11 research outputs found

    Classification of video events using 4-dimensional time-compressed motion features

    Full text link

    Semantic Based Sport Video Browsing

    Get PDF

    Role Recognition in Broadcast News Using Social Network Analysis and Duration Distribution Modeling

    Get PDF
    This paper presents two approaches for speaker role recognition in multiparty audio recordings. The experiments are performed over a corpus of 96 radio bulletins corresponding to roughly 19 hours of material. Each recording involves, on average, eleven speakers playing one among six roles belonging to a predefined set. Both proposed approaches start by segmenting automatically the recordings into single speaker segments, but perform role recognition using different techniques. The first approach is based on Social Network Analysis, the second relies on the intervention duration distribution across different speakers. The two approaches are used separately and combined and the results show that around 85 percent of the recordings time can be labeled correctly in terms of role

    Semantic multimedia modelling & interpretation for annotation

    Get PDF
    The emergence of multimedia enabled devices, particularly the incorporation of cameras in mobile phones, and the accelerated revolutions in the low cost storage devices, boosts the multimedia data production rate drastically. Witnessing such an iniquitousness of digital images and videos, the research community has been projecting the issue of its significant utilization and management. Stored in monumental multimedia corpora, digital data need to be retrieved and organized in an intelligent way, leaning on the rich semantics involved. The utilization of these image and video collections demands proficient image and video annotation and retrieval techniques. Recently, the multimedia research community is progressively veering its emphasis to the personalization of these media. The main impediment in the image and video analysis is the semantic gap, which is the discrepancy among a user’s high-level interpretation of an image and the video and the low level computational interpretation of it. Content-based image and video annotation systems are remarkably susceptible to the semantic gap due to their reliance on low-level visual features for delineating semantically rich image and video contents. However, the fact is that the visual similarity is not semantic similarity, so there is a demand to break through this dilemma through an alternative way. The semantic gap can be narrowed by counting high-level and user-generated information in the annotation. High-level descriptions of images and or videos are more proficient of capturing the semantic meaning of multimedia content, but it is not always applicable to collect this information. It is commonly agreed that the problem of high level semantic annotation of multimedia is still far from being answered. This dissertation puts forward approaches for intelligent multimedia semantic extraction for high level annotation. This dissertation intends to bridge the gap between the visual features and semantics. It proposes a framework for annotation enhancement and refinement for the object/concept annotated images and videos datasets. The entire theme is to first purify the datasets from noisy keyword and then expand the concepts lexically and commonsensical to fill the vocabulary and lexical gap to achieve high level semantics for the corpus. This dissertation also explored a novel approach for high level semantic (HLS) propagation through the images corpora. The HLS propagation takes the advantages of the semantic intensity (SI), which is the concept dominancy factor in the image and annotation based semantic similarity of the images. As we are aware of the fact that the image is the combination of various concepts and among the list of concepts some of them are more dominant then the other, while semantic similarity of the images are based on the SI and concept semantic similarity among the pair of images. Moreover, the HLS exploits the clustering techniques to group similar images, where a single effort of the human experts to assign high level semantic to a randomly selected image and propagate to other images through clustering. The investigation has been made on the LabelMe image and LabelMe video dataset. Experiments exhibit that the proposed approaches perform a noticeable improvement towards bridging the semantic gap and reveal that our proposed system outperforms the traditional systems

    Multimedia Event based Video Indexing Using Time Intervals

    No full text
    We propose the Time Interval Multimedia Event (TIME) framework as a robust approach for classification of semantic events in multimodal video documents. The representation used in TIME extends the Allen temporal interval relations and allows for proper inclusion of context and synchronization of the heterogeneous information sources involved in multimodal video analysis. To demonstrate the viability of our approach, it was evaluated on the domains of soccer and news broadcasts. For automatic classification of semantic events, we compare three different machine learning techniques, i.c. C4.5 decision tree, Maximum Entropy, and Support Vector Machine. The results show that semantic video indexing results significantly benefit from using the TIME framework

    Multimedia event-based video indexing using time intervals

    No full text
    corecore