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lapsed for the signal to reach the receiver beyond the point of similarity is 

determined. Having thus obtained TDOA, since the speed of sound is known, the 

distance between the audio source and the centre (i.e. the intersection point of the 

reference frame and the centre of the ears) is obtained. 

 

Since the distance between the left and right ear of the agent is known, the angle 

at which the audio source is located from the centre is determined. A detailed 

explanation of how the angle is obtained based on geometrical triangulation is 

shown in section 3.4. 

 

3.2.3 Visual Angle Determination 

In common with the audio aspect, visual localization plays a crucial role. With the 

biological structure provided in chapter 2, when it comes to visual stimuli 

localization, or delivering attention, the scope is limited to the visual range of the 

human eye. Similarly, with a robotic agent, the scope is limited to the horizontal 

visual range of the camera in terms of saccade generation, along with agent head 

movements. Considering the fact that localization in the SC is instantaneous (for 

involuntary saccade generation), without intervention of the cortex directly, a most 

convenient method of visual angle determination is adapted. To emulate the quick 

and spontaneous response to stimuli in the SC, difference identification, using a 

frame delay technique called ‘difference image’, is used. 

 

3.2.4 Difference Image 

This process is based on the concept that changes in the visual environment are 

often identified from consecutive visual frames. Performing a brightness 

separation technique using difference images can always separate intensity or 

brightness variations. Using a criterion based on the factor of brightness, all 

possible variations in the visual field can be isolated as a difference image. This 

difference image, containing various intensities, can be transformed into Red-

Green-Blue (RGB) components of brightness, through which the highest intensity 

at a particular instant of time can be identified and isolated.  
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Later this difference image is transformed into a weight vector and is interpolated 

to the visual frame such that the frame of reference can coincide with the centre of 

the visual vector. Figure 3.2 shows how these difference images are generated 

based on two successive frames, where the first frame is a null image with no 

activation, and the second frame has activation at two different locations. The third 

image is the difference image generated from the first two frames. Hence, with the 

help of geometrical correlation, the angle at which the highest visual variance is 

located can be calculated from the centre with respect to the frame of reference. 

 

 
Figure 3.2 Visual stimuli isolation using difference image: The image of visual environment 

containing a set of LEDs separated by 100 followed by speakers are provided in (a), (b) while (c) is 

a difference image. (a) The visual image obtained at t0 from the camera of agent without visual 

stimuli (b) The visual image obtained at t1 from the camera of agent with visual activation at LEDs 

located. (c) The difference image significantly providing the variation of stimuli at t0 and t1 at 00 and 

200. 

The methodology described above concerns the processing details of audio and 

visual stimuli localization. Using this methodology an architecture is developed 

that can process stimuli and localize the source in terms of angle. The following 

section describes how the above methodology can be transformed into an 

architectural design based upon the SC. 
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Localization that is carried in the previous section, has considered speed of stimuli 

in air medium as constant. When it comes to real time application, situations arise 

causing a medium between source and destination. In such cases, speed factor is 

variable and depending on the type of stimuli it influences TDOA as well. This is 

another research prospect that can be considered for future work as, influence of 

variable mediums on multimodal behaviour of audio and visual data.   

 

3.3 Architecture 

The SC of the human brain provides the motivation for the multimodal 

computational architecture developed during this work. The form of the 

instantaneous output delivered by the SC for the primary stimuli in the multimodal 

environment laid the foundations for the computational model. This approach 

transforms the biological model into a computational model. This model is different 

from earlier integration models in terms of processing levels, architecture and 

minimal error for maximum network performance. Hence, a dual layered 

architecture was considered, where one layer receives input from different audio 

and visual stimuli available in the environment, while the other performs the 

integration of these stimuli based upon a synchronized time (with an estimated 

delay of 3.2 seconds to align the agent to the frame of reference) cycle for 

generating motor responses, as shown in figure 3.3.  
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Figure 3.3 Stimuli processing based layer architecture of the SC: A layered network structure 

capable of processing inputs from both audio and visual input layers which are later transmitted to 

the integration layer, using vector transformation, where integration is carried out. 

The Concept behind the architecture can be summarised as follows: 

For audio input processing, the TDOA is calculated and projected onto the audio 

layer. The audio input is provided to the model in the form of audible sound 

signals within the range of the microphones. Similarly for visual input processing, 

a Difference Image (DImg) is calculated from the current and previous visual 

frames and is projected onto the visual layer. The network receives both visual 

and audio input as real-time input stimuli. These inputs are used to determine the 

source of the visual or audio stimuli. The audio and visual layers are then 

associated for the generation of the integrated output.  Even in case of the 

absence of one of the two inputs, the final outcome on the angle of displacement 

for the generation of eye or head movement is made based upon the available 

input stimuli. An asynchronous timer at the integration layer verifies this 

phenomenon of multiple stimuli arrival. In the case of simultaneous arrival of 

different sensory inputs, the model integrates both inputs and generates a 

common enhanced or depressed output, depending on the signal strength of the 

inputs. The particular focus here is on studying the appropriate depression and 

enhancement of the integrated output.  

 

3.3.1 Experimental Platform 

In order to investigate this methodology, a series of datasets had to be collected 

for both unimodal and multimodal stimuli. In order to support the rationale behind 

the approach from a biological viewpoint, the experimental framework of Stein and 

Meredith was considered (Stein, 1993), as shown in figure 3.4. Stein used this 

platform to observe and study the behaviour of a trained cat during multimodal 

circumstances. In this platform, when audio and visual stimuli are activated with 

the help of speaker and light, the cat’s behaviour is monitored.  
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Figure 3.4 Stein’s behavioural experimental platform: Behavioural experimental-platform setup, 

for testing a cat’s multimodal behaviour during audio and visual input stimuli along with response 

monitoring using food trays. Image courtesy: “The Merging of The Senses” by Stein and Meredith 

of 1993. 

Based on the single neuron behaviour paradigms for examining unimodal and 

multimodal sensory stimuli orientation (Stein et. al., 1988, 1989) on cats’ 

behaviour for motor responses generation, a semi circular environment was 

designed. This could generate the stimuli for audio and visual signals that a 

trained animal (a cat in Stein’s experiments) could respond to. The set-up involved 

the animal at the centre of a circle, where a series of speakers and Light Emitting 

Diodes (LEDs) were located in pairs, along with food trays spaced at 300 intervals 

in a semi-circular manner. Although the intention of the experiment was to 

demonstrate multimodal behaviour, it is useful to examine the responses observed 

by Stein in understanding the SC behaviour. Given audio stimuli through the 

speaker, along with visual stimuli from the LED, the animal was expected to reach 

the food tray below the speaker or LED depending on the multimodal output.  

The behavioural platform was used to perform a series of trials with different 

mammals based on spatial coincidence, disparity and resolution trials. This study 

demonstrated the behaviour of the SC in various cases, along with the types of 

stimuli. Data collected from electrophysiological and behavioural experiments was 

compared and many similarities were observed. Hence, based on the size of the 

population, it was observed that spacial trials could be classified under 

coincidence as enhancement, and disparity as depression. 
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Their behavioural experimental platform provides a good starting point for carrying 

out a series of experiments for this research as projected in figure 3.5.  

 

Figure 3.5 Experimental structure: Using the experimental platform defined in figure 3.4, 

describes the types of networks that are tested on the platform and also the output generated from 

the corresponding network. The ‘section’ part notified in each block is the part of thesis that 

corresponds to the work.  

The environment created for this work includes a series of audio sources 

(speakers) and visual sources (LEDs) arranged in a semi-circular environment, so 

that each source is the same distance from the centre, within audio and visual 

range of the agent. Replacing the cat with a robot head, as shown in Figure 3.6, 

modified Stein’s behavioural set up. The robot was equipped with a set of 

cameras that served as eyes and a set of microphones that served as ears, 

located in a similar position to the eyes and ears of a human. The robot has the 

agility to move the head in both left and right directions.  

Using cameras and microphones as sensory information receiving devices, stimuli 

from the environment could be collected and fed to the integration network. As a 

result of visual or audio input, the aim is to orient robot’s head towards the 

direction of the source as feedback to the stimuli. This platform could be used for 

both unimodal and multimodal input stimuli generation and receiving. One 

important aspect of using this behavioural platform is that environmental noise 

could be taken into account while detecting and tracking stimuli for the 

enhancement and depression phenomena. However these phenomena are 

always sensitive to noisy stimuli, which was critical for this research. This platform 
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is best suited to studies related to saccadic movements (horizontal) of both the 

eyes and the head. 

 

 

 

 

 

 

 

Figure 3.6 Agent based experimental platform: Experimental setup and robot platform for 

testing the multimodal integration model for an agent based on visual and audio stimuli. An agent is 

dispensed at the centre of a series of speakers and LEDs’ within the audio and visual range. Upon 

activation of audio stimuli from the indicated speaker, the agent aligns at an angle signifying the 

direction of stimuli source.   

In the above scenario, agent is surrounded by a series of mics’ and LEDs at -300, -

200, -100, 00, +100, +200, +300 respectively from left to right, while the mics are 

also located upto -900 and +900. The given graphical representation in figure 3.6 is 

the experimental demonstration of agent-based localization for multimodal 

behaviour of steins behavioural platform. The experimental results obtained form 

this environment is projected in the later sections of this chapter. 

3.4 Computational Design (Stage-I) 

In this section, the methodology described above for unimodal stimuli processing 

is transformed into a computational (non-neural network) design. A feasible 

strategy is adapted such that the computational design for the agent is efficient 

and is also capable of generating input data sets.  

 
 
 

Activated	  
Audio	  
Stimuli	  
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3.4.1 Audio Processing 

The first set of experiments is based on collecting the audio data from a tracking 

system within the experimental platform setup. Audio sound source localisation is 

determined by using the inter-aural time difference for two microphones (Murray et. 

al., 2005) and the TDOA, which is used for calculating the distance from the sound 

source to the agent. The signal overlap of the left and right stimuli enables the 

time difference to be determined using equation 3.1.  

( )( ) ( )( ) rSRLxcorrRLxcorrlengthTDOA ×
⎭
⎬
⎫

⎩
⎨
⎧ −

+
= ,max

2
1,

 …....  (3.1)
 

In equation (3.1) ‘xcorr ()’ is the function that determines the cross-correlation of 

the left ‘L’ and right ‘R’ channels of a sound signal. Use of the ‘max(xcorr)’ function 

determines the highest correlation region in the signal. Sr is the sample time of the 

sound card used by the agent. Once the TDOA is determined, the distance of the 

sound source from the agent is calculated using equation (3.2). 

encySoundFrequTDOA×=Distance ..................... (3.2) 

The result is a distance vector of a sensory map for further processing to generate 

the multimodal integrated output. This is shown in the Figure 3.7.  
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Figure 3.7 Audio source localization determination based on time difference on arrival: 

Determination of sound source directions using TDOA where c is the distance of the source and θ 

is the angle to be determined based on TDOA and the speed of sound. The distance d between 

two microphones (ears), L and R, is known. 
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However, for unimodal input data sets, we can determine the direction of the 

sound source in an isolated state using geometry along with the data available, 

including speed of sound, distance between the ‘ears’ of the agent, and the 

distance of the sound source from the centre of agent (the centre of the ears).  

 

Assume the sound source is far away from the agent, i.e. c>>d, then α=β=λ≈900 

and the sound source direction can be calculated using triangulation as follows: 

⎟
⎠

⎞
⎜
⎝

⎛ ×
=⎟

⎠

⎞
⎜
⎝

⎛== −−

d
VsTDOA

d
ML 11 sinsinγθ  ………..... (3.3) 

Where Vs is the sound speed in air 

By using the distance of the sound source (D) and the distance between the ears 

(d), the direction (θ) of the sound source is determined as follows: 

⎟
⎠

⎞
⎜
⎝

⎛= −

d
DSinAngle 1)(θ

              ……….... (3.4)
 

From the above methodology the unimodal data for the audio input is collected 

and the audio stimuli can be made available for the integration model.  

 

3.4.2 Visual Processing 

We now consider visual data processing, where a set of small active LEDs serve 

as the location of the visual stimuli in the environment. A change in the 

environment is determined based on the difference between subsequent images.  

By using a difference function, the difference between two successive frames is 

calculated. 

1DImg −−= ii imageimage                    ................. (3.5) 

Where DImg is the difference image and image (i) where i=1 to n and so on are 

consecutive images received at the eye (camera). 
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A continuous traversing of the environment eventually identifies the activation. 

Based on the brightness intensity in the difference image, the activation is 

considered. Once the difference images are obtained containing only the 

variations of the light intensity, they are transformed into a vector. Once the 

vectors are extracted they can be used as direct inputs to the integrated neural 

model. However, in the case of unimodal data, difference images are processed 

directly to identify the area of interest as shown in figure 3.8. 

 

Figure: 3.8 Visual source localization calculation based on difference image: Difference 

Image (DImg) used for scaling and to determine the location of the highlighted area of the image in 

which the dash line represents the length of the visual range and distance between the two 

cameras eye1 and eye2. 

The intensity of the light is also considered to identity activation with higher 

brightness. Breaking down the activation into RGB components enables this 

process to be carried out. Using this method a series of images is collected. From 

this vector the maximum colour intensity location (maxindex) is identified and 

extracted. With the help of this information and the distance between the centres 

of the eyes to the visual source, it is easy to determine the direction of the visual 

intensity changes in the environment using the formula given in equation 3.6. 

( )
⎭
⎬
⎫

⎩
⎨
⎧ ×−

= −

o_sourcef_sensor_tdistance_oth x visual_wid
gevisual_ranl_widthhalf_visuamaxindextan 1θ

 ……. Eq. (3.6) 

This computational design provides a means to carry out unimodal stimuli 

experiments based on the methodology discussed earlier. 
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3.5 Unimodal Stimuli Experiments 

Initially, the computational model was experimentally verified using the 

behavioural platform for unimodal input data collection of audio and visual stimuli. 

The agent in this case was a PeopleBot robot with a set of two microphones for 

audio input and a camera for visual input (MobileRobots Inc, 2006) as shown in 

figure 3.9.  

 
Figure 3.9 Agents used during the process of data collection and testing: Robotic platform (a) 

is used for audio and visual stimuli collection for unimodal data collection and processing. Agent 

(b) is used for multimodal data acquisition and has capability to deliver output in terms of head 

movement (similar movement of saccades). 

 

3.5.1 Audio Input 

The agent used for audio data collection has two microphones attached on either 

side of the head resembling the position of the ears. The speakers are stimulated 

using an external amplifier to generate sound signals of strength within human 

audible limits, closer to the lower limit. For these experiments signals with smaller 

frequencies and variable amplitude were considered, since with these lower 

frequencies the multimodal behaviour can be identified and also the behaviour of 

stimuli can be studied with greater efficiency. Hence frequencies with a range of 

100 Hz – 2kHz are used.  
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Sound stimuli were generated randomly from any of the different speakers on the 

behavioural platform, and by implementing the TDOA method, the direction of the 

stimulus was determined. On the arrival of audio stimuli at the deep processing 

levels of the SC, stimuli received from left and right channels are analysed using 

cross-correlation and the location of the source was determined.  

This localization was based on the frame of reference described in the design 

section. The graphical representation in figure 3.10 shows sample results using a 

single audio stimulus with amplitude 8dB, at frequencies of 100Hz (minimum) and 

600Hz (maximum) used during the experimentation. It was observed that audio 

localization seems effective at these frequencies and amplitudes. The stimuli were 

projected using an audio analyzer, which details the stimuli arrival on time (x-axis) 

to amplitude (y-axis) axis. Similarly, the localization was projected on -900 to +900 

single axis plot, signifying the horizontal (saccadic path) space. Regarding the 

graphs shown in figure 3.10: 

The sound stimuli presented in left and right channels were represented on a 

graph with the time on the x-axis and amplitude on the y-axis, for the stimuli initial 

and end points of both 100Hz and 600Hz. The left and right channels are provided 

on the time axis signifying the time of stimuli arrival which in this case is a  

Similarly, the sound localization graph is location identification with respect to the 

directional stimuli and angle stretching across -900 to 900 horizontal. 

