76 research outputs found

    The Impact of Large Language Models on Scientific Discovery: a Preliminary Study using GPT-4

    Full text link
    In recent years, groundbreaking advancements in natural language processing have culminated in the emergence of powerful large language models (LLMs), which have showcased remarkable capabilities across a vast array of domains, including the understanding, generation, and translation of natural language, and even tasks that extend beyond language processing. In this report, we delve into the performance of LLMs within the context of scientific discovery, focusing on GPT-4, the state-of-the-art language model. Our investigation spans a diverse range of scientific areas encompassing drug discovery, biology, computational chemistry (density functional theory (DFT) and molecular dynamics (MD)), materials design, and partial differential equations (PDE). Evaluating GPT-4 on scientific tasks is crucial for uncovering its potential across various research domains, validating its domain-specific expertise, accelerating scientific progress, optimizing resource allocation, guiding future model development, and fostering interdisciplinary research. Our exploration methodology primarily consists of expert-driven case assessments, which offer qualitative insights into the model's comprehension of intricate scientific concepts and relationships, and occasionally benchmark testing, which quantitatively evaluates the model's capacity to solve well-defined domain-specific problems. Our preliminary exploration indicates that GPT-4 exhibits promising potential for a variety of scientific applications, demonstrating its aptitude for handling complex problem-solving and knowledge integration tasks. Broadly speaking, we evaluate GPT-4's knowledge base, scientific understanding, scientific numerical calculation abilities, and various scientific prediction capabilities.Comment: 230 pages report; 181 pages for main content

    Florida Undergraduate Research Conference

    Get PDF
    FURC serves as a multi-disciplinary conference through which undergraduate students from the state of Florida can present their research. February 16-17, 2024https://digitalcommons.unf.edu/university_events/1006/thumbnail.jp

    Scientific Advances in STEM: From Professor to Students

    Get PDF
    This book collects the publications of the special Topic Scientific advances in STEM: from Professor to students. The aim is to contribute to the advancement of the Science and Engineering fields and their impact on the industrial sector, which requires a multidisciplinary approach. University generates and transmits knowledge to serve society. Social demands continuously evolve, mainly because of cultural, scientific, and technological development. Researchers must contextualize the subjects they investigate to their application to the local industry and community organizations, frequently using a multidisciplinary point of view, to enhance the progress in a wide variety of fields (aeronautics, automotive, biomedical, electrical and renewable energy, communications, environmental, electronic components, etc.). Most investigations in the fields of science and engineering require the work of multidisciplinary teams, representing a stockpile of research projects in different stages (final year projects, master’s or doctoral studies). In this context, this Topic offers a framework for integrating interdisciplinary research, drawing together experimental and theoretical contributions in a wide variety of fields

    Recent Developments in Atomic Force Microscopy and Raman Spectroscopy for Materials Characterization

    Get PDF
    This book contains chapters that describe advanced atomic force microscopy (AFM) modes and Raman spectroscopy. It also provides an in-depth understanding of advanced AFM modes and Raman spectroscopy for characterizing various materials. This volume is a useful resource for a wide range of readers, including scientists, engineers, graduate students, postdoctoral fellows, and scientific professionals working in specialized fields such as AFM, photovoltaics, 2D materials, carbon nanotubes, nanomaterials, and Raman spectroscopy

    2021 Student Symposium Research and Creative Activity Book of Abstracts

    Get PDF
    The UMaine Student Symposium (UMSS) is an annual event that celebrates undergraduate and graduate student research and creative work. Students from a variety of disciplines present their achievements with video presentations. It’s the ideal occasion for the community to see how UMaine students’ work impacts locally – and beyond. The 2021 Student Symposium Research and Creative Activity Book of Abstracts includes a complete list of student presenters as well as abstracts related to their works

    Exploring the Multifaceted Roles of Glycosaminoglycans (GAGs) - New Advances and Further Challenges

    Get PDF
    Glycosaminoglycans are linear, anionic polysaccharides (GAGs) consisting of repeating disaccharides. GAGs are ubiquitously localized throughout the extracellular matrix (ECM) and to the cell membranes of cells in all tissues. They are either conjugated to protein cores in the form of proteoglycans, e.g., chondroitin/dermatan sulfate (CS/DS), heparin/heparan sulfate (Hep/HS) and keratan sulfate (KS), as well as non-sulfated hyaluronan (HA). By modulating biological signaling GAGs participate in the regulation of homeostasis and also participate in disease progression. The book, entitled “Exploring the multifaceted roles of glycosaminoglycans (GAGs)—new advances and further challenges”, features original research and review articles. These articles cover several GAG-related timely topics in structural biology and imaging; morphogenesis, cancer, and other disease therapy and drug developments; tissue engineering; and metabolic engineering. This book also includes an article illustrating how metabolic engineering can be used to create the novel chondroitin-like polysaccharide.A prerequisite for communicating in any discipline and across disciplines is familiarity with the appropriate terminology. Several nomenclature rules exist in the field of biochemistry. The historical description of GAGs follows IUPAC and IUB nomenclature. New structural depictions such as the structural nomenclature for glycan and their translation into machine-readable formats have opened the route for cross-references with popular bioinformatics resources and further connections with other exciting “omics” fields

    2024 Student Symposium Program and Book of Abstracts

    Get PDF
    The mission of the UMaine Student Symposium is to give graduate and undergraduate students from UMaine and UMaine Machias the opportunity to showcase their work, research, and creative activities to the greater community, fostering conversations and collaborations that will benefit the future of Maine and beyond
    • …
    corecore