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ABSTRACT
A growing area of mental health research is the search for
speech-based objective markers for conditions such as de-
pression. However, when combined with machine learning,
this search can be challenging due to a limited amount of an-
notated training data. In this paper, we propose a novel cross-
task approach which transfers attention mechanisms from
speech recognition to aid depression severity measurement.
This transfer is applied in a two-level hierarchical network
which mirrors the natural hierarchical structure of speech.
Experiments based on the Distress Analysis Interview Cor-
pus – Wizard of Oz (DAIC-WOZ) dataset, as used in the 2017
Audio/Visual Emotion Challenge, demonstrate the effective-
ness of our Hierarchical Attention Transfer Network. On
the development set, the proposed approach achieves a root
mean square error (RMSE) of 3.85, and a mean absolute error
(MAE) of 2.99, on a Patient Health Questionnaire (PHQ)-8
scale [0, 24], while on the test set, it achieves an RMSE of
5.66 and an MAE of 4.28. To the best of our knowledge,
these scores represent the best-known speech-only results to
date on this corpus.

Index Terms— Depression, Attention Transfer, Hierar-
chical Attention, Monotonic Attention

1. INTRODUCTION

Major depression disorders are highly prevalent and can
cause a substantial burden for associated individuals, fami-
lies and society. Early interventions, aimed at predicting the
onset of clinical depression, represent an essential means to
help reduce this burden. To aid the depression diagnosis, the
problem of automatically detecting and monitoring depres-
sion from speech signals has recently gained considerable
attention [1]. By providing a common research platform, the
Audio/Visual Emotion Challenge (AVEC) series has helped
accelerate these research efforts [2, 3, 4, 5, 6].

In the field of depression analysis from speech, Convo-
lutional Neural Networks (CNNs) are, at present, the pre-

dominant deep-learning architecture for data-driven learning
systems [7, 8, 9]. Despite having the advantage over CNNs in
that they are capable of modelling the sequential structure of
speech, the suitability of Recurrent Neural Networks (RNNs),
remains understudied. This advantage can be inferred from
the related field of Speech Emotion Recognition (SER), in
which RNN paradigms are frequently employed [10, 11, 12].

A potential reason for the lack of RNN-based approaches
in depression analysis could be the structure of the associ-
ated databases. Speech depression corpora contain record-
ings measuring some minutes in length with only one asso-
ciated label over the whole length, the associated depression
score. It has been previously demonstrated that RNNs typi-
cally struggle in such learning conditions [13].

The inclusion of attention mechanisms, in particular hier-
archical attention mechanisms [14, 15], into the RNN frame-
work is one possible solution to this issue. The benefits of a
hierarchical attention mechanism have been demonstrated in
Natural Language Processing (NLP) [16, 17], as the structure
of these networks naturally mirrors the hierarchical structure
of documents. However, the inclusion of attention mecha-
nisms increases the number of learnable parameters in the
associated models. This increase does not fit with smaller,
in terms of the number of unique samples, depression cor-
pora [1]. The attention mechanism can, however, be used in
combination with transfer learning paradigms [18, 19, 20].

In this regard, we herein propose a novel depression anal-
ysis framework combining a hierarchical attention strategy
with an attention transfer mechanism. The proposed Hier-
archical Attention Transfer Network (HATN) model automat-
ically transfers attentions, learnt from speech recognition, at
both the frame and sentence levels. To the best of our knowl-
edge, this is the first time that such a study has been con-
ducted for depression severity measurement. Our key contri-
butions are summarised as follows: i) we introduce an atten-
tion transfer process which can transfer attentions across tasks
at both the frame and sentence level; ii) extensive experiments
demonstrate that the proposed hierarchical attention transfer
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model outperforms other state-of-the-art approaches for the
task of speech-based depression severity assessment.

2. RELATION TO PRIOR WORK

We demonstrate the advantages of our proposed approach
on the Distress Analysis Interview Corpus – Wizard of Oz
(DAIC-WOZ) [21] database, as partitioned for the depres-
sion detection task of AVEC 2017 [5]. A range of audio-
only approaches was presented in the challenge; these in-
clude knowledge-driven approaches [5, 22], as well as deep
learning-based data-driven systems [8, 23].

The work presented here has focused on the depression
analysis by leveraging the hierarchical attention strategy com-
bined with an attention transfer mechanism. While the use
of attention mechanisms, specifically hierarchical attention
mechanisms [14, 15]. This approach has achieved state-of-
the-art performance in various NLP document-based classifi-
cation tasks [14, 15, 24]. To the best of our knowledge, the ad-
vantages of using attention mechanisms in speech-based de-
pression analysis have yet to be established.

We use a transfer learning paradigm to learn the atten-
tion weights [18, 19, 20]. Recent works in this regard
have generally focused on computer-vision-related tasks,
with the developed spatial attention maps being designed for
CNNs [18, 19]. Encouraged by the recent success of attention
transfer mechanisms and unsupervised learning, the present
study presents a novel attention transfer process designed for
BLSTM.

