16 research outputs found

    The Verbal and Non Verbal Signals of Depression -- Combining Acoustics, Text and Visuals for Estimating Depression Level

    Full text link
    Depression is a serious medical condition that is suffered by a large number of people around the world. It significantly affects the way one feels, causing a persistent lowering of mood. In this paper, we propose a novel attention-based deep neural network which facilitates the fusion of various modalities. We use this network to regress the depression level. Acoustic, text and visual modalities have been used to train our proposed network. Various experiments have been carried out on the benchmark dataset, namely, Distress Analysis Interview Corpus - a Wizard of Oz (DAIC-WOZ). From the results, we empirically justify that the fusion of all three modalities helps in giving the most accurate estimation of depression level. Our proposed approach outperforms the state-of-the-art by 7.17% on root mean squared error (RMSE) and 8.08% on mean absolute error (MAE).Comment: 10 pages including references, 2 figure

    Hierarchical attention transfer networks for depression assessment from speech

    Get PDF

    Multi-head attention-based long short-term memory for depression detection from speech.

    Get PDF
    Depression is a mental disorder that threatens the health and normal life of people. Hence, it is essential to provide an effective way to detect depression. However, research on depression detection mainly focuses on utilizing different parallel features from audio, video, and text for performance enhancement regardless of making full usage of the inherent information from speech. To focus on more emotionally salient regions of depression speech, in this research, we propose a multi-head time-dimension attention-based long short-term memory (LSTM) model. We first extract frame-level features to store the original temporal relationship of a speech sequence and then analyze their difference between speeches of depression and those of health status. Then, we study the performance of various features and use a modified feature set as the input of the LSTM layer. Instead of using the output of the traditional LSTM, multi-head time-dimension attention is employed to obtain more key time information related to depression detection by projecting the output into different subspaces. The experimental results show the proposed model leads to improvements of 2.3 and 10.3% over the LSTM model on the Distress Analysis Interview Corpus-Wizard of Oz (DAIC-WOZ) and the Multi-modal Open Dataset for Mental-disorder Analysis (MODMA) corpus, respectively

    Automatic Detection of Self-Adaptors for Psychological Distress

    Get PDF
    Psychological distress is a significant and growing issue in society. Automatic detection, assessment, and analysis of such distress is an active area of research. Compared to modalities such as face, head, and vocal, research investigating the use of the body modality for these tasks is relatively sparse. This is, in part, due to the lack of available datasets and difficulty in automatically extracting useful body features. Recent advances in pose estimation and deep learning have enabled new approaches to this modality and domain. We propose a novel method to automatically detect self-adaptors and fidgeting, a subset of self-adaptors that has been shown to be correlated with psychological distress. We also propose a multi-modal approach that combines different feature representations using Multi-modal Deep Denoising Auto-Encoders and Improved Fisher Vector encoding. We also demonstrate that our proposed model, combining audio-visual features with automatically detected fidgeting behavioral cues, can successfully predict distress levels in a dataset labeled with self-reported anxiety and depression levels. To enable this research we introduce a new dataset containing full body videos for short interviews and self-reported distress labels.King's College, Cmabridg

    Identifying Depression in the National Health and Nutrition Examination Survey Data using a Deep Learning Algorithm

    Get PDF
    Background: As depression is the leading cause of disability worldwide, large-scale surveys have been conducted to establish the occurrence and risk factors of depression. However, accurately estimating epidemiological factors leading up to depression has remained challenging. Deep-learning algorithms can be applied to assess the factors leading up to prevalence and clinical manifestations of depression. Methods: Customized deep-neural-network and machine-learning classifiers were assessed using survey data from 19,725 participants from the NHANES database (from 1999 through 2014) and 4,949 from the South Korea NHANES (K-NHANES) database in 2014. Results: A deep-learning algorithm showed area under the receiver operating characteristic curve (AUCs) of 0.91 and 0.89 for detecting depression in NHANES and K-NHANES, respectively. The deep-learning algorithm trained with serial datasets (NHANES, from 1999 to 2012), predicted the prevalence of depression in the following two years of data (NHANES, 2013 and 2014) with an AUC of 0.92. Machine learning classifiers trained with NHANES could further predict depression in K-NHANES. There, logistic regression had the highest performance (AUC, 0.77) followed by deep learning algorithm (AUC, 0.74). Conclusions: Deep neural-networks managed to identify depression well from other health and demographic factors in both the NHANES and K-NHANES datasets. The deep-learning algorithm was also able to predict depression relatively well on new data set—cross temporally and cross nationally. Further research can delineate the clinical implications of machine learning and deep learning in detecting disease prevalence and progress as well as other risk factors for depression and other mental illnesses

    Natural Language Processing Methods for Acoustic and Landmark Event-Based Features in Speech-Based Depression Detection

    Full text link
    The processing of speech as an explicit sequence of events is common in automatic speech recognition (linguistic events), but has received relatively little attention in paralinguistic speech classification despite its potential for characterizing broad acoustic event sequences. This paper proposes a framework for analyzing speech as a sequence of acoustic events, and investigates its application to depression detection. In this framework, acoustic space regions are tokenized to 'words' representing speech events at fixed or irregular intervals. This tokenization allows the exploitation of acoustic word features using proven natural language processing methods. A key advantage of this framework is its ability to accommodate heterogeneous event types: herein we combine acoustic words and speech landmarks, which are articulation-related speech events. Another advantage is the option to fuse such heterogeneous events at various levels, including the embedding level. Evaluation of the proposed framework on both controlled laboratory-grade supervised audio recordings as well as unsupervised self-administered smartphone recordings highlight the merits of the proposed framework across both datasets, with the proposed landmark-dependent acoustic words achieving improvements in F1(depressed) of up to 15% and 13% for SH2-FS and DAIC-WOZ respectively, relative to acoustic speech baseline approaches

    Educational anomaly analytics : features, methods, and challenges

    Get PDF
    Anomalies in education affect the personal careers of students and universities' retention rates. Understanding the laws behind educational anomalies promotes the development of individual students and improves the overall quality of education. However, the inaccessibility of educational data hinders the development of the field. Previous research in this field used questionnaires, which are time- and cost-consuming and hardly applicable to large-scale student cohorts. With the popularity of educational management systems and the rise of online education during the prevalence of COVID-19, a large amount of educational data is available online and offline, providing an unprecedented opportunity to explore educational anomalies from a data-driven perspective. As an emerging field, educational anomaly analytics rapidly attracts scholars from a variety of fields, including education, psychology, sociology, and computer science. This paper intends to provide a comprehensive review of data-driven analytics of educational anomalies from a methodological standpoint. We focus on the following five types of research that received the most attention: course failure prediction, dropout prediction, mental health problems detection, prediction of difficulty in graduation, and prediction of difficulty in employment. Then, we discuss the challenges of current related research. This study aims to provide references for educational policymaking while promoting the development of educational anomaly analytics as a growing field. Copyright © 2022 Guo, Bai, Tian, Firmin and Xia
    corecore