 

(a) Localization with Amplitude 8 & Frequency 100Hz across the horizontal saccadic frame (-900 to 900) 
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(b) Localization with Amplitude 8 & Frequency 600Hz across the horizontal saccadic frame (-900 to 900) 

Figure 3.10 Localization of binaural audio stimuli with amplitude 8dB for frequency 100Hz 

and 600Hz: Graphical representation of audio localization. When there is an audio stimulus 

available from the environment, it is interpreted according to the received times at the two ears of 

the agent.  The signals received at the left and right ear are plotted on a graph of time on the x-axis 

and amplitude on the y-axis. Once the TDOA is calculated and the direction of the audio source is 

located it can be shown in the range from -900 to 900, which in this case is identified as (a) 180 and 

(b) -100. 

By running the above experiment for lower frequency ranges of 100 to 600 Hz with 

the amplitude level at 8dB, initial experiments were carried out and the results are 

presented below. For each frequency, the sound stimuli are activated at angles 

varying from -900 to 900. Table 3.1 presents the angles given by the tracking 

system for initial amplitude of 8dB, which are discussed in the above section. 

These angles are obtained by the audio processing unit for the principal 

frequencies indicated in rows to the designated direction in the columns. 

Audio Localization Output Table 

Frequency (Hz) 

Vs  

Angle (degree) 

-900 -600 -45 -30 -20 -10 0 10 20 30 45 60 90 

100 Hz -81.07 -61.39 -6.29 -31.44 -21.41 -8.4 0 10.52 21.41 33.97 41.07 63.39 50.04 

200 Hz -71.07 -63.39 -42.11 -33.97 -25.97 -14.8 0 10.52 21.41 35.59 42.11 63.69 80.2 

300 Hz -76.88 -63.39 -41.07 -29.97 -25.97 -14.8 -2.09 12.4 21.41 31.44 38.95 63.39 80.00 

400 Hz -73.19 -63.39 -41.07 -75.6 -33.41 -10.52 -2.09 10.42 16.98 36.59 41.07 63.39 73.41 

500 Hz -43.9 -63.4 -17 -22.14 -17 -10.5 0 10.52 21.41 29.29 48.4 63.39 53.41 

600 Hz -76.9 -61.38 -42.09 -31.40 -21.41 -10.2 0 10.52 21.41 31.44 41.01 62.01 80.02 

Table 3.1  Audio localization output table: Accuracy of the projected angles in degrees to 

various frequencies from 100Hz to 600Hz at amplitude 8db.  
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Table 3.1 shows a sample set of audio data for which the experimentally obtained 

localization was relatively close to the target values. The errors obtained were 

presented in the following Table 3.2. 

Audio Localization Error Chart 

Amplitude : 8 dB Noise Levels : 0.4 – 4dB 
Frequency 

Vs 
Angle	  

100Hz 200Hz 300Hz 400Hz 500Hz 600Hz Mean Error 

-900 8.93 18.93 13.12 16.81 46.01 -13.1 15.12 
-600 1.39 3.39 3.39 3.39 3.04 -1.38 2.20 
-450 1.05 2.89 3.93 3.93 2.91 -2.91 1.97 
-300 1.44 3.97 0.03 2.80 0 -1.40 1.14 
-200 1.41 5.97 5.97 3.21 3.0 -1.41 3.03 
-100 1.60 4.80 4.80 0.52 0.50 0.52 2.12 
00 0 0 2.09 2.09 0 0 0.70 

100 0.52 0.52 2.40 0.42 0.52 1.41 0.97 
200 1.41 1.41 1.41 3.02 1.41 1.01 1.61 
300 3.97 5.59 1.41 6.59 0.71 1.44 3.29 
450 3.93 2.89 6.05 3.93 3.40 1.01 3.54 
600 3.39 3.69 3.39 3.39 3.39 2.01 3.21 
900 39.04 9.98 10.0 16.59 36.59 9.98 20.36 

Mean Error 5.24 4.93 4.46 5.13 7.81 2.89 5.08 

 

Table 3.2  Audio localization error chart: The error obtained in localizing the audio stimuli for 

each of stimuli generated from table 3.1.  

A graphical representation of the localization error is shown in Figure 3.11 
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Figure 3.11  Audio localization error graph: Graphical representation of audio localization error,  

featuring relative similarity of each frequency to the target localization.  

This shows the model works effectively for localization of lower frequencies, where 

the absolute mean error level is less than 100. The experimental outcome signifies 

the effectiveness of the approach along with the appropriateness of stimuli 

selection. However, in order to verify the success of the methodology a set of data 

samples were collected by varying the amplitude from 8db to 22db in intervals of 2 

decibels.  Similar experiments were carried out on the same frequency range with 

a change in amplitude in both laboratory and open (noisy) conditions. This resulted 

in an audio input dataset of 168 samples. These are presented in the next chapter. 

 

3.5.2. Visual Input 

The camera was able to cover 600, from -300 to 300. The series of frames collected 

as input from the camera are processed and the output should determine which of 

the LEDs is active. The frames are used to generate difference images, which 

contain only the changes that have occurred in the visual environment of the agent. 

They are calculated by measuring the RGB intensity variations from pixel to pixel 

in the two successive images. This series of difference images is used to identify 

any kind of change in the environment. The difference images are plotted on a 

plane covering -900 to 900 on the horizontal axis and signal strength (intensity) on 

the vertical axis. Figure 3.12 represents one such plot of the difference image 

signal intensity.  

It is clear that visual coverage is 600 (-300 to +300) and auditory coverage is 3600. 

When it comes to generalizing the axis, a scale of -90 to +90 is used for 

localization so that both audio and visual stimuli can be represented. However, the 

demonstration of the stimuli is carried out on much larger scale only for 

visualization of the stimuli. This criterion is adapted for all the stimuli 

representation in the thesis for both unimodal and multimodal presented in 

chapter-3 and chapter-4. 

Using the plot shown in figure 3.12, the direction of the source from the centre of 

the agent is determined.  The difference images are mapped onto a standard 
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Horizontal Scale Frame (HSFr), to determine the location of the activation as a 

data format to input the system. The HSFr is a scale that divides the 1800 frame 

into 50 increments. Thus the generated final HSFr image varies according to the 

intensity projections of difference images.  

 

 

      

Figure 3.12  Visual localization using difference image: (a) The difference image (DImg) is 

shown scaled to a unique size for all the images, to standardize it as a vector for the map 

alignment in the multimodal phase. (b) Horizontal Scale Frame image (HSFr) is a frame, which is 

scaled to -900 to 900.  

 

In this HSFr the horizontal axis was divided into 100 intervals. Hence, all the visual 

information that arrived at the camera was transformed into difference image 

intensity plot and finally plotted on an HSFr to locate the source in the visual 

environment. Within this data collection process, different inputs were gathered 

and later used as a test set for the integration model that could generate a 

multimodal integrated output.  
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By running the above experiment on the behavioural platform with given 

conditions, the results obtained are recorded as shown in the Table 3.3.  

 

Visual Localization Output Table 

Noise level: Lights On (Day) Intensity: 0 – 0.5 

Visual Intensity 
Vs  

Angle (degree) 
-300 -200 -100 00 100 200 300 

Set 1 -30.15 -18.98 -10.89 1.01 9.46 19.45 30.01 

Set 2 -29.12 -17.63 -10.08 0.46 10.03 18.98 29.98 

Set 3 -30.01 -19.01 -10.00 0.98 10.98 18.01 30.45 

Set 4 -29.98 -19.89 -9.98 -0.11 10.00 19.08 29.46 

Set 5 -30.72 -18.53 -10.76 1.46 10.01 20.75 30.54 

Set 6 -29.12 -20.14 -9.98 0.15 10.05 19.96 30.01 

Table 3.3  Visual localization output table: Accuracy of the projected angles in degrees to 

various visual stimuli from different set of .  

For each of the stimuli transmitted, a visual aid (LED) is activated (turned on) at 

angles varying between -300 to 300. This range complies with visual range of the 

agent. Based on the unimodal output obtained, the following Table 3.4 shows the 

error obtained during the localization. 

Visual Localization Error Chart 

Noise level: Lights Off (Day) Intensity: 0 – 0.5 

Light Intensity* 
Vs 

Angle (degree) 
Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Mean Error 

-300 0.15 -0.88 0.01 -0.02 0.72 -0.88 0.44 

-200 -1.02 -2.37 -0.99 -0.11 -1.47 0.14 1.02 

-100 0.89 0.08 0.0 -0.02 0.76 -0.02 0.30 

00 1.01 0.46 0.98 -0.11 1.46 0.15 0.70 

100 -0.54 0.03 0.98 0.0 0.01 0.05 0.27 

200 -0.55 -1.02 -1.99 -0.92 0.75 -0.04 0.88 

300 0.01 -0.02 0.45 -0.54 0.54 0.01 0.26 

Mean Error 0.60 0.69 0.77 0.25 0.82 0.18 0.55 

Table 3.4  Visual localization error chart: The error obtained in localizing the visual stimuli for 

each of stimuli provided. 

 

After running this experiment based on a six different sets, a number of difference 

images were collected. By transforming the image onto a horizontal map at 100 



Chapter3:	  Methodology	  	   Audio	  &	  Visual	  Stimuli	  Integration	  Model	  	  
	  

54 	  
	  

intervals, the angle of the source was identified. The error obtained during the 

localization from Table 3.4 is transformed onto a graph as shown in figure 3.13. 

 

Figure 3.13  Visual localization error graph: Graphical representation of visual localization error,  

featuring relative similarity of each stimuli to the target localization.  

From the above graph drawn between visual localization error and localization, the 

errors lie in the range of (-2.50, 1.50). On the other hand, the mean error is less 

than one degree. Though the error appears to be out of range (-20, 20), it was 

significant when it comes to demonstrating the effective output. From a series of 

visual experiments conducted with variable light and laboratory conditions, an 

input data set of 162 samples was generated. 

Finally from the above unimodal data collection and analysis, it is observed that a 

satisfactory similarity was obtained from both audio and visual experiments 

compared to the target. With the audio experimental data, considering the level of 

accuracy within ±50, 80% of observations were similar to the expected targets. 

Similarly with the visual input data, considering the level of accuracy within ±20, 

90% of observations generated were similar to target results. 
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3.6 Computational Design (Stage-II)  
 
In this phase, a methodology for audio and visual stimuli integration is proposed in 

order to investigate the integration criteria along with enhancement and 

depression phenomena associated with it. As discussed in Chapter 2, multimodal 

integration is a widely researched concept whose efficiency is determined based 

on the requirements and targets.  

 

3.6.1 Integration Phenomena  

During integration, the signal strength was also included in the network for 

generating the output. Stein and Meredith have previously identified two 

phenomena, depression and enhancement, as crucial for multimodal integration. 

In the approach here, the visual constraints from consecutive frames for 

confirming whether or not a signal of low strength was noise, have also been 

considered. By reducing the frequency to 100Hz for a weak audio signal and by 

also varying the LED intensity in the behavioural environment, it was possible to 

generate a weak stimulus to study the integration phenomena response.  

A synchronous timer was used to verify and confirm whether the visual and audio 

stimuli are synchronized in terms of Time Of Arrival (TOA). If the arrival of the 

stimuli is asynchronous then an integration of the inputs is not necessary, as the 

location of the source can be determined depending on the unimodal processing. 

In cases of multiple signals with a synchronous TOA, the signal strength is 

considered for both signals. Once the strongest signal is identified then preference 

is given first to this signal and only later an additional preference may be 

associated with the other signal. This case occurs mainly with unimodal data, such 

as a visual environment with two different visual stimuli, or an audio field with two 

different audio stimuli. 
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3.6.2 Design Criteria 
 

Initially computational approach was adapted to verify the mechanism of 

integrating audio and visual stimuli based on stimuli strength and time of arrival. 

Although the outcome is multimodal, when it comes to applying the model to 

applications where the agent has to receive live feeds of input data, the required 

level of accuracy is not achieved. This is because of noise levels that are included 

in the input data, along with the level of prediction states. Hence, to increase 

accuracy, the introduction of a filter would have been appropriate.  

 

One possible solution might have been a Kalman filter, due to its inclusive 

‘predictor-corrector’ nature. The Kalman filter is an efficient and widely used 

mechanism in stimuli processing applications to reduce noise levels. However, the 

computational model is a static mechanism towards generation of multimodal 

output (Funk, N, 2003). A static modelling integration model cannot produce an 

efficient output, since the error from input to input remains unchanged. Hence to 

ensure error reduction, a learning mechanism is introduced using a neural network 

concept. In the next chapter, integration is studied in detail along with the 

feasibility study and applicability. 

 
 

3.7 Summary and Discussion 

This chapter provides an introduction to the methodology adopted to fulfil the 

research question. The methodology provides a sensitive and systematic 

combination of qualitative and quantitative aspects such that it can be executed at 

all possible states of its development. This methodology describes the process of 

research implementation at conceptual, design and computational levels to project 

a clear view of design and development. 

Initial sections of this chapter describe inputs that are needed and outputs that can 

be obtained by using multimodal integration. Due to the non-availability of input 

data sets, the methodology proposes input data-set generation and collection. 

Hence an experimental platform is considered that is helpful for both input data set 

generation, experimentation of multimodal integration and testing. 
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This chapter also describes the cross-correlation and difference image 

mechanisms that are adapted for audio localization and visual attention. 

Computational design aspects of how stimuli localization is carried out in both 

audio and visual stimuli cases, based on mathematical formulations, are also 

discussed. These formulations suit the requirements by considering possible 

factors that affect localization and multimodal integration. 

Finally, the design is carried out in two different stages, where Stage-I deals with 

unimodal stimuli processing and generation along with multimodal stimuli 

generation. Stage-II deals with multimodal stimuli processing along with integration 

model generation and development. In the next chapter, a detailed study is carried 

out on integration mechanisms in terms of methodology, design, computational 

design and experimentation. Architectural aspects of the integration model are 

also described.  
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Chapter 4	  

Neural Network Modelling of Multimodal Stimuli 
Integration 

4.1. Introduction 

As a continuation of the methodology, in this chapter the design and development 

of the integration model is discussed in detail. The methodology includes audio 

and visual stimuli determination, integration design formulation, and model 

development. During the development process, a computational approach towards 

integration was first attempted, where it is evaluated to determine its effectiveness. 

This helps in identifying problems that must be overcome when developing the 

new architecture.  

The proposed neural network approach is adopted to overcome the difficulties of 

the computational approach with the help of the learning concept and training of 

the network for an effective multimodal outcome. The chapter details the design 

and development of the neural network, along with implementation and testing. 

The network was later subjected to learning and during the process, the role of 

dimensionality reduction towards training and testing was also discussed. The 

multimodal outcome for the neural network approach is verified against the 

projected outcome and the success of the model including accuracy was 

determined.  

 

4.2. Multimodal Stimuli Determination 

In this section, the integration of audio and visual information based on the SC is 

described. The received audio and visual inputs are preprocessed considering the 
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functionality of the optic chiasm (indicated in figure 2.2) and the information flow in 

the optic tract, along with information from the audio processing region of brain, IC. 

This preprocessing generates the DImg from the captured visual input along with 

the TDOA for the audio stimulus, as shown in Chapter 3.  The preprocessed 

information enters the SC network, which performs multimodal integration of the 

available stimulus, and the corresponding motor output is generated. The flow of 

information is shown in figure 4.1. 

 

Figure 4.1  Stimuli flow mechanism from environment to the SC: Schematic representation of 

stimuli flow from the external environment to the superior colliculus model  

The network model is mainly focused on stimuli processing in the form of spacial 

maps to resemble the actual integration in the deep layers of the SC. Hence, the 

model is considered to have two types of inputs towards integration:  

• the TDOA audio map  

• the DImg visual stimulus map  

The input audio stimuli arriving at the integration network will be in the form of a 

vector, which is the transformed version of the input TDOA-based stimuli. Similarly 

the visual input to the network is the vector-transformed version DImg of the 

original stimuli. These resemble the various transformations that audio and visual 
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stimuli undergo during their transmission from the eyes and ears to the SC. In 

order to consider the effectiveness, especially for multimodal stimuli cases, the 

vectors are also equipped with stimuli intensities, as established in Chapter 3. The 

vector outcomes of audio and visual stimuli are not of the same magnitude due to 

stimuli intensity variations.  