3. HIERARCHICAL ATTENTION TRANSFER
NETWORK

In this section, we first present an overview of the proposed
Hierarchical Attention Transfer Network (HATN) model for
cross-task depression severity measurement. We then outline
the core technical details of the model.

The HATN model consists of three components (Fig. 1).
The first is the speech recognition model which we train to
generate our initial attention maps The second component is
the attention transfer mechanism. The workings of this com-
ponent are inspired by the activation-based attention model
presented in [18]. In [18], attention transfer is achieved by
training a shallower student network for the target task, which
mimics the attention maps of a deeper teacher network. The
third component is the depression recognition module. In this
component, we use a hierarchical attention neural network,
which consists of frame-level and sentence-level attentions.

3.1. Monotonic Attention

As highlighted in Section 1, attention-based encoder-decoder
models are an effective approach across many sequence-based
learning tasks. However, a major drawback of this approach
is that the model has to pass over the full input sequence
to produce the output sequence [25]. This aspect results in
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Fig. 1: The framework of the HATN model. The model firstly
learns attentions through a speech recognition task, which are
transformed into the hierarchical depression detection system.

increased computational complexity and does not allow for
online decoding. Recently, monotonic attention mechanisms
have been introduced to alleviate these issues [25, 26]. The
issues of quadratic-time complexity and no option for online
decoding in conventional soft-attention, are brought about by
the trained attention mechanisms needed to inspect every en-
try of the model’s memory at each output time-step (Fig. 2).

For the sake of brevity, we do not fully describe the mono-
tonic attention training process within this paper. The inter-
ested reader is referred to [25, 26] for these details.
3.2. Activation-based Attention Transfer

When performing attention transfer, the goal is to train a stu-
dent network using the spatial attention maps of a teacher net-
work such that the student network will not only make correct
predictions but will also have attention maps that are similar
to those of the teacher. The first step in this process is to de-
fine the spatial attention maps used in the teacher model. As
our teacher model will be a bidirectional-LSTM (BLSTM),
we consider a BLSTM layer and its corresponding activa-
tion tensor A ∈ RC×H×W which consists of C (C = 1 for
BLSTM) channels with spatial dimensions H × W , and a
mapping function F that takes the above BLSTM layer acti-
vations A (3D tensor) as input and outputs. A spatial attention
map can then be defined as:

F : RC×H×W → RH×W . (1)
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(b) Monotonic Attention

Fig. 2: Schematics diagrams to highlight the difference between soft and monotonic attention. In soft attention (a), the model
assigns a probability (the different shading of each node) to each memory entry at each output timestep. The context vector
is computed as the weighted average of the memory. Monotonic attention (b), inspects memory entries from left-to-right
monotonic manner. It chooses whether to move on to the next memory entry (shown as nodes with × ) or stop and attend
(shown as black nodes). The context vector is then assigned to the memory entries attended to. Figure adapted from [25, 26].

As the absolute value of a hidden neuron activation indi-
cates the importance of that neuron with respect to a specific
input, we can construct a spatial attention map by comput-
ing the statistics of these absolute values across the channel
dimension. Specifically, we consider the following spatial at-
tention mappings:

(F (A))i,j =

C∑
k=1

|Ak,i,j |p , (2)

where i ∈ {1, 2, ..., H} and j ∈ {1, 2, ...,W} are spatial in-
dexes.

During the attention transfer, we assume, without loss of
generality, that transfer losses are placed between student and
teacher attention maps and are of the same spatial resolution.
However, the attention maps can be interpolated to match
their shapes if required. We can then define the following
total loss:

LT = LD +WAT × LAT , (3)

where LD denotes the loss of the depression recognition task
and WAT the weight of attention transfer. LAT denotes the
loss of attention transfer, which can be computed as:

LAT =
∑
j∈I

Qj
D −Qj

S

∥∥∥
1
, (4)

here, I denotes the indices of the attention map, while Qj
D

and Qj
S represent the j-th pair of the attention map of the

depression recognition and speech recognition tasks respec-
tively. As can be seen, during attention transfer we make use
of l1-normalized attention maps.

3.3. Hierarchy attention model

Clinical interviews, such as those in the DIAC-WOZ cor-
pora [21], generally consist of questions from a (virtual) ther-
apist and answers from a participant. When attempting to
use such interviews within a machine learning framework, we
can assume that not all answers, herein referred to as sen-
tences, will contribute equally to the associated depression
score. Moreover, the sentences themselves consist of frames
of information, with each frame having a different influence
on the representation of the corresponding sentence.

Given this observation, our depression detection model
has a hierarchical structure, consisting of two levels of atten-
tion mechanisms applied at the sentence and frame level. This
structure enables the model to attend differentially, to more
and less important content when performing its analysis. For
a clinical review with m sentences{S1, S2, ..., Sm}, the i−th
sentence is Si, which consists of li frames as Si = f i

1f
i
2...f

i
li

,
and f i

t is the i− th frame in Si, t ∈ [0, li].

