3 research outputs found

    Biologically Inspired Optimization Methods for Image Registration in Visual Servoing of a Mobile Robot

    Get PDF
    Image registration (IR) represents image processing technique that is suitable for use in Visual Servoing (VS). This paper proposes the use of Biologically Inspired Optimization (BIO) methods for IR in VS of nonholonomic mobile robot. The comparison study of three different BIO methods is conducted, namely Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Grey Wolf Optimizer (GWO). The aforementioned optimization algorithms utilized for IR are tested on 24 images of manufacturing entities acquired by mobile robot stereo vision system. The considered algorithms are implemented in the MATLAB environment. The experimental results suggest satisfactory geometrical alignment after IR, whilst GA and PSO outperform GWO

    Enhanced phase congruency feature-based image registration for multimodal remote sensing imagery

    Get PDF
    Multimodal image registration is an essential image processing task in remote sensing. Basically, multimodal image registration searches for optimal alignment between images captured by different sensors for the same scene to provide better visualization and more informative images. Manual image registration is a tedious task and requires more effort, hence developing an automated image registration is very crucial to provide a faster and reliable solution. However, image registration faces many challenges from the nature of remote sensing image, the environment, and the technical shortcoming of the current methods that cause three issues, namely intensive processing power, local intensity variation, and rotational distortion. Since not all image details are significant, relying on the salient features will be more efficient in terms of processing power. Thus, the feature-based registration method was adopted as an efficient method to avoid intensive processing. The proposed method resolves rotation distortion issue using Oriented FAST and Rotated BRIEF (ORB) to produce invariant rotation features. However, since it is not intensity invariant, it cannot support multimodal data. To overcome the intensity variations issue, Phase Congruence (PC) was integrated with ORB to introduce ORB-PC feature extraction to generate feature invariance to rotation distortion and local intensity variation. However, the solution is not complete since the ORB-PC matching rate is below the expectation. Enhanced ORB-PC was proposed to solve the matching issue by modifying the feature descriptor. While better feature matches were achieved, a high number of outliers from multimodal data makes the common outlier removal methods unsuccessful. Therefore, the Normalized Barycentric Coordinate System (NBCS) outlier removal was utilized to find precise matches even with a high number of outliers. The experiments were conducted to verify the registration qualitatively and quantitatively. The qualitative experiment shows the proposed method has a broader and better features distribution, while the quantitative evaluation indicates improved performance in terms of registration accuracy by 18% compared to the related works

    Multimodal medical image registration using Particle Swarm Optimization: A review

    No full text
    Intensity-based registration techniques have been increasingly used in multimodal image co-registration, which is a fundamental task in medical imaging, because it enables to integrate different images into a single representation such that complementary information can be easily accessed and fused. These schemes usually require the optimization of some similarity metric (e.g., Mutual Information) calculated on the input images. Local optimization methods often do not obtain good results, possibly leading to premature convergence to local optima, especially with non-smooth fitness functions. In these cases, we can adopt global optimization methods, and Swarm Intelligence techniques represent a very effective and efficient solution. This paper focuses on biomedical image registration using Particle Swarm Optimization (PSO). Several literature approaches are critically reviewed, by investigating modifications and hybridizations with Evolutionary Strategies. Since biomedical image registration represents a challenging clinical task, the experimental findings encourage further research studies in the near future
    corecore