5,617 research outputs found

    Predictive biometrics: A review and analysis of predicting personal characteristics from biometric data

    Get PDF
    Interest in the exploitation of soft biometrics information has continued to develop over the last decade or so. In comparison with traditional biometrics, which focuses principally on person identification, the idea of soft biometrics processing is to study the utilisation of more general information regarding a system user, which is not necessarily unique. There are increasing indications that this type of data will have great value in providing complementary information for user authentication. However, the authors have also seen a growing interest in broadening the predictive capabilities of biometric data, encompassing both easily definable characteristics such as subject age and, most recently, `higher level' characteristics such as emotional or mental states. This study will present a selective review of the predictive capabilities, in the widest sense, of biometric data processing, providing an analysis of the key issues still adequately to be addressed if this concept of predictive biometrics is to be fully exploited in the future

    Cultural dialects of real and synthetic emotional facial expressions

    Get PDF
    In this article we discuss the aspects of designing facial expressions for virtual humans (VHs) with a specific culture. First we explore the notion of cultures and its relevance for applications with a VH. Then we give a general scheme of designing emotional facial expressions, and identify the stages where a human is involved, either as a real person with some specific role, or as a VH displaying facial expressions. We discuss how the display and the emotional meaning of facial expressions may be measured in objective ways, and how the culture of displayers and the judges may influence the process of analyzing human facial expressions and evaluating synthesized ones. We review psychological experiments on cross-cultural perception of emotional facial expressions. By identifying the culturally critical issues of data collection and interpretation with both real and VHs, we aim at providing a methodological reference and inspiration for further research

    Deep Sketch-Photo Face Recognition Assisted by Facial Attributes

    Full text link
    In this paper, we present a deep coupled framework to address the problem of matching sketch image against a gallery of mugshots. Face sketches have the essential in- formation about the spatial topology and geometric details of faces while missing some important facial attributes such as ethnicity, hair, eye, and skin color. We propose a cou- pled deep neural network architecture which utilizes facial attributes in order to improve the sketch-photo recognition performance. The proposed Attribute-Assisted Deep Con- volutional Neural Network (AADCNN) method exploits the facial attributes and leverages the loss functions from the facial attributes identification and face verification tasks in order to learn rich discriminative features in a common em- bedding subspace. The facial attribute identification task increases the inter-personal variations by pushing apart the embedded features extracted from individuals with differ- ent facial attributes, while the verification task reduces the intra-personal variations by pulling together all the fea- tures that are related to one person. The learned discrim- inative features can be well generalized to new identities not seen in the training data. The proposed architecture is able to make full use of the sketch and complementary fa- cial attribute information to train a deep model compared to the conventional sketch-photo recognition methods. Exten- sive experiments are performed on composite (E-PRIP) and semi-forensic (IIIT-D semi-forensic) datasets. The results show the superiority of our method compared to the state- of-the-art models in sketch-photo recognition algorithm

    Fast Landmark Localization with 3D Component Reconstruction and CNN for Cross-Pose Recognition

    Full text link
    Two approaches are proposed for cross-pose face recognition, one is based on the 3D reconstruction of facial components and the other is based on the deep Convolutional Neural Network (CNN). Unlike most 3D approaches that consider holistic faces, the proposed approach considers 3D facial components. It segments a 2D gallery face into components, reconstructs the 3D surface for each component, and recognizes a probe face by component features. The segmentation is based on the landmarks located by a hierarchical algorithm that combines the Faster R-CNN for face detection and the Reduced Tree Structured Model for landmark localization. The core part of the CNN-based approach is a revised VGG network. We study the performances with different settings on the training set, including the synthesized data from 3D reconstruction, the real-life data from an in-the-wild database, and both types of data combined. We investigate the performances of the network when it is employed as a classifier or designed as a feature extractor. The two recognition approaches and the fast landmark localization are evaluated in extensive experiments, and compared to stateof-the-art methods to demonstrate their efficacy.Comment: 14 pages, 12 figures, 4 table

    Concordant cues in faces and voices: testing the backup signal hypothesis

    Get PDF
    Information from faces and voices combines to provide multimodal signals about a person. Faces and voices may offer redundant, overlapping (backup signals), or complementary information (multiple messages). This article reports two experiments which investigated the extent to which faces and voices deliver concordant information about dimensions of fitness and quality. In Experiment 1, participants rated faces and voices on scales for masculinity/femininity, age, health, height, and weight. The results showed that people make similar judgments from faces and voices, with particularly strong correlations for masculinity/femininity, health, and height. If, as these results suggest, faces and voices constitute backup signals for various dimensions, it is hypothetically possible that people would be able to accurately match novel faces and voices for identity. However, previous investigations into novel face–voice matching offer contradictory results. In Experiment 2, participants saw a face and heard a voice and were required to decide whether the face and voice belonged to the same person. Matching accuracy was significantly above chance level, suggesting that judgments made independently from faces and voices are sufficiently similar that people can match the two. Both sets of results were analyzed using multilevel modeling and are interpreted as being consistent with the backup signal hypothesis

    A Survey on Soft Biometrics for Human Identification

    Get PDF
    The focus has been changed to multi-biometrics due to the security demands. The ancillary information extracted from primary biometric (face and body) traits such as facial measurements, gender, color of the skin, ethnicity, and height is called soft biometrics and can be integrated to improve the speed and overall system performance of a primary biometric system (e.g., fuse face with facial marks) or to generate human semantic interpretation description (qualitative) of a person and limit the search in the whole dataset when using gender and ethnicity (e.g., old African male with blue eyes) in a fusion framework. This chapter provides a holistic survey on soft biometrics that show major works while focusing on facial soft biometrics and discusses some of the features of extraction and classification techniques that have been proposed and show their strengths and limitations

    Improving speaker turn embedding by crossmodal transfer learning from face embedding

    Full text link
    Learning speaker turn embeddings has shown considerable improvement in situations where conventional speaker modeling approaches fail. However, this improvement is relatively limited when compared to the gain observed in face embedding learning, which has been proven very successful for face verification and clustering tasks. Assuming that face and voices from the same identities share some latent properties (like age, gender, ethnicity), we propose three transfer learning approaches to leverage the knowledge from the face domain (learned from thousands of images and identities) for tasks in the speaker domain. These approaches, namely target embedding transfer, relative distance transfer, and clustering structure transfer, utilize the structure of the source face embedding space at different granularities to regularize the target speaker turn embedding space as optimizing terms. Our methods are evaluated on two public broadcast corpora and yield promising advances over competitive baselines in verification and audio clustering tasks, especially when dealing with short speaker utterances. The analysis of the results also gives insight into characteristics of the embedding spaces and shows their potential applications
    corecore