4. EXPERIMENTS AND RESULTS

4.1. Experimental Corpus

As previously mention, we utilised the (DAIC-WOZ) [21]
database, as partitioned for the depression detection task of
AVEC 2017 [5]. The task is to predict the exact Patient Health
Questionnaire (PHQ)-8 depression index score [27] in the
range [0,24] associated with the provided files. During our
analysis, we split the individual DAIC-WOZ recordings into
individual participant turns based on the manual transcrip-
tions provided with the corpus.
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4.2. Features

As in [28], we use Mel-spectra as our model input. The
spectrograms were constructed using the output of a 40-
dimensional Mel-scale log filter bank. These features were
computed over frames of 25 ms length and 10 ms stride and
normalised to be in the range [0,1].

4.3. Model Parameters

In order to implement attention transfer, we first trained an
ASR system to acquire the attention maps. The ASR model
is trained on the DAIC-WOZ dataset, and we reduced the
number of states in the origin transcriptions by leveraging the
CMU pronouncing dictionary [29]. We utilised a BLSTM
network with 128 blocks, with the learning rate set to 10−4.
During model training, we investigate the impact of differ-
ent attention strategies, namely standard global soft attention,
local soft attention [30], and monotonic attention.

Once the above training step of the ASR unit is complete,
its parameters are frozen, and the training of the depression
recognition model can commence. For this, we also used a
two-layer BLSTM, which consists of 128 single-memory-cell
LSTM memory blocks in the forward and backward hidden
layers. The learning rate is again set to 10−4. Finally, the
outputs of the fully connected layers can be regarded as the
final predicted PHQ-8 score.

4.4. Results and Discussion

As depression severity prediction is a regression task, the ac-
curacy metric for the challenge was the Root Mean Square
Error (RMSE) and Mean Absolute Error (MAE). When com-
paring the scores obtained from different variations of our
proposed approach (Table 1), we observed that the strongest
results, MAE of 2.99 and RMSE of 3.85 on the development
set and MAE of 4.28 and RMSE of 5.66 on the test set, were
achieved by the hierarchical monotonic attention model com-
bined with the attention transfer mechanism. This result sup-
ports our hypothesis that learning to mimic the attention maps
of the teacher model can be helpful in depression analysis. It
also highlights the advantage of reducing the complexity as-
sociated with the attention mechanism.

Furthermore, we observed that, on both the development
and the test sets, our proposed model outperformed the AVEC
2017 baseline (Table 1). Moreover, the performance of our
hierarchical monotonic attention model with attention trans-
fer on the test set is even better than the multimodal CNN-
based approach presented in [23], and almost matches the ap-
proach presented in [8]. To the best of the author’s knowl-
edge, the obtained results are the best speech-only-based re-
sults achieved on this experimental corpus to date.

5. CONCLUSION

In this contribution, we presented a novel hierarchical attention-
based model, which transferred attentions from speech recog-

Table 1: The RMSE and MAE scores of the experiment of
(Hier)archical Attention Transfer Network gained on both the
dev(elopment) and test sets of the DAIC-WOZ corpus. Note
that AT denotes attention transfer

Methods RMSE MAE
Development Partition

Hie. global soft attention 5.26 3.67
Hie. local soft attention (classic) 5.20 3.59
Hie. local soft attention (monotonic) 4.87 3.02
Hie. global soft attention w/AT 4.14 3.65
Hie. local soft attention (classic) w/AT 4.07 3.56
Hie. local soft attention (monotonic) w/AT 3.85 2.99
AVEC 2017 Audio Baseline [5] 6.74 5.36
AVEC 2017 Audio-Video Baseline [5] 6.62 5.52
DCNN-DNN [23]* 4.65 3.98
Multivariate regression model [8]* 3.09 2.48

Test Partition
Hierarchical global soft attention 6.54 5.03
Hie. local soft attention (classic) 6.43 4.99
Hie. local soft attention (monotonic) 6.14 4.76
Hie. global soft attention w/AT 5.96 4.78
Hie. local soft attention (classic) w/AT 5.81 4.76
Hie. local soft attention (monotonic) w/AT 5.66 4.28
AVEC 2017 Audio Baseline [5] 7.78 5.72
AVEC 2017 Audio-Video Baseline [5] 7.05 5.66
DCNN-DNN [23]* 5.97 5.16
Multivariate regression model [8]* 5.40 4.36
* Indicates a multimodal system was utilised.

nition, for the task of depression severity detection. This
approach is highly suitable for speech-based depression de-
tection, in that it uses hierarchical attention that mirrors the
structure of the speech present within the clinical interviews.
State-of-the-art experimental results achieved on the DAIC-
WOZ verified the suitability of this approach. Future work
will explore transferring attention from and to other speech-
related tasks.
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