Since the integration model is focusing on horizontal saccades, only the variations 

on a horizontal scale are considered at this point, although this can be extended to 

vertical saccades by using a two-dimensional feature map representation. To 

identify the maximum intensity cases of multiple stimuli, a Bayesian probability-

based approach is used to determine the signal that is input to the network. A 

synchronous timer is used for counting the time lapse between the arrivals of the 

various stimuli of the corresponding senses. Hence, the occurrence of multiple 

unimodal stimuli is detailed.  

In order to integrate the stimuli it is necessary that the vectors should be equi-

dimensional so that a common platform can be used for integration. Hence, the 

unimodal vectors can be interpolated on to a single reference frame (containing 

localization and intensity data only) in the form of vectors such that stimuli data 

can be optimized without loss of information. Alternatively, the dimensionality of 

the vectors can be altered. The visual stimulus obtained from the input in the 

range (-300, 300) is processed to generate DImg. Since the visual stimuli obtained 

from this experiment have lower range of coverage, scaling of the vector is 

adapted. The vector transformation of DImg is scaled to 1800 HSFr. The final 

obtained visual vector will be on 1800 reference. However, if the received stimuli 

had greater range of coverage similar to auditory, then scaling factor can be 

avoided. Similarly, the audio stimulus was initially collected over a range of 1800 

(based on the location of the stimuli source). Later the generated TDOA is used 

for localization and is projected onto 1800 scale. This also corresponds to the 

localization of the unimodal instance. When it comes to determining localization 

for multimodal instances, due to the presence of various stimuli vector reference, 

the stimuli vector data is interpolated to a common reference such as HSFr.  
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When both the vectors are available within the required dimensional space, the 

process of integration is carried out. As established in section 2.3 of chapter 2, 

stimuli integration takes place only on the simultaneous arrival of audio and visual 

inputs. It is clear that integration arises only when the stimuli arrival is 

synchronous. In such a case, a stimuli intensity factor is considered to identify the 

next gaze point for the agent. Hence, for each and every stimuli vector generated, 

the weight is also calculated.  

In the case of audio data, a weight vector represents the strength of the sound 

stimulus, and the intensity of the stimulus peak generated. However in the case of 

a visual stimulus, the weight vector is an encoded Red-Green-Blue (RGB) 

representation that determines its intensity.  

 

4.3. Integration Model Design and Processing 

Based upon the audio and visual vectors described above, an integration model is 

designed in order to perform audio and visual integration. From the literature 

review (Chapter 2), based upon the two stimuli arriving simultaneously, a dual 

layered integration model is proposed. This model depicts the processing of the 

SC in stimuli arrival and transmission across the network. Figure 4.2 shows the 

basic functionality of how the processing is to be carried out. 
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Figure 4.2  Detailed transformation mechanism from unimodal stimuli to multimodal output: 

Integration Model depicting the transformation of stimuli into vector form, outlining the step-by-step 

changes towards integrated output generation 

In figure 4.2 the process of stimuli transmission from unimodal to multimodal 

states with the help of integration is described. However, when it comes to the 

computations that are used to process the integration, they vary depending upon 

the approach. Based on the literature review it is observed that various 

computational approaches can be used to perform the integration. In this thesis 

the integration model development is initiated with a computational approach. The 

approach is modified accordingly based on the requirements and performance. 

4.4. Computational-based Integration Model 

This approach is also called a computational approach, which uses conventional 

computational methods to perform the integration of audio and visual stimuli. The 

outcome of the integration model is an average that is located within or around the 

audio and visual stimuli vectors.  

For example traditional averaging of stimuli will provide a region of concentration 

that is in between them. Since the integrated output can be localized to either of 

the input stimuli, a weight factor is considered that defines the strength of the 
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stimulus. Using this factor the output is a region of concentration that is higher in 

weight for one of the stimuli, depending on their relative strength.  

 

4.4.1 Integration Criteria 

The processing of the integrated output is as follows: 

{ }
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)()(Output Integrated 11
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= ……………. Eq. (4.1) 

Where, each factor of the equation depends on the input stimuli obtained. 

Wv = Visual Vector Weight is the absolute value of the vector transformed visual 

stimuli containing the weights of the activation in the given range of stimuli. 

WA = Audio Vector Weight is the absolute value of the vector transformed audio 

stimuli containing the weights of the audio spikes in the given range of the stimuli. 

V1 = normalized Visual Intensity is the summation of red, green and blue values of 

the intensities obtained in the difference image to the column ratio of the pixels 

from the camera used.           

A1 = normalized Audio Intensity is the highest peak recorded in the audio stimuli 

analysis, which is used during cross-correlation for stimuli localization. 

This equation 4.1 determines the weighted vector outcome in terms of the 

directional vector of the integrated source location. This signifies that the outcome 

concentration is biased to the area of higher strength. Finally, since that 

integration output concentration cannot always correspond to the source of origin, 

the stimulus closer to localization is considered as source of stimulus origin. This 

signifies the integrated mean always lies between the two variables, and the 

chances of integrated output exceeding either of the localization are less.    
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4.4.2 Integrated Outcome 

The integrated output generated from a range of inputs using the computational 

approach is shown in table 4.1. The table contains the individual localization 

obtained at the end of the pre-processing state along with stimuli intensity. The 

integrated output is determined based on eq. 4.1, and source directional 

information is expressed as an angle (degrees) from the center of agent, while the 

corresponding intensities are normalized and expressed within the range (0, 1).  

The difference between the experimental integrated output and the expected 

output is determined as an error and is provided in Table 4.1.  

Input	   Visual_Source	  
Angle	   Vis_Intensity	   Audio_Source	  

Angle	   Aud_intensity	   Expected_Output	  
Angle	  (E)	  

Integrated_Output	  
Angle	  (I)	  

Error_Obtained	  
(I-‐E)	  

1	   -‐16.5	   0.41	   -‐17.34	   0.08	   -‐16.5	   -‐16.632	   0.132	  

2	   17.35	   0.62	   -‐8.57	   0.32	   17.35	   8.468	   8.882	  

3	   17.35	   0.62	   10.73	   0.30	   17.35	   15.205	   2.145	  

4	   -‐30.7	   1.00	   21.87	   0.06	   -‐30.7	   -‐27.912	   -‐2.788	  

5	   -‐16.53	   0.35	   33.97	   0.09	   -‐16.53	   -‐5.992	   -‐10.538	  

6	   17.35	   0.47	   -‐17.34	   0.08	   17.35	   12.219	   5.131	  

7	   17.35	   0.42	   31.97	   0.45	   31.97	   24.841	   7.129	  

8	   -‐30.86	   1.00	   6.42	   0.36	   -‐30.86	   -‐20.931	   -‐9.929	  

9	   17.35	   0.51	   17.34	   0.11	   17.34	   17.348	   0.002	  

10	   17.35	   0.51	   31.44	   0.18	   17.35	   20.930	   -‐3.580	  

11	   17.35	   0.53	   -‐17.34	   0.15	   17.35	   9.727	   7.623	  

12	   17.35	   0.53	   -‐6.42	   0.95	   -‐6.42	   2.063	   -‐8.483	  

13	   17.35	   0.52	   10.73	   0.92	   10.73	   13.127	   -‐2.397	  

14	   -‐30.86	   1.00	   21.87	   0.13	   30.86	   -‐24.835	   -‐6.025	  

15	   17.35	   0.42	   -‐4.27	   0.28	   17.35	   8.753	   8.597	  

16	   17.35	   0.42	   -‐19.59	   0.68	   -‐19.59	   -‐5.511	   -‐14.079	  

17	   17.35	   0.43	   -‐8.57	   1.00	   -‐8.57	   -‐0.758	   -‐7.812	  

18	   17.35	   0.44	   6.41	   1.00	   6.41	   9.728	   -‐3.318	  

19	   17.35	   0.43	   24.19	   0.78	   24.19	   21.750	   2.440	  

20	   -‐30.7	   1.00	   -‐15.12	   0.38	   -‐30.7	   -‐26.410	   -‐4.290	  

21	   17.35	   0.47	   -‐15.12	   0.81	   -‐15.12	   -‐3.232	   -‐11.888	  

22	   17.35	   0.47	   -‐8.57	   1.00	   -‐8.57	   -‐0.229	   -‐8.341	  

23	   -‐16.5	   0.31	   8.57	   1.00	   8.57	   2.640	   5.930	  

24	   -‐30.87	   1.00	   31.44	   0.54	   -‐30.87	   -‐9.126	   -‐21.744	  

25	   -‐30.37	   1.00	   17.34	   1.00	   17.34	   -‐6.468	   23.808	  

26	   -‐30.37	   1.00	   -‐26.55	   1.00	   -‐-‐-‐-‐	   -‐28.460	   -‐-‐-‐	  
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27	   -‐16.5	   0.25	   -‐8.57	   1.00	   -‐8.57	   -‐10.181	   1.611	  

28	   17.35	   0.44	   -‐8.57	   1.00	   -‐8.57	   -‐0.709	   -‐7.861	  

29	   17.35	   0.29	   19.59	   0.27	   17.35	   18.428	   -‐1.078	  

30	   -‐30.87	   1.00	   26.55	   0.70	   -‐30.87	   -‐7.286	   -‐23.584	  

 

Table 4.1  Computational multimodal integration output table: Table containing the output 

generated from the computational model, from the input stimuli localization data and their 

intensities normalized between 0-1.  

 

In the Table the highlighted row-30 signifies the following:  

Column 1 is the visual source angle (-30.870) reached from the multimodal stimuli 

with stimuli intensity (1.00) in column 2. Column 3 is the audio source angle 

(26.550) reached from the multimodal stimuli with intensity (0.70) given in column 

4. Column 5 determines the output generated by the integration model which in 

this case is -7.2860. However the labeled data signifies the target output as -

30.870 based on the intensity of stimuli. The final column of the table presents the 

angle error that the model has generated during the process. 

 

4.4.3 Error Determination 

From the results obtained using the experimental platform, a sample set is 

provided to determine the typical deviation or error obtained through the 

computational approach to multimodal integration. Figure 4.3 shows the error 

between the expected and obtained integrated output.  
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Figure 4.3  Error representation of computational model output: Error analysis graph from the 

above random selection of multimodal outputs. This plot is the representation of error in the 

available input space signifying the maximum error obtained.  

Figure 4.3 indicates the distribution of error, from the available inputs. The 

obtained error lies in the range (-250, 250), which is over the estimated ±50 of 

variance. Hence, an alternative approach to multimodal integration is justified on 

performance. 

It is observed that the error is significant. However, using non-linear interpolation 

(Park, 1997) based on von Mises angular distribution, parameters governing the 

integration function can be used instead of a least mean square function to reduce 

the error obtained (Harremoes, 2010). This leads to a minimal error along with a 

smooth localized output for the integrated data.  

An alternative computational approach could involve the use of a filter such as the 

non-linear Kalman filter (Landis, 2005). However, since the principal aim of this 

project was to develop a biologically inspired architecture, the approach was not 
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pursued further, and an alternative approach using artificial neural networks is 

considered.  

 
4.5. Neural Network-based Integration Model 

In this section, the methodology concludes with a neural network based 

integration model. This is developed using the computational approach in 

conjuction with a neural network platform in order to overcome computational 

difficulties, such as error determination and reduction, without affecting the 

computational speed. It also reduces difficulties associated with on-going data 

processing and transmission, such as vector transmission and dynamic data 

processing.  

 

4.5.1. Why neural networks 

Neural networks represent a widely used data processing method whose 

computational patterns are close to biological behaviour patterns. Neural networks 

are known for their computational efficiency through parallel processing, even in 

the presence of noisy data. Since the concept of neural networks is developed 

from the computational patterns between the neurons of brain system as shown in 

figure 4.4, they are classified as simple inter-connected message transfer 

multiprocessing states/stations that can perform computations at a higher level 

(Smith, 2003). 
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Figure 4.4  Biological neuron of human brain: Neural activity in human brain. The image 

signifies the inner structure of brain neurons and their neuron transmission across dendrites. 

Image courtesy by Software Creation Mystery 

Neural networks are used mainly in applications dealing with deriving patterns 

from imprecise data. When it comes to computations, a neural network adapts to 

the input data and uses a parallel computation methodology in deriving a solution. 

Unlike traditional computing methods, it is not always necessary to feed the 

network with conventional algorithmic methods. However, a feasible combination 

of neural networks and conventional algorithmic methods will often render an 

efficient outcome (Stergiou, 2007). 

In this project a dynamic combination of audio and visual stimuli are fed to the 

network. Hence, the chances of noise in the form of distortion of the stimuli, or 

external noise, are significant. To improve the efficiency of the network it is very 

important that the model adapts to the input stimuli and generates an effective 

audio-visual integrated output. Alternatively, implementing learning criteria will 

help improve the performance of the network along with an adaptation towards 

new input data. Finally, the neuron computations performed in the SC of the brain 

can be modelled using a biologically inspired network to perform the audio-visual 

integration. This is the rationale behind the use of neural networks as a platform 

for the development of the audio-visual integration modal inspired by the Superior 

Colliculus. 
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4.5.2. RBF Motivation 

Considering the aspects discussed in the literature review, it was considered 

important for the model to be biologically inspired to enable instantaneous 

transformation of multimodal stimuli into accurate motor commands. Due to the 

need to process both audio and visual layers, the model was required to perform 

multi-tasking. The input data that is delivered to the network model may not be 

linear data. Hence the model should perform effectively even with non-linear data. 

Based on the above processing requirements, a Self Organizing Map (SOM) 

network is a potentially effective choice due to the mapping feature that simulates 

the localization properties in the input space of the brain system. A SOM network 

is based on determining the density of input concentration over a deterministic 

dimensional space. Compared to other neural network techniques, the SOM is 

considered more effective for classification modelling than prediction (Khan, 2009).  

The SOM network has previously been used for localization problems (Casey and 

Pavlou, 2008), however, any missing or incomplete data sets will result in a 

completely deviated or out-of-range output. This causes ineffective localization, 

resulting in poor performance, and due to the clustering nature of the network, the 

SOM even tries to cluster the noise present in the data, causing a deviation in the 

localization (Pang, 2003).  

The Radial Basis Function (RBF) network has similar properties, such as 

biological plausibility, for implementing neural phenomena. RBF networks are 

effective in complex localization problems even with non-linear data (Bors, 2001) 

involving data features of multi-dimensional space (Powell, 1987). When it comes 

to data transformations and interpolation of input feature data, RBF networks can 

effectively perform the weight adjustments such that criteria for the integration can 

be satisfied (Broomhead, 1988). Similarly, the RBF can effectively optimize the 

model output with the available training set and improves efficiency as the training 

set increases (Moody, 1989). When it comes to training, on-line training features 

adapted by the RBF fit the changing data sets (Bors, 1996). A Matlab model of the 
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RBF network is shown in figure 4.5 detailing the functional working and data 

transmission. 

 

Figure 4.5  Radial Basis Function neural network model using Matlab: A typical RBF network 

containing input, hidden and output layer detailing the data processing and transmission. 

In the above network: 

I          – Input Layer 
L1       – Hidden Layer operating on highest activation 
L2       – Output Layer operates on linear function  
b1, b2   – bias or threshold at layer 1 and 2 
IW1,1    – Represents the weight allocated with respect to input layer 
LW2,1   – Represents the weight obtained from L1 allocated to output layer 
||dist||   – Distance function 
s1, s2,R – Represents the matrix order so that the computations are applicable  
 

The network is a typical radial basis neural network with input, hidden and output 

layer, as shown in figure 4.5. The input to the network was transmitted from the 

input layer to the hidden layer, where the radial basis function is applied. In the 

hidden layer, with the allocation of random weights to the hidden neurons, with 

highest activation were identified. Using input weights on the radial basis function 

against a given threshold, the output generated was transmitted to the output layer 

through L1. In the output layer, the received activation, the linear weights of the 

neurons and the thresholds were accumulated and the summation was 

transmitted as output to L2. At L2, a linear deterministic value is generated as 

output of the network. 
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An RBF network was chosen to design the integration model. During the design 

process, initially the radial basis function has to determine the weights of the 

network for generating the required output. However, a distance function is 

considered as an activation function as shown in eq. (4.2) along with larger scope 

for inputs (radius for the function in input space). To generate an activation 

function that can entertain a varied range of inputs along with deterministic output, 

a generalized function is required. A generalized activation function requires a 

greater number of neurons for its generation. 

