1,213 research outputs found

    Unmanned Aerial Systems for Wildland and Forest Fires

    Full text link
    Wildfires represent an important natural risk causing economic losses, human death and important environmental damage. In recent years, we witness an increase in fire intensity and frequency. Research has been conducted towards the development of dedicated solutions for wildland and forest fire assistance and fighting. Systems were proposed for the remote detection and tracking of fires. These systems have shown improvements in the area of efficient data collection and fire characterization within small scale environments. However, wildfires cover large areas making some of the proposed ground-based systems unsuitable for optimal coverage. To tackle this limitation, Unmanned Aerial Systems (UAS) were proposed. UAS have proven to be useful due to their maneuverability, allowing for the implementation of remote sensing, allocation strategies and task planning. They can provide a low-cost alternative for the prevention, detection and real-time support of firefighting. In this paper we review previous work related to the use of UAS in wildfires. Onboard sensor instruments, fire perception algorithms and coordination strategies are considered. In addition, we present some of the recent frameworks proposing the use of both aerial vehicles and Unmanned Ground Vehicles (UV) for a more efficient wildland firefighting strategy at a larger scale.Comment: A recent published version of this paper is available at: https://doi.org/10.3390/drones501001

    Target classification in multimodal video

    Get PDF
    The presented thesis focuses on enhancing scene segmentation and target recognition methodologies via the mobilisation of contextual information. The algorithms developed to achieve this goal utilise multi-modal sensor information collected across varying scenarios, from controlled indoor sequences to challenging rural locations. Sensors are chiefly colour band and long wave infrared (LWIR), enabling persistent surveillance capabilities across all environments. In the drive to develop effectual algorithms towards the outlined goals, key obstacles are identified and examined: the recovery of background scene structure from foreground object ’clutter’, employing contextual foreground knowledge to circumvent training a classifier when labeled data is not readily available, creating a labeled LWIR dataset to train a convolutional neural network (CNN) based object classifier and the viability of spatial context to address long range target classification when big data solutions are not enough. For an environment displaying frequent foreground clutter, such as a busy train station, we propose an algorithm exploiting foreground object presence to segment underlying scene structure that is not often visible. If such a location is outdoors and surveyed by an infra-red (IR) and visible band camera set-up, scene context and contextual knowledge transfer allows reasonable class predictions for thermal signatures within the scene to be determined. Furthermore, a labeled LWIR image corpus is created to train an infrared object classifier, using a CNN approach. The trained network demonstrates effective classification accuracy of 95% over 6 object classes. However, performance is not sustainable for IR targets acquired at long range due to low signal quality and classification accuracy drops. This is addressed by mobilising spatial context to affect network class scores, restoring robust classification capability

    Improved Gaussian-Bernoulli Restricted Boltzmann Machines for UAV-Ground Communication Systems

    Full text link
    Unmanned aerial vehicle (UAV) is steadily growing as a promising technology for next-generation communication systems due to their appealing features such as wide coverage with high altitude, on-demand low-cost deployment, and fast responses. UAV communications are fundamentally different from the conventional terrestrial and satellite communications owing to the high mobility and the unique channel characteristics of air-ground links. However, obtaining effective channel state information (CSI) is challenging because of the dynamic propagation environment and variable transmission delay. In this paper, a deep learning (DL)-based CSI prediction framework is proposed to address channel aging problem by extracting the most discriminative features from the UAV wireless signals. Specifically, we develop a procedure of multiple Gaussian Bernoulli restricted Boltzmann machines (GBRBM) for dimension reduction and pre-training utilization incorporated with an autoencoder-based deep neural networks (DNNs). To evaluate the proposed approach, real data measurements from an UAV communicating with base-stations within a commercial cellular network are obtained and used for training and validation. Numerical results demonstrate that the proposed method is accurate in channel acquisition for various UAV flying scenarios and outperforms the conventional DNNs

    Enhanced Ai-Based Machine Learning Model for an Accurate Segmentation and Classification Methods

    Get PDF
    Phone Laser Scanner becomes the versatile sensor module that is premised on Lamp Identification and Spanning methodology and is used in a spectrum of uses. There are several prior editorials in the literary works that concentrate on the implementations or attributes of these processes; even so, evaluations of all those inventive computational techniques reported in the literature have not even been performed in the required thickness. At ToAT that finish, we examine and summarize the latest advances in Artificial Intelligence based machine learning data processing approaches such as extracting features, fragmentation, machine vision, and categorization. In this survey, we have reviewed total 48 papers based on an enhanced AI based machine learning model for accurate classification and segmentation methods. Here, we have reviewed the sections on segmentation and classification of images based on machine learning models
    corecore