7,858 research outputs found

    Eye-CU: Sleep Pose Classification for Healthcare using Multimodal Multiview Data

    Full text link
    Manual analysis of body poses of bed-ridden patients requires staff to continuously track and record patient poses. Two limitations in the dissemination of pose-related therapies are scarce human resources and unreliable automated systems. This work addresses these issues by introducing a new method and a new system for robust automated classification of sleep poses in an Intensive Care Unit (ICU) environment. The new method, coupled-constrained Least-Squares (cc-LS), uses multimodal and multiview (MM) data and finds the set of modality trust values that minimizes the difference between expected and estimated labels. The new system, Eye-CU, is an affordable multi-sensor modular system for unobtrusive data collection and analysis in healthcare. Experimental results indicate that the performance of cc-LS matches the performance of existing methods in ideal scenarios. This method outperforms the latest techniques in challenging scenarios by 13% for those with poor illumination and by 70% for those with both poor illumination and occlusions. Results also show that a reduced Eye-CU configuration can classify poses without pressure information with only a slight drop in its performance.Comment: Ten-page manuscript including references and ten figure

    Towards Assistive Feeding with a General-Purpose Mobile Manipulator

    Get PDF
    General-purpose mobile manipulators have the potential to serve as a versatile form of assistive technology. However, their complexity creates challenges, including the risk of being too difficult to use. We present a proof-of-concept robotic system for assistive feeding that consists of a Willow Garage PR2, a high-level web-based interface, and specialized autonomous behaviors for scooping and feeding yogurt. As a step towards use by people with disabilities, we evaluated our system with 5 able-bodied participants. All 5 successfully ate yogurt using the system and reported high rates of success for the system's autonomous behaviors. Also, Henry Evans, a person with severe quadriplegia, operated the system remotely to feed an able-bodied person. In general, people who operated the system reported that it was easy to use, including Henry. The feeding system also incorporates corrective actions designed to be triggered either autonomously or by the user. In an offline evaluation using data collected with the feeding system, a new version of our multimodal anomaly detection system outperformed prior versions.Comment: This short 4-page paper was accepted and presented as a poster on May. 16, 2016 in ICRA 2016 workshop on 'Human-Robot Interfaces for Enhanced Physical Interactions' organized by Arash Ajoudani, Barkan Ugurlu, Panagiotis Artemiadis, Jun Morimoto. It was peer reviewed by one reviewe

    A Model that Predicts the Material Recognition Performance of Thermal Tactile Sensing

    Get PDF
    Tactile sensing can enable a robot to infer properties of its surroundings, such as the material of an object. Heat transfer based sensing can be used for material recognition due to differences in the thermal properties of materials. While data-driven methods have shown promise for this recognition problem, many factors can influence performance, including sensor noise, the initial temperatures of the sensor and the object, the thermal effusivities of the materials, and the duration of contact. We present a physics-based mathematical model that predicts material recognition performance given these factors. Our model uses semi-infinite solids and a statistical method to calculate an F1 score for the binary material recognition. We evaluated our method using simulated contact with 69 materials and data collected by a real robot with 12 materials. Our model predicted the material recognition performance of support vector machine (SVM) with 96% accuracy for the simulated data, with 92% accuracy for real-world data with constant initial sensor temperatures, and with 91% accuracy for real-world data with varied initial sensor temperatures. Using our model, we also provide insight into the roles of various factors on recognition performance, such as the temperature difference between the sensor and the object. Overall, our results suggest that our model could be used to help design better thermal sensors for robots and enable robots to use them more effectively.Comment: This article is currently under review for possible publicatio
    • …
    corecore