( ) ( )uxOxZ i −=                   ……………………. Eq. (4.2) 

Where x and u are the initial and center of the input vectors that have initiated the 

RBF network in the integrated output function.  

The activation function should be able to classify the patterns from the input 

entries. Due to the lack of generalization, a Gaussian distribution function is used 

instead of a discrete function. Gaussian functions are known for their consistency 

for the output irrespective of the number of hidden units. 

The Gaussian activation function is defined by equation 4.3: 
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Where Wi, β are the current weight of neurons between the input and hidden 

layers, respectively. The weight parameters in the function have considerable 

influence on the entity that can change the final output of the network.  

Training algorithm: 

1. Initialize the system states 

2. At hidden layer: 

§ Using the distance function determine the weight of each input vector 
(IWi,i) 

§ Compute output at the hidden layer (L1) using RBF function Z(x) 
§ Determine the highest activation using b1  
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§ Transmit the output to hidden layer (L1) 
 

3. At output layer: 

§ The weights (LWj,i) at the hidden layer are fixed based on the successful 
generation of output 

§ Thus obtained weights are used to determine output using summation 
function along with bias (b2) 

§ The gradients at this level for the obtained activations with respect to 
weights should be zero, signifying the target 

§ Using linear separability, the final output of the network is obtained 
 

 

To construct a RBF network it is important to determine the network features. 

Hence the following features are considered for the design of the radial basis 

function network. Figure 4.6 is the network design and implementation carried out 

using Matlab. 

 

Figure 4.6  RBF based multisensory integration neural network model: Multisensory 

Integration model. Radial basis neural network model used for generating multimodal output for 

both unimodal and multimodal stimuli inputs. 

The network is a 3-layer structure with input, hidden and output layers. The hidden 

layer is supplied with neurons during the process of network development based 
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on the modification of the radial basis function towards the goal. The network is 

provided with variables such as input vectors, target vectors (expected output), 

error or goal along with a limit on the number of neurons. The radial basis function 

spread, which defines the radius of the activation function across the hyper 

dimensional space of the hidden layer, is initially large. A larger spread has to be 

used to make the approximation smoother, without increasing the number of 

neurons for generalization. 

Considering the input layer, it is capable of receiving information from the 

environment in the form of visual or audio vectors. This vector information is thus 

passed on to the hidden layer that uses a Gaussian activation function to 

determine the absolute distance between the hidden dimensional space and the 

input vectors. Later, with dimensionality reduction of the data-sets and with the 

help of a summation function, the output is delivered to the output layer.  

 

4.5.3. Dimensionality 
 

In this section, the details of how dimensionality is varied during the course of 

integration and how the transformations are carried out are discussed. 

Dimensionality usually arises when there is feature selection involved in larger 

data sets. During classification, various parameters or dimensions are used to 

enable the isolation of required features from the input space. During the process, 

according to Bellman, as the input space grows larger, many parameters or 

dimensions are required to perform feature isolation (Bellman, 1957). This 

eventually gives rise to the dimensionality problem i.e., “input space and 

dimensionality are linear in nature”, generating sparse data sets for information 

classification and organization problems. 

  

While feeding the input patterns to the neural network, in the case of huge 

datasets, if no pre-processing is carried out then the number of computations 

required to process the network increases. In the case of radial basis networks, an 
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increase in the number of computations for pre-processing requires more hidden 

units. An increase in hidden units will eventually affect the performance of the 

network by slowing it down. For practical applications, where speed and space are 

constraints, it is important that dimensionality reduction should be carried out for 

improving the network throughput. 

 

Considering the primary motivation for the development of a multimodal integration 

model with biological inspiration, dimensionality reduction is initially carried out on 

the spatial features of the untagged input dataset obtained from the environment. 

According to Xiuju Fu, data dimensionality reduction can reduce the complexity of 

a network structure, along with increasing the efficiency of data processing (Xiuju 

Fu, 2003). Though different statistical approaches such as Bayesian with the use 

of Markov chain Monte Carlo methods are available, a nearest neighbour search is 

used due to the reliability of the distance function. 

 

Hence, during the development of the RBF network, while receiving the input from 

the environment at the pre-processing state, the input stimuli are subjected to 

feature extraction. Since the output of the model is intended for generating 

saccades, only the input data (from the received stimuli) that is required is 

considered. By doing so, sensory stimuli with only required features, such as 

stimuli strength, intensity, time of arrival and depth of signal, are carried to the next 

state, without loss of data. During the process the visual data undergoes the 

transformation shown in figure 4.7. 

 
(a) 

 
(b) 
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(c) 

Figure 4.7  Dimensionality variation in visual stimuli: (a) is the difference image that is 

collected from the environment, while (b) is the feature extraction segment of figure (a). Figure (b) 

is considered as dimensionally reduced due to the elimination of the vertical axis. Hence variables 

such as horizontal axis, intensity and depth are transmitted to the network. (c) Represents the light 

intensity of the reduced difference image, signifying null loss of data. 

 

When it comes to data from the received audio signal, it is important to determine 

the maximum similarity point between the left and right ears for an accurate 

identification. Hence, from the received stimuli the integration model, extracts the 

similar features using the TDOA along with signal strength over a smaller range of 

signal that has maximum similarity, as shown in figure 4.8. By doing so, the 

amount of signal that is inspected for the current state is minimized prior to the 

multimodal integration.  
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Figure 4.8  Audio Analysis using limited stimuli to identify localization: Audio analysis 

description using the binaural separation and stimuli localization using cross-correlation based on 

stimuli arrival.  

 

Once the pre-processed data is available at the integration model, in order to 

increase the computational efficiency, only factors that influence the multimodal 

stimuli for localization are considered. Similar to the common platform that is used 

for referencing the unimodal localization of audio and visual stimuli, a common 

Spatial Reference (SRf) platform is used to analyze the stimuli. However, strength 

and intensity of the stimuli are two primary factors that are prioritized during the 

process. 

 

With the above-mentioned series of modifications concerning computational time, 

network design and development, the integration network model was developed to 

perform the integration of audio-visual stimuli that arrive simultaneously at the 

agent. 

 

 

 

4.5.4. Learning Criteria 
 

Learning was an important aspect of neural network design that involves the 

process of training the network with the available data, so that after the process 

the network was able to provide the desired outcome (Cheshire Engineering 

Corporation, 2003). It was carried based on the weight adjustment of the neurons 

such that least possible error will be generated while delivering the output. The 

processes of learning in this multimodal integration RBF network was carried in 

three steps related to centre, weight and width of the network.  

 

On obtaining the outcome from the integration network, in order to determine the 

output from the training pattern, the k-nearest search algorithm was used in which 

the distance between the individual outputs within ‘k’ distance ranges was 
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considered. Also the computational time that was required to perform the distance 

function was useful for quick response generation. The following algorithm was 

used to determine the nearest output from the training set. 

 

K-nearest neighbour algorithm: 

1. Compute Euclidean distance between the target and available training 

space 

2. Determine the sample space that fall within the range of acceptable 

localization 

3. Using root mean square error, determine the nearest neighbour optimally 

using training space 

4. Determine the weighted average of the nearest source location as the 

output of the integration model and transmit the error back to the model. 

Since the inverse of distance is proportional to the weighted average, the k-

nearest neighbour should always be better than the predicted.  

 

Initially, a function (radial basis function) is derived, such that the weights of the 

neurons can be generated. This function is the core (center) of the network. Later, 

the derived function should be approximated (generalized) to an extent to perform 

the required task for the network. This function is responsible for generating the 

neuron weights in the network. Finally, the width or network training rate, which 

performs the training, was based on the initial weight and time steps that are used 

during network initiation.  

 

The radial basis neural network model is trained over associative learning such 

that the association of the stimuli strength can be calculated at the maximum 

location of integrated intensity. The network is trained over 900 epochs and the 

performance graphs are as shown in figure 4.9. 
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(i) at 100 Epochs 

 
(ii) at 500 Epochs 

 
(iii) at 800 Epochs 

 
(iv) at 900 Epochs 

Figure 4.9  Learning performance states-1 during multimodal training: Learning performance 

states-1. Performance of learning for the integration model during the training process that is drawn 

between network performance and different number of epochs are provided.  

Learning is initiated with a random selection of goal. However, the target is to set 

goal=0. During the process of training, as the number of epochs is increased, a 

gradual reduction in the goal is identified signifying the decline in the graph from 

figure 4.9. From 800 epochs onwards, the performance graph is constant and 

parallel to the x-axis. This indicates the stable or threshold state of the training 

which can seen from figure 4.10 

 
(i) at 850 Epochs 

 
(ii) at 900 Epochs 

  

Figure 4.10  Learning performance states-2 reaching threshold: Performance of learning for 

the integration model during the training process that is drawn between network performance 

during the final epoch just before and after threshold is provided.  
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At 850 epochs, the learning state of the model is considered as optimal due to the 

steady decrease in the network error. At this state, though the goal is constant, 

performance of the integration model decreases. Hence the obtained state of the 

neural network is used to perform audio-visual stimuli integration. 

Considering learning of the model at various epochs states, the consistency of the 

model is also verified with the test samples. The graph thus represents the 

learning performance of the integration model. Though the learning process is 

smooth, the final given goal or target is not achieved. However, considering the 

extent of output at the minimal error state, the network output is effective. The 

accuracy achieved by the network was provided below.   

 
4.5.5 Neural Network Training 

During the process of neural network training, the error obtained after every 100 

inputs states of the network was considered. At each input step, the mean error 

generated at all the source locations was considered. Figure 4.11 is a graph 

showing the training errors after every 100 inputs. 
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Figure 4.11  Error graph of neural network model training states: Error graph of neural network 

model featuring the range of error that was encountered during network training at given input 

source locations. 

Figure 4.11 shows the gradual decrease in the error, with the increased number of 

inputs. This indicates the effectiveness of the neural network model in obtaining a 

more efficient output. This also complies with the accuracy factor, demonstrating 

the neural network integration model was more accurate (less error) in generating 

integrated output. In this section, the performance of the integration model was 

visualized based on both learning and training criteria.  

 

4.6. Integration Model 
 

Considering the features described above, a neural network model was developed 

using radial basis network function. The network receives audio and visual stimuli 

information in the form of vector data containing localization and intensity 

information. This information is transmitted to the integration model to generate 

corresponding motor output for saccade generation.  The developed network is 

mounted on a PeopleBot agent and is subjected to the behavioral experimental 

environment. This time the agent is exposed to the simultaneous transmission of 

audio and visual information. A synchronous counter identifies the delay present 

between the received multimodal stimuli and determines whether to consider the 

unimodal or integration model. During the experimental verification, multimodal 

stimuli that are synchronous are used.  

 

Before discussing the experimental work, it is noted that multimodal instances can 

also appear with visual stimuli. However, when it comes to audio stimuli, which is 

supplied through IC to the SC, multimodal instances are bypassed and the final 

audio outcome is transferred to the SC. Hence the multimodal audio case does not 

belong to stimuli integration aspect of SC. In the case of visual stimuli, since the 

optic tract is directly connected to the SC the chances of receiving simultaneous 

stimuli were greater. This connection signifies the availability of stimuli at the SC, 
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which are presented in the next section using the HSFr and subjected to 

localization based on the stimuli intensity. 
 
 
4.6.1. Experimental Outcome 
 

The neural network model contained within the agent is tested using the 

behavioral platform with experiments involving the simultaneous bombardment of 

visual and audio stimuli. During the experimentation, the following integration 

output cases are identified.  
 
Integration Case Studies: 

(a) Multiple visual input stimuli: In the case of more than one visual input in 

the environment, the difference image vector is generated, identifying the 

areas of visual interference from the environment, as shown in figure 

4.12(a). From the difference image vector the intensity of the signal is 

identified in terms of RGB values, as shown in figure 4.12(b). Examining 

the variations in the spikes generated, the intensities of both red and green 

are considered. The first and last peak show that the green spike is lower in 

intensity compared to the second peak. Considering the second, the green 

and red spikes are high in intensity when compared to the rest. However, 

the plot of the maximum values of the available RGB intensities determines 

the position of the source. By plotting the position onto a [-90, 90] scale the 

location of the source is determined, which in this case is -300. 

 
 

 
(a) 
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(b) 

Figure 4.12  Response of multiple visual input stimuli localization 1: Example of multiple 

visual input stimuli received by the agent and how the visual localization is determined using the 

difference image and intensity information. The maximum intensity is identified in the second peak 

where all RGB values are highest when compared with the rest of the peaks. 

Even in circumstances of simultaneously available, multiple visual stimuli, the 

integration model perform a similar intensity determination methodology by 

projecting the one with the highest. An example is shown in figure 4.13(a), where 

there are five stimuli. Later the highest intensity stimulus is projected on to HSFr to 

perform the localization. During the highest peak determination, the use of RGB 

components determines the effectiveness of the Gaussian method for identifying 

the difference between the stimuli and eliminating them as shown in figure 4.13(b). 

The criteria of multimodal integration appear when both the audio and visual 

stimuli are available at the integration model simultaneously. During the course of 

integration, depending on the stimuli intensity and their output behaviour, the 

following cases are classified. During the classification, the output state of the 

integrated signal is used to determine the enhancement and depression 

phenomena.  
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(b) 

Figure 4.13  Response of multiple visual input stimuli localization 2: (a) depicts multiple visual 

stimuli and the response generated when multiple inputs arrived at the integration model. (b) 

Shows the maximum intensity peak location and how the destination stimulus localization is 

determined. 

 
(b) Weak audio and strong visual stimuli: If a low intensity audio signal and a 

visual signal with a strong intensity are received at the same time by the 

multimodal integration system, after verifying the time frame to confirm the arrival 

of the signals, both inputs are considered by the integration system. After 

preprocessing the signals, the localization maps are generated on the HSFr. In the 

graphs we can observe that the stimulus in the audio plot has a very low intensity 

and the source is determined accordingly, which is 150, as shown in figure 4.14(a).  

For the visual stimulus, the single spikes in red and green are considered for the 

maximum signal value, which is 50, as shown in figure 4.14(b). When plotted on 

the standard space scale, the sources are identified as being at two different 

locations, but the overall integrated location is identified as being close to the 

stronger visual stimulus. This is at 60 as shown in figure 4.14(c). In this case the 

integration mechanism considers the strength of the visual signal compared to the 

audio signal. 
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(a) 

       
(b) 
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(c) 

Figure 4.14  Response of low audio and strong visual stimuli localization: Audio and visual 

input with strong visual stimulus determining the main preference for the localization. The output 

signifies the orientation of output towards the strong stimuli. 

 
(c) Strong Audio and Weak Visual Stimuli: In this case the intensity of the audio 

stimulus is stronger than the intensity of the visual stimulus. TDOA has localized 

the audio stimulus around -90, as shown in figure 4.15(a). When it comes to the 

visual stimulus, the highest RGB component is green (representing a depletion in 

intensity), and there are two activation stimuli. Here there is a consistency in the 
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green spike, while the red spikes vary, as shown in figure 4.15(b). The location of 

the two inputs is on different sides of the centre. Hence, during the process of 

integration, the audio stimulus plays a vital role in generating the multimodal 

output. When the multimodal output is generated, the location of the integrated 

output is closer to the audio stimulus as shown in figure 4.15(c).  
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(b) 
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(c) 

Figure 4.15  Response of strong audio and low visual stimuli localization: Multimodal input 

case with strong audio stimulus. The integrated output is biased by the intensity of the stronger 

stimulus, which in this case is audio. 

The above two representative cases are observed during multimodal integration, 

with one of the signals being relatively strong in its intensity. The integration model 
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focuses on the stimulus with the highest intensity, which therefore influences the 

integrated decision. 

