8 research outputs found

    Multimodal Neuroimaging Feature Learning for Multiclass Diagnosis of Alzheimer's Disease

    Get PDF
    The accurate diagnosis of Alzheimer's disease (AD) is essential for patient care and will be increasingly important as disease modifying agents become available, early in the course of the disease. Although studies have applied machine learning methods for the computer-aided diagnosis of AD, a bottleneck in the diagnostic performance was shown in previous methods, due to the lacking of efficient strategies for representing neuroimaging biomarkers. In this study, we designed a novel diagnostic framework with deep learning architecture to aid the diagnosis of AD. This framework uses a zero-masking strategy for data fusion to extract complementary information from multiple data modalities. Compared to the previous state-of-the-art workflows, our method is capable of fusing multimodal neuroimaging features in one setting and has the potential to require less labeled data. A performance gain was achieved in both binary classification and multiclass classification of AD. The advantages and limitations of the proposed framework are discussed

    High-order resting-state functional connectivity network for MCI classification: High-Order Correlation and FC Network

    Get PDF
    Brain functional connectivity (FC) network, estimated with resting-state functional magnetic resonance imaging (RS-fMRI) technique, has emerged as a promising approach for accurate diagnosis of neurodegenerative diseases. However, the conventional FC network is essentially low-order in the sense that only the correlations among brain regions (in terms of RS-fMRI time series) are taken into account. The features derived from this type of brain network may fail to serve as an effective disease biomarker. To overcome this drawback, we propose extraction of novel high-order FC correlations that characterize how the low-order correlations between different pairs of brain regions interact with each other. Specifically, for each brain region, a sliding window approach is first performed over the entire RS-fMRI time series to generate multiple short overlapping segments. For each segment, a low-order FC network is constructed, measuring the short-term correlation between brain regions. These low-order networks (obtained from all segments) describe the dynamics of short-term FC along the time, thus also forming the correlation time series for every pair of brain regions. To overcome the curse of dimensionality, we further group the correlation time series into a small number of different clusters according to their intrinsic common patterns. Then, the correlation between the respective mean correlation time series of different clusters is calculated to represent the high-order correlation among different pairs of brain regions. Finally, we design a pattern classifier, by combining features of both low-order and high-order FC networks. Experimental results verify the effectiveness of the high-order FC network on disease diagnosis

    AI and Non AI Assessments for Dementia

    Full text link
    Current progress in the artificial intelligence domain has led to the development of various types of AI-powered dementia assessments, which can be employed to identify patients at the early stage of dementia. It can revolutionize the dementia care settings. It is essential that the medical community be aware of various AI assessments and choose them considering their degrees of validity, efficiency, practicality, reliability, and accuracy concerning the early identification of patients with dementia (PwD). On the other hand, AI developers should be informed about various non-AI assessments as well as recently developed AI assessments. Thus, this paper, which can be readable by both clinicians and AI engineers, fills the gap in the literature in explaining the existing solutions for the recognition of dementia to clinicians, as well as the techniques used and the most widespread dementia datasets to AI engineers. It follows a review of papers on AI and non-AI assessments for dementia to provide valuable information about various dementia assessments for both the AI and medical communities. The discussion and conclusion highlight the most prominent research directions and the maturity of existing solutions.Comment: 49 page

    Novel Deep Learning Models for Medical Imaging Analysis

    Get PDF
    abstract: Deep learning is a sub-field of machine learning in which models are developed to imitate the workings of the human brain in processing data and creating patterns for decision making. This dissertation is focused on developing deep learning models for medical imaging analysis of different modalities for different tasks including detection, segmentation and classification. Imaging modalities including digital mammography (DM), magnetic resonance imaging (MRI), positron emission tomography (PET) and computed tomography (CT) are studied in the dissertation for various medical applications. The first phase of the research is to develop a novel shallow-deep convolutional neural network (SD-CNN) model for improved breast cancer diagnosis. This model takes one type of medical image as input and synthesizes different modalities for additional feature sources; both original image and synthetic image are used for feature generation. This proposed architecture is validated in the application of breast cancer diagnosis and proved to be outperforming the competing models. Motivated by the success from the first phase, the second phase focuses on improving medical imaging synthesis performance with advanced deep learning architecture. A new architecture named deep residual inception encoder-decoder network (RIED-Net) is proposed. RIED-Net has the advantages of preserving pixel-level information and cross-modality feature transferring. The applicability of RIED-Net is validated in breast cancer diagnosis and Alzheimer’s disease (AD) staging. Recognizing medical imaging research often has multiples inter-related tasks, namely, detection, segmentation and classification, my third phase of the research is to develop a multi-task deep learning model. Specifically, a feature transfer enabled multi-task deep learning model (FT-MTL-Net) is proposed to transfer high-resolution features from segmentation task to low-resolution feature-based classification task. The application of FT-MTL-Net on breast cancer detection, segmentation and classification using DM images is studied. As a continuing effort on exploring the transfer learning in deep models for medical application, the last phase is to develop a deep learning model for both feature transfer and knowledge from pre-training age prediction task to new domain of Mild cognitive impairment (MCI) to AD conversion prediction task. It is validated in the application of predicting MCI patients’ conversion to AD with 3D MRI images.Dissertation/ThesisDoctoral Dissertation Industrial Engineering 201
    corecore