 
(d) Strong visual and strong audio stimuli: In this scenario, when the sensors 

receive the signals, their modalities are plotted on an intensity graph to determine 

the signal intensity. In the intensity graphs shown in figure 4.16, the sources are 

located on either side of the centre and the activations are of high intensity. When 

the output is computed, the source is located close to the visually detected peak.  
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Figure 4.16  Response of strong visual and strong audio stimuli localization: Example of 

multimodal enhancement response. The integrated output is generated based on a distance 

function between the audio and visual intensity. 

In this case it is not clear whether the SC will prioritize in every case of integration. 

However in the case of multiple strong intensity stimuli the visual stimulus will 

have the higher priority, while the strong audio stimulus will have some influence 

on the multimodal integrated output. Hence the integrated output localization is 

closer to the strong stimulus, which is shown in figure 4.16(c). This signifies the 

partial prioritization towards visually strong stimuli. 

(e) Weak visual and weak audio stimuli: In circumstances where both visual 

and audio signals are of low intensities, the behaviour of the SC is often difficult to 

predict. In this case, the SC can be thought of as a kind of search engine that 

keeps traversing the environment to locate any variations within it. When both 

audio and visual signals are of low intensity, the SC suppresses the audio signal. 

Though the visual signal is low in its intensity, as far as the SC is concerned, it is 

the only sensory data available. Therefore, the source is identified much closer to 

the visual stimulus, as shown in figure 4.17. 
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(c) 

Figure 4.17  Response of low visual and low audio stimuli localization (Enhancement 

phenomena): Example of multimodal enhancement response.  The integrated output is generated 

based on a distance function between the audio and visual intensity where the audio signal is 

suppressed due to its low intensity and the visual stimulus is the only input available. Hence the 

distance function is biased towards the visual stimulus enhancing the final output.  

In some cases, depression may occur if the visual stimulus is out of range or the 

audio stimulus is becoming less intense. This can also happen if the audio 

stimulus is out of range and the visual stimulus is weak. This case signifies two 

factors. One is with the availability of stimuli, while the other is associated with 

strength or intensity. In the figure 4.18: 

(a)  represents the non availability of the stimuli causing no localization.  

(b) represents the availability of audio stimuli with weak intensity. This shows the 

model exhibiting depression behaviour. 
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(c) 

Figure 4.18  Response of low visual and low audio  stimuli localization (Depression 

phenomena): Multimodal depression responses: a weak or low intensity audio signal has 

suppressed the total multimodal response and generated a new signal that can achieve the 

response accurately, but with weak signal strength. This phenomenon is observed once in twenty 

responses, whilst in the remaining cases the model tries to classify the stimuli in one or other 

above-mentioned ways to generate the output. 

 

4.7. Integration Model Evaluation 

In this section, the accuracy of the neural network model is compared against the 

computational model at all the source locations. Based on the output obtained 
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from a test set, error states that are generated at every source location are 

considered. 

 

4.7.1. Computational Verses Neural Network Model 

Using the computational integration model provided earlier in this chapter, the 

mean error obtained across the source locations from -300 to +300 is represented 

in figure 4.19. 

 

Figure 4.19  Computational Model Mean Error Chart: Error graph of computational model 

featuring the range of error that is encountered during integration output generation for the test set. 

From the graph it is apparent that the mean error ranges from approximately 50 to 

180. This graph demonstrates the error obtained at all stations that are used for 

localizing the stimuli source. Since the error rises above ±50, the use of saccade 

degree of variance does not influence integration output. 

Similarly, a neural network mean error chart is shown in figure 4.20 to identify the 

range of error generated.  
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Figure 4.20  Neural network model mean error chart: Error graph at stimuli localization stations 

featuring the contribution of multimodal error that is encountered during integration output 

generation for test set. 

Figure 4.20 shows that the range of error lies between approximately 0.20 to 20. 

This error range excludes the saccade degree of variance. Based on the error 

generated, the neural network model output is approximately 20 times more 

accurate than the computational model output. Including the degree of freedom to 

± 50, for both computational and neural network error graphs, the neural network 

output is three times more effective than the computational output. 

 

In figure 4.21 a comparison between the error states of the neural network model 

and the computational model is shown, to highlight the relative accuracy achieved 

by both approaches. 
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Figure 4.21  Accuracy graph between neural and computational integration model: Accuracy 

graph featuring error states of neural network integration model and computational model for given 

stimuli locations . 

 

4.8. Summary 

This chapter is a continuation of the methodology from Chapter-3 detailing the 

integration process and implementation details. Initially it describes the integration 

formulation containing audio and visual data processing. A schematic 

representation of the integration process is shows, how it is carried out, along with 

the requirements for avoiding difficulties involving computations. 

Later, design aspects of the integration model are proposed irrespective of the 

development platform, using intermediate processing stages and critical features 

that are necessary for the model development. This design is based on the 

biological stimuli processing analysis generated from the SC mentioned in Chapter 

2. During this stage, the possible developmental platforms are discussed. 

Based on the literature review, computational-based integration model 

development is adapted to ensure the computational aspect of the model is 
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feasible. This section details the development and working aspects of the model, 

along with the results that are achieved during the process. However, the level of 

error achieved during the process is of greater concern. The error reduction 

discussion in the computational approach eventually supports a neural network 

platform, suggesting reduction in the computational time and a minimal error when 

the model is given stimuli from a live environment.  

In the next section the feasibility of a radial basis function neural network approach 

is discussed along with the network development, including the network structure 

and working platform to implement integration criteria. During the process, the 

dimensionality aspect that involves the size of input data is also discussed, where 

stimuli pre-processing is adapted at the development stage to enhance the 

network efficiency. Dimensionality issues with the input feature set are discussed 

in the next chapter, which describes how effectively the data set is used in making 

the network effective. 

Finally, the developed neural network is subjected to the behavioral experimental 

platform and the output is generated. Samples of outputs were projected where 

enhancement and depression phenomena are identified. An important research 

goal of the project is achieved as the integration model is capable of generating 

enhancement and depression phenomena in multimodal output generation. The 

model is successful in generating the multimodal output for the given inputs. As far 

as the initial tests are concerned, the output is adequate. However, when it comes 

to efficiency, the model has to be tested and evaluated for determining 

performance in terms of accuracy. In the next chapter a detailed experimental 

analysis and evaluation were described.   
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Chapter 5 
Experimental Analysis 
_________________________________________________________________ 

5.1. Introduction 

 

In this chapter, the results of the experiments described in the previous chapter 

are analysed to verify the success of the model. During this process, unimodal 

experiments are initially considered and the performance is analyzed. Similarly, 

integration experiments are considered with both unimodal and multimodal data 

under varied circumstances for enhancement and depression. Later, the input 

space is classified for training and testing. Based on the learning criteria, the 

integration model is subjected to learning over the training data set and tested. 

The obtained test results are used to compare the computational integration model 

with the neural network integration model. 

The next section, discusses how the stimuli space was used to perform the 

training and testing of the model, along with classification of the sub-space for the 

training set and test set. 

 

5.2. Preparation of Training and Test Data 
 
During the experimentation, data was collected in two different phases. Initially 

unimodal audio and visual data was obtained. Multimodal data was collected using 

the same experimental platform with the simultaneous arrival of audio and visual 

data.  

 

From the obtained datasets, samples from each category were initially used to 

verify the success of the unimodal experimental phase. Both audio and visual 
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unimodal localization experiments were performed using the static data samples. 

These datasets were re-used to test the performance of the multimodal system 

with unimodal data. During this data collection phase, multimodal data samples 

were also collected from the experimental platform with labelled inputs under 

similar conditions.  

 

In the multimodal experimental phase, the integration model was tested using 

audio and visual multimodal data. In the following sections, a series of tables are 

provided which show the error in the multimodal output. Although the output of the 

integration model was accurate to approximately 2 – 30, a higher degree of 

accuracy was desirable. Hence the neural network was subjected to supervised 

learning, so that the error could be reduced and the output accuracy could be 

increased. In order to train the network effectively, it is important that the learning 

criteria and the dataset partition for training and test sets are also effective.  

 

Initially the integration model was trained using only the multimodal data input. In 

the multimodal data, a random selection of each sample from each category is 

formed into test data. The remaining sub-space is used as training data for the 

neural network. Apart from the above dataset, the integration model is also tested 

on another dataset that is generated from the simultaneous transmission of both 

unimodal audio and unimodal visual data, effectively generating a multimodal 

input. Though the transmission conditions are similar to that of multimodal input, 

the outputs vary due to their different intensity levels. Hence, this variation leads to 

generation of different outputs. However, they serve as a test and validation set for 

determining the success and performance of the integration model.  

 
5.3. Unimodal Experimental Analysis for Localization 
 

The unimodal experimental setup with audio and visual stimuli is used to 

investigate accuracy of localization. Further investigations involved multimodal 

inputs in the sub-space. However in this section, the unimodal input stimuli that 

are collected are used to determine the success under variable conditions. 
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5.3.1 Unimodal Audio Localization Analysis 

Different audio stimuli collected from the behavioural platform are used to test 

localization accuracy. Based on the results generated, the error is processed and 

analyzed to determine the performance of the unimodal audio localization. The 

collected audio input space is classified into eight different types based on the 

source amplitude levels. The following results are from the computational model.  

Out of the available input space, samples are selected in the range 8 - 22dB as 

follows: 10, 12, 16, 20 and 22dB. The selection of stimuli frequency and amplitude 

was made based on the audible-limit of hardware equipment used by the agent. 

Localization attempts are carried out with 8dB signals, but these were found to be 

insufficient for stimuli localization. The background noise in the laboratory ranged 

from 0.4 to 4dB. During testing, unimodal inputs with frequencies ranging from 

100Hz to 600Hz are localized. The results obtained are shown in Tables 5.1 to 5.5. 

From the output states, the localization error is used to determine the 

effectiveness of the model.  

The localization error is determined by measuring the difference between the 

actual and predicted source location. All these output and error states are 

recorded in Tables 5.1 to 5.5. Each table also shows the mean and standard 

deviation of errors for each audio frequency and each source location. 
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Audio Sample 1:  

Source amplitude = 10dB 

The error obtained during the localization is tabulated as follows in Table 5.1 

 

Audio Localization Error Chart for Sample 1 

Frequency 

Vs 

Angle 
100Hz 200Hz 300Hz 400Hz 500Hz 600Hz Mean St Dev 

-900 8.93 3.93 3.12 6.81 6.06 0.06 4.82 3.12 

-600 1.39 3.39 3.39 3.39 3.04 -1.38 2.66 1.92 

-450 1.29 2.89 1.07 1.07 0.17 2.09 1.43 0.94 

-300 3.45 1.97 -0.03 2.6 1.86 0.40 1.72 1.32 

-200 2.66 2.03 1.97 0.41 0.02 -1.41 1.42 1.54 

-100 1.43 2.8 0.78 0.52 0.56 0.24 1.06 0.94 

00 1 -0.5 2.09 2.09 0 0 0.95 1.13 

100 0.73 0.32 2.4 0.42 0.52 0.52 0.82 0.79 

200 1.87 1.01 1.41 0.02 1.41 1.41 1.19 0.63 

300 3.97 2.59 1.44 2.59 -0.71 1.44 2.12 1.58 

450 1.33 0.89 2.05 0.93 1.41 0.01 1.10 0.68 

600 2.89 3.69 3.39 3.39 3.39 2.01 3.13 0.60 

900 11.98 6.98 6.0 5.59 4.59 1.98 6.19 3.31 

Mean 3.30 2.54 2.24 2.29 1.83 1.00 2.20 0.76 

St Dev 3.38 1.91 1.52 2.09 2.02 1.18 2.02 0.75 

Table 5.1 The localization error in degrees for the input data sample 1 using amplitude of 10dB. 

 

The mean provided in column and row indicate the mean with corresponding 

source location and input frequency respectively. Similarly with standard deviation, 
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represents the extent of deviation that can cause at each mean from the 

respective row and column. The errors shown in Table 5.1 are represented 

graphically in figure 5.1 

 

 

Figure 5.1  Response of unimodal audio localization error for sample 1: Graphical 

representation of audio localization error shown in table 5.1. In this graph the range of error lies 

between (-2, 12) degrees 

 

Figure 5.1 shows the error variation across the audio range (-900, 900). It is 

observed that the error significantly increases for angles in the range (±600, ±900). 

However in the range of (-600, +600), the error lies within (-20, +40). Also, as the 

frequency of the stimuli increases, the error significantly reduces. This signifies 

that the integration model is more effective for higher frequencies. The strength of 

the stimuli decreases gradually starting from the centre. This signifies that the 

model is influenced mainly by the strength of stimuli, rather than frequency. 
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Audio Sample 2: 

Source amplitude = 12dB 

The error obtained during the localization is tabulated in Table 5.2 

 

Audio Localization Error Chart for Sample 2 
Frequency  

Vs 

Angle 

100Hz 200Hz 300Hz 400Hz 500Hz 600Hz Mean St Dev 

-900 6.73 2.83 3.02 4.61 2.09 0.96 3.37 2.03 

-600 1.19 2.12 0.39 0.01 0.16 0.98 0.81 0.79 

-450 0.02 0.91 1.03 2.03 0.57 1.69 1.04 0.73 

-300 -1.41 0.17 -0.03 0.96 0.46 1.98 0.84 1.12 

-200 -1.02 -0.46 0.17 0.98 -1.42 1.54 0.93 1.15 

-100 0.88 1.38 0.98 0.92 1.36 0.17 0.95 0.44 

00 0 -0.5 1.0 1.05 0 0.5 0.51 0.62 

100 1.23 0.88 0.40 0.02 0.83 0.34 0.62 0.44 

200 1.04 0.36 0.04 0.77 0.21 0.01 0.41 0.42 

300 -0.02 -0.41 0.12 1.02 -0.02 2.14 0.62 0.95 

450 -0.79 0.16 -1.02 -0.02 0.01 0.97 0.50 0.71 

600 1.07 0.24 1.98 0.36 1.29 2.17 1.19 0.80 

900 -2.64 -7.08 -4.0 -0.66 -9.33 0.02 3.96 3.66 

Mean 1.39 1.35 1.09 1.03 1.83 1.00 1.28 0.32 

St Dev 2.21 2.36 1.64 1.30 2.85 0.80 1.86 0.75 

Table 5.2 The localization error in degrees for the input data sample 2 given the source amplitude 

is 12dB. 
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A graphical representation of the error shown in Table 5.2 is presented in figure 

5.2 

 

 

Figure 5.2  Response of unimodal audio localization error for sample 2: Graphical 

representation of audio localization error shown in table 5.2. In this graph the range of error lies 

between (-10, 8) degrees. 

 

It can be seen in figure 5.2 that, most of the errors lie in the range (-20, 20) for 

sources in the range of (-600, 600). However, for the range (±600, ±900) it varies 

between (-100, 80), which is a significant deviation from the mean error. However, 

compared to audio sample1, a reduction is obtained in the mean error, particularly 

in the range (-600, +600). Here, the maximum error magnitude is reduced by over 

two degree. This is attributed to the increase in stimuli intensity resulting from the 

increased amplitude. There is little change in the ranges (-600, -900) and (+600, 

+900). 
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Audio Sample 3: 

Source amplitude = 16dB. 

Based on the output generated with input sample 3, error obtained during the 

localization is presented in Table 5.3 

Audio Localization Error Chart for Sample 3 

Frequency  

Vs 

Angle 

100Hz 200Hz 300Hz 400Hz 500Hz 600Hz Mean St Dev 

-900 2.1 0.80 1.98 3.41 0.83 0.23 1.56 1.16 

-600 0.98 1.17 0.98 0.17 -0.66 -0.14 0.68 0.74 

-450 -0.88 0.17 -0.44 -1.02 0.17 1.01 0.62 0.76 

-300 -0.83 0.17 -0.03 0.0 -0.46 0.98 0.41 0.61 

-200 -0.83 -0.46 0.0 0.98 -1.02 0.56 0.64 0.79 

-100 -0.88 1.38 0.98 0.92 1.01 0 0.86 0.84 

00 0 0.5 -1 0.0 0.0 0.5 0.33 0.55 

100 0.5 -0.88 0.40 -0.46 -0.83 0.0 0.51 0.60 

200 0.09 0.36 -0.04 0.0 0.21 0.01 0.12 0.15 

300 0.0 -0.41 0.12 1.02 -0.02 0.86 0.41 0.56 

450 -0.79 0.16 -1.02 -0.02 1.01 0.97 0.66 0.85 

600 1.07 0.24 1.98 0.36 1.29 2.17 1.19 0.80 

900 -2.64 0.0 -2.02 -0.66 -3.63 0.02 1.50 1.51 

Mean 0.89 0.52 0.85 0.69 0.86 0.57 0.73 0.16 

St Dev 1.19 0.63 1.15 1.10 1.28 0.65 1.00 0.29 

Table 5.3 The localization error in degrees for the input data sample 3, given the source amplitude 

is 16dB. 

 
Graphical representations of errors obtained in Table 5.3 are presented in figure 

5.3. 
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Figure 5.3  Response of unimodal audio localization error for sample 3: Graphical 

representation of audio localization error shown in table 5.3. In this graph the range of error lies 

between (-4, 4) degrees 

 

Figure 5.3 shows that errors have been reduced to a range of (-40, 40). If the 

boundary errors are excluded, the mean error lies in the range (-10, 20). This error 

reduction indicates that the relative accuracy is increased as the amplitude of the 

stimuli increases. Similarly, as the stimuli frequency decreases, the error also 

decreases. This contradicts the findings of the first experiment (audio sample 1).  

 

This signifies that although frequency plays an effective role in localizing the 

source, it is the strength of the stimuli, which is the amplitude in this case, which 

plays a critical role in determining the localization performance. This behaviour can 

be observed in all the cases shown.  
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Audio Sample 4: 

Source amplitude = 20dB. 

Based on the output generated with input sample 4, error obtained during the 

localization is provided in Table 5.4. 

 

Audio Localization Error Chart for Sample 4 
Frequency  

Vs 

Angle 

100Hz 200Hz 300Hz 400Hz 500Hz 600Hz Mean St Dev 

-900 -1.66 0.89 -1.46 0.59 -0.11 0.0 0.79 1.05 

-600 -1.02 1.01 0.98 0.17 -0.64 -0.14 0.66 0.83 

-450 -0.77 0.89 -0.44 -1.02 0.17 1.01 0.72 0.86 

-300 -0.83 0.64 -0.03 0.0 -0.46 0.98 0.49 0.67 

-200 -0.11 -0.99 0.0 0.98 -1.02 0.56 0.61 0.81 

-100 0.0 0.38 0.89 0.92 1.01 0.0 0.53 0.47 

00 0 0 -0.5 0.0 0.0 0.5 0.17 0.32 

100 0.17 -0.11 0.0 -0.46 1.17 0.02 0.32 0.55 

200 0.89 0.17 -0.46 0.0 0.07 0.0 0.27 0.44 

300 0.16 -0.41 0.12 0.89 -0.02 0.02 0.27 0.43 

450 -0.98 0.19 0.0 -0.02 1.01 0.17 0.40 0.64 

600 0.89 0.24 1.98 0.07 1.29 1.17 0.94 0.71 

900 -1.11 0.0 -1.46 -0.66 -3.63 0.02 1.15 1.35 

Mean 0.66 0.46 0.64 0.44 0.82 0.35 0.56 0.17 

St Dev 0.79 0.56 0.94 0.61 1.29 0.46 0.78 0.31 

Table 5.4 The localization error in degrees for the input data sample 4, given the source amplitude 

is 20dB. 
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A graphical representation of error obtained in Table 5.4 is presented in figure 5.4. 

 

 

Figure 5.4  Response of unimodal audio localization error for sample 4: Graphical 

representation of audio localization error from table 5.4, featuring relative similarity of each 

frequency to the target localization. In this graph the range of error lies between (-4, 2) degrees.  

 

In this sample, the localization error lies between (-40, 20), which is reduced 

compared with the previous sample set. Also, the mean error lies in the range of (-

10, 10), which is less than the previous sample. This again signifies the 

effectiveness of the integration model with the increase in stimuli strength. 
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Audio Sample 5: 

Source amplitude = 22dB 

Based on the output generated using input sample 5, error obtained during the 

localization is provided in Table 5.5. 

 

Audio Localization Error Chart for Sample 5 

Frequency 

Vs 

Angle 

100Hz 200Hz 300Hz 400Hz 500Hz 600Hz Mean St Dev 

-900 -0.88 0.17 -0.11 0.59 -1.44 0.0 0.53 0.74 
-600 -0.44 0.86 0.12 0.0 -0.88 -0.66 0.49 0.63 
-450 -0.83 0.0 -0.44 1.56 0.17 0.98 0.66 0.89 
-300 -0.14 0.64 1.02 0.0 -0.88 0.0 0.45 0.66 
-200 -0.68 0.64 1.02 0.0 -0.64 0.51 0.58 0.70 
-100 0.0 0.38 0.98 0.92 1.01 0.0 0.55 0.48 
00 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 

100 0.17 -0.11 0.0 -0.46 0.76 0.02 0.25 0.40 
200 0.89 0.17 -0.46 -0.14 0.07 0.0 0.29 0.45 
300 -0.16 -0.41 0.12 0.89 -0.02 0.02 0.27 0.44 
450 -0.98 0.16 0.0 -0.02 1.01 0.17 0.39 0.64 
600 0.89 0.24 1.98 0.07 1.29 1.17 0.94 0.71 
900 -0.11 0.0 -0.46 -0.83 0.37 0.02 0.30 0.42 

Mean 0.47 0.29 0.52 0.42 0.66 0.27 0.44 0.15 
St Dev 0.60 0.35 0.74 0.63 0.84 0.47 0.61 0.18 

Table 5.5 The localization error in degrees for the input data sample 5, given the source amplitude 

is 22dB. 

A graphical representation of error tabulated in Table 5.5 is presented in figure 5.5 
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Figure 5.5  Response of unimodal audio localization error for sample 5: Graphical 

representation of audio localization error from table 5.5, featuring relative similarity of each 

frequency to the target localization. In this graph the range of error lies between (-1.5, 2) degrees.  

 

In figure 5.5 the localization error range is (-1.50, 20) and the mean error does not 

exceed 10. This again demonstrates that, localization is improved with increased 

stimuli strength.  

The above graphs show errors obtained during localization of low frequency audio 

stimuli across variable amplitudes. From the graphs it can be seen that as the 

amplitude (strength of stimuli) increases, the magnitude of errors between the 

predicted and actual source location gradually decreases. Considering the entire 

input space, the error lies within a range of ±100, which gradually decreases with 

increased stimuli intensity. 
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The mean and standard deviation of error are now considered based on a sample 

set for a group of stimuli source stations. In the following three particular source 

stations (00, 450, 900) are considered, and the mean errors obtained for 

frequencies 100Hz to 600Hz. Figure 5.6 shows the mean errors obtained during 

the source location across the amplitude range. 

 

 

Figure 5.6  Mean error graph for a given sample: Representation of audio localization mean 

error  of a source stations (00, 450, 900) for a frequency range (100, 600)Hz.  

In the figure 5.6 the trend line passing through the given series represents the flow 

of error within the range of amplitudes 8 - 22dB. For 00 and 450, the mean error is 

less than 20 including the possible deviations. However for 900, it is significantly 

higher; and shows that, with a decrease in amplitude the error increases. Similarly 



Chapter	  5:	  Experimental	  Analysis	  	   Audio	  &	  Visual	  Stimuli	  Integration	  Model	  
 

108 	  

	  

as the amplitude increases, the mean error decreases which implies that 

localization is effective for higher order amplitudes. 

 

 

5.3.2 Unimodal Visual Localization Analysis 

In this section different visual stimuli transmitted from the behavioral platform 

under varied light conditions are used to determine localization performance. The 

error is processed and analyzed to determine the performance of unimodal visual 

localization. The collected visual input space is classified into three different types 

based on the visibility for day and night lighting conditions in the laboratory.  

Due to interference (noise) caused by other nearby visual stimuli, the LEDs that 

emit light from the visual source are affected. Since this interference causes 

variations in the stimuli strengths that are received at the agent, the quality of the 

signal is also affected. The quality of the stimuli is quantified based on intensity, 

which is normalized in the range of 0 to 1. 

In the following results, the visual stimuli can be categorized as follows: 

Sample 1: Day time conditions (laboratory lights on) 

Sample 2: Night time conditions (laboratory lights off) 
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Visual Sample 1:  

Time = Day 

Condition = lights on 

The error obtained during localization of visual sample 1 is provided in Table 5.6, 

and the graphical representation of the error is presented in figure 5.7.  

 

Visual Localization Error Chart for Sample 1 
Light Intensity* 

Vs 
Angle (degree) 

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Mean St Dev 

-300 0.85 0.37 0.03 0.54 0.04 -0.64 0.41 0.52 

-200 -3.26 -3.67 -2.24 -2.44 -3.44 -3.88 3.16 0.67 

-100 1.01 0.53 0.0 0.62 1.59 -0.98 0.79 0.88 

00 2.01 2.46 2.46 2.24 1.46 1.57 2.03 0.44 

100 0.86 -0.68 0.98 0.0 0.98 2.14 0.94 0.96 

200 -3.05 -2.44 -2.44 -1.44 -1.02 -3.05 2.24 0.84 

300 -0.44 -0.30 -0.20 0.02 -0.13 0.07 0.19 0.19 

Mean 1.64 1.49 1.19 1.04 1.24 1.76 1.39 0.28 

St Dev 2.08 2.02 1.72 1.51 1.75 2.22 1.88 0.27 

Table 5.6  The error obtained in localizing the visual stimuli for each of input generated from 

sample 1. The table also provides the mean and standard deviation for each of the source location 

and for each of the visual stimuli category. 

 

The overall pattern of error appeaers similar, irrespective of the type of stimuli. The 

error range is (20, -40) and the variation of error for all the stimuli indicates that the 

output of localization is within the acceptable range (variance of 50).  
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Figure 5.7  Response of unimodal visual localization error for sample-1: Graphical 

representation of visual localization error from Table 5.6, featuring relative similarity of each 

stimulus to the target localization. In this graph the range of error lies between (-40, 30).  
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Visual Sample 2:  

Time = Night 

Condition = Lights off 
 

The error determined during localization of visual sample 2 is provided in the Table 

5.7, and the graphical representation of the error determined is presented in figure 

5.8. 

 

Visual Localization Error Chart for Sample 2 

Light 

Intensity* 

Vs 

Angle 

(degree) 

Set 
1 

Set 
2 

Set 
3 

Set 
4 

Set 
5 

Set 
6 

Mean 
St 

Dev 

-300 0.85 0.37 0.03 0.54 0.04 -0.44 0.38 0.45 

-200 -0.16 -0.66 0.98 0.0 0.07 -0.41 0.38 0.56 

-100 0.21 0.31 0.0 0.20 1.02 0.0 0.29 0.38 

00 1.10 0.5 0.0 0.0 0.0 0.02 0.27 0.45 

100 0.42 0.12 0.02 0.0 0.46 0.0 0.17 0.21 

200 -1.05 0.02 -0.26 0.04 0.0 0.07 0.24 0.43 

300 0.36 0.05 -0.20 0.02 -0.13 -0.64 0.23 0.33 

Mean 0.59 0.29 0.21 0.11 0.25 0.23 0.28 0.16 

St Dev 0.71 0.38 0.41 0.20 0.40 0.29 0.40 0.17 

Table 5.7  Visual localization error chart with lights-off condition: The error obtained in 

localizing the visual stimuli for each of input generated from sample 2. A graphical representation of 

this table is provided in figure 5.8 depicting the range of error obtained. 

 

Figure 5.8 indicates an improvement of the mean error, when compared to the 

previous sample shown in figure 5.7. The random spikes in the graph are due to 
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the random selection of data from the input space. However, the mean error lies 

below one degree. This indicates the improvisation of accuracy in the visual stimuli 

aspect of localization model. 

 

 
Figure 5.8  Response of unimodal visual localization stimuli for sample-2: Graphical 

representation of audio localization error from table 5.7, featuring relative similarity of each stimulus 

to the target localization. In this graph the range of error lies between (-1.5, 1.5) degrees.  

 

The results obtained above are two different samples that are used in obtaining 

the unimodal visual input data for the experimental investigation. From the above 

figures 5.7 and 5.8 it is shown that, with an increase in stimuli intensity an 

improvement in the localization performance is obtained. Hence the graphs signify 

that the quality of the stimuli influences the accuracy of localization by reducing the 

error.  
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5.4 Integrated Experimental Data Analysis 

 
In this section, the multimodal integration model is subjected to testing with the 

help of a behavioral experimental platform to localize simultaneously generated 

audio and visual stimuli. The level of performance achieved was determined along 

with further verification using other inputs in the sub-space. In this section, the 

multimodal input stimuli collected are used to verify the success by determining 

the error involved from expected and target output states. 

Integrated experimental analysis examines various input states involved in 

generating the multimodal output, similar to the unimodal analysis. Since a 

research goal is to verify the enhancement and depression phenomena associated 

with the integrated output, various cases are demonstrated.  
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Integration Sample 1 
 

In Table 5.8, a set of multimodal stimuli samples (expressed in degrees) are 

collected in the order of decreasing intensities of frequencies. As input for this 

sample, five different multimodal sets of data were created, where: 

Set 1 = 500Hz, Set 2 = 400Hz, Set 3 = 300Hz, Set 4 = 200Hz and Set 5 = 100Hz 

along with visual stimuli in the range of (0.5, 1). 

The error in the multimodal localization for sample 1 is given in table 5.8.  

Multimodal Localization Error Chart for Sample 1 
Audio Sample (degree) 

Vs 

Visual Sample (degree) 

Set 1 Set 2 Set 3 Set 4 Set 5 Mean St Dev 

-30 0.07 -0.5 0.0 0.0 0.07 0.13 0.24 

-20 1.41 0.04 -0.9 0.0 0.33 0.54 0.83 

-10 1.01 1.07 0.97 0.0 -0.05 0.62 0.57 

0 -- -1.3 -0.04 -1.11 0.04 0.50 0.70 

10 -0.56 -- -0.06 -0.07 0.0 0.14 0.26 

20 -1.02 -0.56 0.04 0.0 0.01 0.33 0.47 

30 0.08 0.89 0.01 0.0 -0.06 0.21 0.40 

Mean 0.59 0.62 0.29 0.17 0.08 0.35 0.24 

St Dev 0.92 0.91 0.54 0.42 0.13 0.58 0.34 

Table 5.8  Multimodal localization error chart for sample 1 (multimodal input): Multimodal 

localization error determined from the sample 1 with respect to corresponding audio and visual 

stimuli data.  

Figure 5.9 is a graphical representation of the error table 5.8.  
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Figure 5.9  Response of multimodal neural network integration model error for sample 1: 

Graphical representation of audio localization error from table 5.8, featuring error obtained during 

the multimodal localization out of above instances. In this graph the error obtained at the random 

selected state is plotted.  

In Table 5.8 cells that are empty signify that no output is detected. This results 

from lack of deterministic states of output stimuli, which can be considered as 

depression, and will be discussed further in section 5.5. Figure 5.9 is a random 

selection of inputs selected from the multimodal input space, where audio and 

visual input is simultaneously transmitted to the integration model. On the graph 

are plotted the errors that are obtained for inputs which are localized within the 

range (-300, 300). From the graph the error of these inputs is in the range (-1.50, 

1.50), while the mean error is less than one degree. 

 

The graph also indicates that as the frequency decreases, the localization 

improves with error less than ±10. This signifies that the increase in intensity that 

influences the multimodal localization is effectively adapted in the neural network 

integration model. 
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Integration Sample 2 
 
The network was tested by presenting to it both audio and visual data. These 

samples are a selection of five sets of inputs with frequency ranging from 500 to 

100Hz, and fixed visual inputs from a day time (lights on), where the intensity is in 

the range of (0.5, 1). The multimodal outcomes given in Table 5.9 signify a 

relatively close localization (error < 20) from the input supplied.  

Multimodal Error Localization (-300) 

Input Visual 
Stimuli 

Audio 
Stimuli 

Multimodal 
Output Error 

Set 1 -30.85 -26.55 -30.35 0.35 
Set 2 -30.37 -28.57 -30.00 0.0 
Set 3 -30.03 -29.17 -30.00 0.0 
Set 4 -30.54 -29.17 -30.02 0.02 
Set 5 -30.04 -29.86 -30.00 0.0 

(i) 

Multimodal Error Localization (300) 

Input Visual 
Stimuli 

Audio 
Stimuli 

Multimodal 
Output Error 

Set 1 29.36 33.97 30.85 0.85 

Set 2 29.70 29.59 30.00 0.0 
Set 3 29.30 30.00 30.00 0.0 
Set 4 30.02 29.84 30.00 0.0 
Set 5 29.87 29.84 30.00 0.0 

(vii) 

Multimodal Error Localization (-200) 

Input Visual 
Stimuli 

Audio 
Stimuli 

Multimodal 
Output Error 

Set 1 -16.74 -17.34 -17.04 -2.96 
Set 2 -16.33 -18.98 -19.00 -1.0 
Set 3 -17.76 -19.17 -19.00 -1.0 
Set 4 -17.56 -19.89 -20.00 0.0 
Set 5 -16.56 -19.32 -19.87 -0.13 

(ii) 

Multimodal Error Localization (200) 

Input Visual 
Stimuli 

Audio 
Stimuli 

Multimodal 
Output Error 

Set 1 16.95 21.87 20.05 0.05 
Set 2 17.56 21.04 20.98 0.98 
Set 3 17.56 20.09 20.00 0.0 
Set 4 18.56 20.89 20.04 0.04 
Set 5 18.98 20.89 20.04 0.04 

(vi) 

Multimodal Error Localization (-100) 

Input Visual 
Stimuli 

Audio 
Stimuli 

Multimodal 
Output Error 

Set 1 11.01 -8.57 10.26 0.26 
Set 2 -10.53 -9.12 10.05 0.05 
Set 3 -10.00 -9.12 10.00 0.0 
Set 4 -10.62 10.00 10.00 0.0 
Set 5 -11.59 10.00 -12.00 2.0 

(iii) 

Multimodal Error Localization (100) 

Input Visual 
Stimuli 

Audio 
Stimuli 

Multimodal 
Output Error 

Set 1 10.86 10.73 10.00 0.0 
Set 2 9.32 11.23 10.56 0.56 
Set 3 10.98 10.50 10.00 0.0 
Set 4 10.00 10.17 10.00 0.0 
Set 5 10.98 10.17 10.00 0.0 

(v) 

Multimodal Error Localization (00) 

Input Visual  
Stimuli 

Audio  
Stimuli 

Multimodal  
Output Error 

Set 1 2.01 1 0 0.0 

Set 2 2.46 0 0 0.0 
Set 3 2.46 0 0 0.0 
Set 4 2.24 0 0 0.0 
Set 5 1.46 0 0.56 0.56 
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(iv) 

Table 5.9  Multimodal localization error chart for sample 2 (multimodal input): The tables (i)-

(vii) depicts the error obtained from multimodal localizations through unimodal data transmitted 

simultaneously to the agent.  

 

Figure 5.10  Response of multimodal neural network integration model error for sample 2: 

Graphical representation of error from table 5.9, featuring error obtained during the multimodal 

localization out of above instances. In this graph the error obtained at the random selected state 

signify the extent of error obtained at particular state. This indicates the efficiency of integration 

model for multimodal input space.  

Figure 5.10 is a graphical representation of the errors provided in Table 5.9, and 

indicates the scatter of error obtained during the process of integration for 

multimodal input cases. The above graph is an example of unimodal stimuli being 

processed by the integration model, similar to multimodal input. It was observed 

that most of the error range lies within (-30, 20), similar to the multimodal input case 

in previous sample. 
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Finally, from the integration sample 1 and 2 it was observed that in both samples 

the maximum error obtained was in the range of (-1.50, 1.50). Also the 

concentration of the error was close to the x-axis. This signifies that the integration 

model is effective with an error less than ±20 for both unimodal and multimodal 

data samples. 

In the next section, the neural network model was subjected to performance tests, 

based on the output obtained using unimodal and multimodal data. Also, the 

preliminary experimental analyses that were carried out in the previous chapter 

are critically evaluated.  

 

5.5 Unimodal Verses Multimodal Performance 

From the unimodal experiments for localizing audio and visual stimuli, error levels 

are obtained for respective cases. During unimodal stimuli analysis it was 

observed that for auditory experimental data an overall accuracy of 80% is 

achieved. Similarly, with visual stimuli an accuracy of 90% is achieved, including 

the variance. 

However, the integration model is expected to reach a higher level of accuracy 

with audio and visual stimuli combined.  During the multimodal experimental phase, 

an estimate of ±50 of variance is considered. This is to comply with the motor 

commands that are used to generate saccades. During the initial state, though 

multimodal output is achieved, significant level of error is also generated as shown 

in figure 5.11. 

The data used in the generation of the unimodal verses multimodal performance 

graph are as follows: 

For Audio: 

Set 1 = 100Hz, Set 2 = 200Hz, Set 3 = 300Hz, Set 4 = 400Hz, Set 5 = 500Hz 

For Visual: 
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Set 1 = Lights on (Day-Lab), Set 2 = Lights off (Day-Lab), Set 3 = Lights on (Night-

Lab), Set 4 = Lights off (Night-Lab), Set 5 = Lights off (Day-Studio) 

For Multimodal: 

Each set in the multimodal data is the combination of corresponding sets from 

unimodal audio and visual data, to facilitate a more direct comparison. 

 

Figure 5.11  Error performance chart between unimodal and multimodal integration: Error 

graph of unimodal audio and visual data compared against multimodal integration error. 

The graph represents mean error of unimodal audio and visual data over five 

different set of inputs against multimodal output generated from the neural network 

integration model. The selection of input sets is based on increasing order of 

stimuli strength. From the graph it was evident that the error generated by the 

multimodal data is significantly less than that of unimodal data. Also there was a 

gradual decrease in the error, demonstrating the effectiveness of multimodal data. 

The graph also indicates that multimodal output was more efficient than the 

unimodal cases with respect to increase in stimuli strength.  
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In another aspect, the error state observed in figure 5.11 among audio and visual 

states are varied to greater extent. The audio data set error is significantly greater, 

compared to visual data sets. This variation could be due to the wide locus (3600) 

of audio sensors located at the agent. Due to which the range of stimuli received 

and localized will entertain intermediate noise causing interference. On the other 

hand due to narrow visual locus, the chances of interference are comparatively 

less. But for multimodal case, the overall error is minimized due to the integration 

aspect that reduces the individual effect, due to the learning aspect induced. 

However, it was also observed that all the multimodal output is not completely 

effective in terms of successful localization of stimuli source, due to the 

enhancement and depression phenomena. This is demonstrated in the next 

section. 

 

5.6 Computational versus Neural Network Outcome 
 

In this section, the output generated by both the computational and neural network 

approaches is discussed. This analysis is carried out in two different ways. Initially, 

two different samples of the same input are used to generate multimodal output. 

Later a sample set for a fixed source location such as -300 (since variations were 

observed at this location) was used to generate multimodal results.  

 

In the first instance, a comparison is made between the multimodal outcome of the 

computational model and the neural network model, described in the previous 

sections. After careful observation of the output and error generated in the Chapter 

4 and Chapter 5, the findings can be summarized as follows: 

 

§ Output: For a given multimodal input, the output is generated for all cases, 

irrespective of the strength of the stimuli. This is true of both the 

computational and neural network models. 
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§ Error: For a random selection of inputs, error states are also tabulated in 

section. In the computational output Table 4.1, it is observed that a 

maximum error of 230 is obtained from the input sample space, which is 

high. Considering the degree of saccade freedom for object localization 

(50), this error is considered too high. This influences the accuracy of the 

model. 

 

On the other hand, for neural network samples the maximum error obtained 

is -2.960. This error is considerably lower when compared with the previous 

case. Considering the degree of saccade freedom for object localization 

(50), this error is not significant since the ANN integration model error is less 

than the error degree of saccade freedom for human eye. The model is also 

much more accurate.   

 

§ Accuracy: This refers to the correctness of output generated for a given 

multimodal input. In other words, when there is less than ±20 error obtained 

from a multimodal output, then it is considered as accurate when compared 

with computational model. In this context, using the computational model 

there are few accurate cases. However, with the neural network model, 

more than half than 75% of the sample set has generated accurate results.  

 

§ Depression and Enhancement: From the sample space, stimuli exhibiting 

depression and enhancement phenomena were now considered. With the 

computational model, out of the accurate outcomes considered from this 

case, the instances of exhibiting the enhancement phenomena are barely 

noticeable (the highlighted rows of Table 4.1 and 5.10). This is because the 

computational algorithm used for integration (weighted arithmetic mean) 

signifies that the output always lies within the bounds of the given input as 

discussed in section 4.4.1. However, the chances of depression occurring 

are high. A case of depression is identified from the Table 4.1 row 25. Even 

with the presence of maximum intensity levels for either of the stimuli, the 
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output generated can also be inaccurate if the stimuli are on far apart from 

one another. This signifies that the output is depressed.  

 

Unlike the computational model, the neural network output has no 

limitations on the output generated. Hence, the occurrence of enhancement 

and depression phenomena is due to the stimuli strength. The sample 

highlighted in red in table 5.17 indicates that the output of that particular 

state is higher than either of the input stimuli and is correctly identifies the 

source location. This signifies enhancement in the multimodal output. 

However, this cannot be completely true, because enhancement and 

depression phenomena can only be confirmed by measuring the intensity of 

both input and output stimuli. Based on the increase and decrease of the 

stimuli intensity, the phenomena can be classified, which is demonstrated in 

the next chapter. 

 

In another instance, from the available multimodal input space, a fixed set of data 

was used and is subjected to integration using both the computational and neural 

network model. Thus, the obtained output was compared, along with error, 

accuracy, and enhancement and depression phenomena. Table 5.10 shows the 

input and output for the multimodal test case. 

Comparison Table of Multimodal Output 
Visual 
Stimuli 

Visual 
Intensity 

Audio 
Stimuli 

Audio 
Intensity 

Expected 
Output 

Computational 
Output 

Neural Network 
Output 

-30.03 0.90 31.97 0.46 -30 -9.06 -30.00 

-16.33 0.82 -19.34 0.44 -20 -17.38 -16.33 
-9.45 0.32 10.05 0.41 -10 1.50 1.05 
2.46 0.81 6.42 0.41 0 3.79 2.40 

10.56 0.14 9.82 0.38 10 10.02 10.00 
17.56 0.85 18.96 0.36 20 17.98 19.98 
29.7 0.84 30.44 0.35 30 29.92 29.92 

Table 5.10  Multimodal input & output table used for test case: The selected multimodal input 

stimuli that are used as a unit-test set for verifying performance of the integration model. The 

output obtained for both computational and neural network models are provided. 
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The highlighted orange and blue instances in table 5.10 represent the depression 

and enhancement in the output, respectively. The error obtained is shown in the 

table 5.11. 

 

Error Comparison Table of Multimodal Output 

Computational 
Error 

Neural Network 
Error 

Computational  
Error (%) 

Neural Network 
Error (%) Variation 

-20.94 0.0 69.8% 0% 69.8 

-2.62 3.67 13.1% 18.35% -5.34 

11.5 11.05 >100% >100% -- 

3.79 2.40 37.9% 24% 13.9 

0.02 0.0 2% 0% 2 

2.02 0.02 10.1% 0.1% 10 

0.08 0.08 0.2% 0.2% 0 

Mean = 5.86 Mean = 2.46  

 

Table 5.11  Error percentage comparison table of multimodal outputs for the test case: The 

error percentage generated using the computational and neural network integration models is 

detailed signifying the variation. 
 

From the above test case based on the output exhibited in table 5.10 and 5.11 the 

following observations were made. 

 

§ Output: Output is generated irrespective of intensity of stimuli. This 

signifies that the integration models are responsive to at least most of the 

stimuli. 

 

§ Error: From the output obtained from both cases, the error present in the 

output is shown graphically in figure 5.11.  
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Figure 5.12  Error comparison between neural and computational modal outputs for 

selected input: Graph obtained from projecting the error obtained from integration output 

of both computational and neural network models 

In both cases, a significant error variation occurred at certain source 

locations. However, the error with the computational model is particularly 

pronounced at -300. On the other hand, many of the errors appear to be 

close to x-axis.  

 

§ Accuracy: Accuracy in this case was measured, taking into account the 

degree of saccade freedom (±50) for object localization. From the selected 

input category, the computational model has successfully achieved 50% 

accuracy, while the neural network model has achieved 86% accuracy in 

the generation of output. However, since performance cannot be measured 

based on limited input space, in the next section a performance analysis is 

carried out considering the entire stimuli space.  

 

§ Depression and Enhancement: From the resultant output obtained, in 

either of the cases the phenomena are observed. As discussed previously, 

only depression in the output can be observed in the computational model. 
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The highlighted instance in table 5.20 is an example of stimuli depression. 

However, due to the huge variation in intensity, it can also be classed as an 

error unless intensity values are examined. However the next highlighted 

instance signifies a huge change in the output, irrespective of relative 

similar intensities. This case is also identified in the neural network model. 

This instance is a demonstration of depression phenomena. 

 

In the neural network model output, the grey highlighted instance signifies 

enhancement of the stimuli. The output generated is accurate and also 

higher then either of the stimuli. This indicates the success of the model in 

both training and accuracy. However, a later examination of intensity 

determines the accuracy of the enhancement and depression phenomena.  

 

5.7 Enhancement and Depression Phenomena Evaluation 
 
During the course of the research, variations while integrating audio and visual 

stimuli were identified and classified accordingly. In this section, a discussion is 

provided on the enhancement and depression phenomena and their behaviour 

with respect to the stimuli intensities.  

 

In Chapter 4, the integrated output provided demonstrates the circumstance that 

lead to enhancement and depression phenomena. In particular, it was observed 

that the enhancement of the output is obtained in the following case: 

• Strong audio and strong visual stimulus (Figure 4.15) 

 

Similarly depression of the output is obtained in the following case: 

• Weak audio and weak visual stimulus (Figure 4.16 and 4.17) 

 

In Chapter 5, experimental analysis provided by the integration sample 2 

significantly demonstrates the increase in the output (accurate to the required 

level) resulting from enhancement phenomena. In the output provided in table 5.9, 
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in most of the cases an enhancement in the output stimuli is observed. However, 

the highlighted region in the table shows more accurate output due to strong 

enhancement. 

 

In the computational and neural network model comparison provided in Chapter 5, 

table 5.10 highlight the enhancement and depression phenomena observed in 

both the cases. In this example, depression phenomena was demonstrated clearly 

where the multimodal output was significantly less compared to either of the 

inputs. However when it comes to accuracy, the above mentioned case was not 

accurate because the model is expected to generate a null output. Hence the 

integration model accuracy was reduced (by less than 20) in such instances.  

 

In figure 5.12 the phenomena are demonstrated graphically. 

 

 

Figure 5.13  Intensity graph between unimodal and multimodal output: Intensity graphs of 

audio, visual and multimodal output demonstrating intensity verses output. 

In terms of intensity, the graph has generated a mixed pattern for audio and visual 

cases. In comparison with visual, audio has recorded significant intensity levels. 

While the visual intensity is concerned it is considerably low. The amount of signal 

that is taken into account for analyzing the visual stimuli is very sharp and small in 

many cases (in order to capture the immediate change in visual environment). On 
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the other hand, multimodal stimuli intensity contains priority-based factors of each 

of the stimuli and their intensity levels along with localization.  

 

With reference to figure 5.12, in sets 1 and 2, the multimodal intensity is greater 

than either of the input intensities, signifying the stimuli are from the same 

direction. However, for the next three sets, there is a gradual drop in the 

multimodal intensity, even though high unimodal stimuli are recorded. This is due 

to the stimuli sources being on either side of the reference frame. Set 5 

demonstrates depression, where no significant multimodal output is obtained.  

 

Finally, it is concluded that stimuli direction and intensity are the critical factors 

responsible for the generation of enhancement and depression phenomena. 

Though the integration output appears to be visually biased, it is actually intensity 

biased. However, when it comes to action generation, such as saccade 

generation, priority is given to visual stimuli. 

 
5.8  Summary & Discussion 
 

This chapter describes results that are generated from the audio and visual stimuli 

integration models developed in chapter 4. In this chapter, both unimodal and 

multimodal designs are tested using data collected during the initial phase of the 

project development. This is followed by an analysis detailing the accuracy that 

was achieved under different conditions, thus quantifying the performance.  

Initially unimodal experimental analysis is carried out for both audio and visual 

data sets. For audio localization, a series of input samples from five different 

states are fed to the network. Each of these states is verified against the target 

output and the amount of error generated by each stimulus is tabulated. Generally 

it is observed that as the frequency of the stimuli increases, the accuracy of 

localization increases. Similarly with the visual data, where samples of two states 

(lights-on and lights-off) are provided, it is observed that a visual stimuli increase, 

multimodal error gets reduced. However, it is observed that as noise in the form of 
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other interfering light decreases, the localization improves. This is demonstrated 

with the help of the above-mentioned sample states.  

In the next section, multimodal data sets are analyzed in order to determine the 

success of the neural network integration model. Based on two example instances 

provided, which obtained from both the unimodal dataset and the multimodal 

dataset, the output is analyzed for accuracy. Considering the error obtained in 

both cases, the range lies between (-1.50, 1.50). This indicates the accuracy of the 

neural network model in the successful generation of output for both unimodal and 

multimodal input instances. However, in the next chapter accuracy is 

demonstrated based on the entire input space to identify the performance of the 

model.  

There was a comparison between the computational model and the neural 

network model output. Factors such as error, output, accuracy and enhancement 

and depression phenomena were discussed. Finally it was shown that the neural 

network model is successful in generating the maximum successful output with 

greater accuracy and minimal error.  
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Chapter 6 

Conclusions and Recommendations 

_________________________________________________________________ 

6.1.  Introduction 

This chapter provides an overall review of this research project. Conclusions 

drawn from experimental analysis carried out in previous chapters are used to 

summarize the research aspects such as research question, project objectives, 

contribution followed by future recommendations. 

This chapter is organized as follows. Section 6.2.1 describes the summary of the 

project based on the research question. Section 6.2.2 describes the project 

objectives and how they are achieved during the course of this thesis. Section 

6.2.3 describes the contribution and how it is successfully acquired. Later, the 

chapter is concluded by presenting possible recommendations for enhancing this 

research into an application. 

 

6.2.  Conclusions 

6.2.1. Summary of the Project 

This section summarizes the main achievements of the research, in terms of the 

research question and objectives.  

The original research question can be re-stated as follows: Is it possible to create 

a computational architecture inspired by the Superior Colliculus of the mid-brain, 

using an artificial neural network, which enables the efficient integration of audio 

and visual stimuli arriving simultaneously at an agent, in order to localize the 

source of the stimuli? A series of experiments has successfully demonstrated that 
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the architecture is effective in accurately localizing multimodal stimuli, including 

those arriving simultaneously at the robot.   

In order to achieve this, the research was carried out beyond the original research 

question, in that the architecture has been shown to be effective at localizing a 

wide range of input stimuli under different conditions. They include unimodal audio 

or visual stimuli, with a range of frequencies and intensities. For both the unimodal 

and the multimodal cases, it has been shown to outperform the purely 

computational approach tested during the project for comparative purposes.  

Along with the research question, the following objectives were defined against 

which the success of the project can be quantified: 

§ To understand the biological way of multimodal functionalities of the SC. 

§ To review the literature on modelling the SC. 

§ To review different approaches to audio and visual extraction and 

integration. 

§ To examine neural network approaches to integration. 

§ To develop and design an architecture suitable for multimodal integration 

for a robotic platform. 

§ To test and evaluate the performance of the architecture. 

During the course of the research, all objectives have been successfully achieved. 

This is explored in detail in the following section.  
 

 

6.2.2 Objectives Evaluation 
 
Objective: 

§ To understand the biological way of multimodal functionalities of the SC. 
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At the beginning of the research, motivated by biological considerations, 

multisensory integration of audio and visual stimuli within the mammalian nervous 

system and the brain were investigated within the context of the research 

question. In particular, the region of the brain called the Superior Colliculus was 

identified as being responsible for audio and visual stimuli integration. This was 

explored in detail in order to develop critical and in-depth understanding of the 

integration process. Chapter 2 of the thesis fulfils this objective. Three distinct 

areas were investigated, namely biological motivation, neuroscience aspects of 

the SC, and multimodal behaviour of the SC. 

  
This work established the desirability of stimuli integration, along with the 

advantages that can be achieved in the context of autonomous intelligent agents 

that require a source localization capability. A link between the input stimuli and 

the output motor command, in the form of saccades, was identified that justified 

the motivation of studying the SC in this project. Neuroscience aspects of the SC 

described the stimuli flow and structural architecture, which correspond to stimuli 

transmission and saccade generation. 

  

With regard to multimodal behaviour of the SC, stimuli processing in different 

regions and the mechanism of integration are discussed. Also, the stimuli 

combinations explored in this context had provided an insight into the motor 

commands used for saccade generation. It also provided an understanding of the 

motor output that is expected from the SC. In addition, stimuli integration was 

classified and the phenomena of enhancement and depression identified. 

  

Objectives: 

§ To review the literature on modelling the SC. 

§ To review different approaches to audio and visual extraction and 

integration. 

§ To examine neural network approaches to integration. 
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The following outcomes were also achieved based upon the literature review: 

• A literature review on modelling the multisensory integration based on the 

SC in the second part of Chapter 2 describes the attempts made in this 

context. This review helps in identifying the integration process with respect 

to the required criterion, which is integration for low intensity stimuli. 

• In Chapter 2 various approaches that correspond to integration of audio and 

visual stimuli are reviewed. This review helps in narrowing the approach 

that is used for the development of the integration model.  

• In literature review section of Chapter 2, various computational, 

probabilistic, neural and applicative approaches are studied to develop a 

feasible and suitable integration model that can answer the research 

question. In Chapter 3 a methodology is developed based on the review 

that can perform audio and visual stimuli integration. 

 
Objectives: 

§ To develop and design an architecture suitable for multimodal integration 

for a robotic platform. 

§ To test and evaluate the performance of the architecture. 

The project outcomes that are delivered after the successful development of the 

integration model are: 

• Chapters 3 and 4 describe the design and development of both unimodal 

and multimodal integration models. During this process, based on the 

findings of the review chapter, the integration process is designed as a 

computational model and later developed into a neural network for 

improved performance. The neural network is trained on a large stimuli 

space, such that the integration model can be optimized and made more 

effective with respect to the generation of output i.e., saccade generation. 

• Evaluation is critical for the success of any model. However, in this project, 

a self evaluation criterion was adopted. This criterion evaluates the 

integration model in two phases. Initially, it is tested with unimodal data and 
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multimodal data and the output is evaluated. Secondly, it is compared to the 

computational model using multimodal data. The experimental findings 

published in Chapters 4 and 5 explicitly signify the success of the 

integration model in the respective states and confirm the success of the 

architecture as a multimodal integration model. 

6.2.3. Summary of Contribution 

The main novelty is the architecture and its ability to handle low intensity audio 

and visual stimuli and generate efficient and accurate integrated output. During the 

process, the model also contributes to research into successful reduction of audio 

and visual dimensional space into an integrated single space. 

• The Superior Colliculus inspired dual layered architecture has been 

developed, where each layer has preprocessed localization data that 

arrives from corresponding layers to the integration layer simultaneously. 

This architecture is implemented using a RBF based neural network 

platform. The model is trained to integrate audio and visual stimuli and 

generate an integrated output based on the intensity levels of the stimuli. 

The integration model experimental outcome described in Chapter 4 

signifies the success of the proposed architecture. Similarly, the 

experimental analysis provided in Chapter 5 has demonstrated the 

performance of the integration model with respect to variable stimuli 

intensity. This signifies that the novelty of the architecture for successful 

adaptation towards low-level stimuli is achieved. 

• This research is an attempt to investigate multimodal stimuli integration 

behaviour. During the process, apart from achieving the project objectives, 

the research has successfully integrated audio and visual stimuli into a 

single command that is used to generate saccades. On the other hand, this 

research can also be referred as solution for a dimensionality reduction 

problem in multimodal context. Transformation of two-dimensional stimuli 

into a single dimension control signal is accurately achieved using the 

neural network training process. Therefore this research has contributed to 
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the successful reduction of audio and visual dimensional space into an 

integrated single space.  

 

6.3. Recommendations for future work 

There are a number of recommendations made as a follow-up to this research. 

Possible directions are given below: 

§ It would be useful to extend the scope of the integrated output. This project 

is intended for generation of horizontal saccade only. However, the 

introduction of a vertical dimension (level difference) would help in the 

simultaneous detection of more than one stimulus out of the horizontal 

plane. This could be used to localize in a two dimensional space. However, 

the addition of a vertical direction would add complexity and would require 

different hardware and software solutions. For example audio localization 

with the current set up only configured in one dimension.  

§ Another extension of the project could be in the variation of distance 

between the source and agent. Initially this aspect is overcome by the 

approximation function used for localization. This function is estimated 

based on the distance as a variable. However, for future enhancement the 

function can be extended to operate for any kind of distances. But for such 

cases, a different kind of experimental setup has to be designed to satisfy 

the variable distance between source and agent mechanism. 

§ An important enhancement would be to extend the scope of the integration 

mechanism by adapting it to all types of input stimuli. One major objective 

of the project is to investigate the behaviour of the integration stimuli i.e. 

enhancement and depression phenomena. However, when it comes to a 

more realistic application: 
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• Visual stimuli localization becomes more complex, if object 

identification along with color detection is used, then the chances of 

recognizing the object increases.  

• In the case of audio, rather than simple activation detection, if the 

sound is distinguished based on strength of the stimuli, along with 

their time of arrival, then the chances of a more significant audio role 

in the integration process can be increased. This would improve the 

overall localization performance. 

• The above suggestions can be adapted either before or after 

integration, depending on the requirements. However if they are 

adapted before integration, there could be an increase in the time 

delay between stimuli generation and integration. Hence post-

integration is suggested. By doing so, the final integrated output 

generated can be recognized and the corresponding action can be 

taken. 

§ A practical recommendation could be to transform the model into an 

application that can be used to alert the driver of a vehicle to approaching 

traffic. When it comes to development of a commercial application such as 

a driver assistance system, it is necessary that it should be both adaptive 

as well as effective. For such applications it is critical to have highest 

possible accuracy. Since the application involves risk to the user, it is 

suggested that training of the network should be made more efficient by 

using a bigger training set.  

§ Another potential application is a self-driven camera (equipped with a mic) 

that can be used to localize any stimuli within its focus, and later can track 

the stimuli in the case of a moving source. This concept could also be used 

in social robot scenario, where a robot interacts with people in public in 

places such as museums, and hospitals and schools. 
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Overall, this research project is considered a success in answering the research 

question and the objectives have been achieved. The research is still in its 

development state, as far as a reliable application in a real scenario is concerned. 

However, many of the ideas explored can provide a firm foundation for ongoing 

and future research in this area. 
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Appendix – A 

Importance of audio and visual sensors for 
interaction 

         
Sensory organs in human beings play a vital role when it comes to interaction. Out 

of them, eyes and ears responsible for audio and visual stimuli processing are 

considered critical for this research. In the context of vision a Sanskrit (ancient 

Indian language) saying goes like “*Sarvendriyanam Nayanam Pradhanam”. 

According to Ayurveda (ancient Indian medical practice) ‘the eyes are the first 

among different organs of the body when it comes to interacting with the external 

world’ (Srinivas, 1993). In the context of eternal sound which describes the 

importance of audio stimuli over living beings a Sanskrit saying goes as 

“*Sisurvethi Pasurvethi…Vethi gaana rasam Phanihi”. Means music (sound) can 

be felt and enjoyed by kids, animals and even snakes alike. In other words, an 

audible sound stimulus was always felt effective in grabbing attention when it 

comes to interaction with kids, animals (mammals) and even animals without ears. 

According to Sanskrit the mystic sound of ‘AUM’ was the first generated audio 

stimuli that echoed the universe in the form of primal energy, which later 

developed various sounds. (Londhe, 2008) In the book of Symbolism in Hinduism 

by Chinmaya Mission, page 338 and 339 describes in details about the importance 

of audio stimuli in both music and life when it comes to interaction (Chinmaya 

Mission, 1983).  

This thesis is the advanced research work carried out to investigate the sound and 

visual stimuli and their integration based on biological inspiration of the Superior 

Colliculus and to develop a model that can perform integration mechanism 

effectively. 

 

 

‘*’--- are the English version of Sanskrit quotes that are explained with the literal and ethical 
meaning in a philosophical way which signifies the importance of visual and audio sensors for 
interaction with environment. 
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Appendix – B  

List of Publications 
 

Three papers have been published for presenting the initial experimental results 

and the research concepts developed during the project. 
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Abstract 
 
Information processing and responding to sensory input with appropriate actions are among the most important 
capabilities of the brain and the brain has specific areas that deal with auditory or visual processing. The auditory 
information is sent first to the cochlea, then to the inferior colliculus area and then later to the auditory cortex where it is 
further processed so that then eyes, head or both can be turned towards an object or location in response. The visual 
information is processed in the retina, various subsequent nuclei and then the visual cortex before again actions can be 
performed. However, how is this information integrated and what is the effect of auditory and visual stimuli arriving at 
the same time or at different times? Which information is processed when and what are the responses for multimodal 
stimuli? Multimodal integration is first performed in the Superior Colliculus, located in a subcortical part of the 
midbrain. In this chapter we will focus on this first level of multimodal integration, outline various approaches of 
modelling the superior colliculus, and suggest a model of multimodal integration of visual and auditory information. 
 
 
1. Introduction and Motivation 
 
The Superior Colliculus (SC) is a small part of the human brain that is responsible for the multimodal 
integration of sensory information. In the deep layers of the SC integration takes place among auditory, 
visual and somatosensory stimuli. Very few types of neurons, such as burst, build up and fixation neurons 
are responsible for this behaviour [4, 10]. By studying these neurons and their firing rates, integration can be 
successfully explored. The integration that takes place in the SC is an important phenomenon to study 
because it deals with different strengths of different stimuli arriving at different times and how the actions 
based on them are generated. There is evidence that when two different stimuli are received at the same time, 
the stronger signal influences the response accordingly based on Enhancement and Depression Criteria [3]. A 
better understanding of multimodal integration in the SC not only helps in exploring the properties of the 
brain, but also provides indications for building novel bio-inspired computational or robotics models.   
 
Multimodal integration allows humans and animals to perform under difficult, potentially noisy auditory or 
visual stimulus conditions. In the human brain, the Superior Colliculus is the first region that provides this 
multimodal integration [23]. The deep layers of the Superior Colliculus integrate multisensory inputs and 
generate directional information that can be used to identify the source of the input information [20]. The SC 
uses visual and auditory information for directing the eyes using saccades, that is horizontal eye movements 
which direct the eyes to the location of the object which generated the stimulus. Before integrating the 
different modalities the individual stimuli are preprocessed in separate auditory and visual pathways. 
Preprocessed visual and auditory stimuli can then be used to integrate the stimuli in the deep layers of the SC 
and eventually generate responses based on the multimodal input. 
 
The types of saccades can be classified in different ways [39] as shown in Figure 1. Most saccades are 
reflexive and try to identify the point of interest in the visual field which has moved due to the previous 
visual frame changing to the current one [20]. If no point of interest is found in the visual field, auditory 
information can be used to identify a source. Saccades are primary actions which in some cases are 
autonomous and are carried out without conscious processing in the brain. When there is insufficient 
information to determine the source based on a single modality, the SC uses multimodal integration to 
determine the output. Saccades are the first actions taken as a result of receiving enough visual  and auditory 
stimuli.  


