3,414 research outputs found

    Research Interests Databases

    Get PDF

    University of Helsinki Department of Computer Science Annual Report 1998

    Get PDF

    Annual Report 1999 / Department for Computer Science

    Get PDF
    Selbstdarstellung des Instituts fĂĽr Informatik der BTU Cottbus und Berichte der LehrstĂĽhle fĂĽr das Jahr 1999.Presentation of the Department for Computer Science of the BTU Cottbus and reports of the chairs at the department for the year 1999

    Computer Science at the University of Helsinki 1998

    Get PDF

    Advances in Data Modeling Research

    Get PDF
    In this paper, we summarize the discussions of the panel on Advances in Data Modeling Research, held at the Americas Conference on Information Systems (AMCIS) in 2005. We focus on four primary areas where data modeling research offers rich opportunities: spatio-temporal semantics, genome research, ontological analysis and empirical evaluation of existing models. We highlight past work in each area and also discuss open questions, with a view to promoting future research in the overall data modeling area

    Performance assessment of real-time data management on wireless sensor networks

    Get PDF
    Technological advances in recent years have allowed the maturity of Wireless Sensor Networks (WSNs), which aim at performing environmental monitoring and data collection. This sort of network is composed of hundreds, thousands or probably even millions of tiny smart computers known as wireless sensor nodes, which may be battery powered, equipped with sensors, a radio transceiver, a Central Processing Unit (CPU) and some memory. However due to the small size and the requirements of low-cost nodes, these sensor node resources such as processing power, storage and especially energy are very limited. Once the sensors perform their measurements from the environment, the problem of data storing and querying arises. In fact, the sensors have restricted storage capacity and the on-going interaction between sensors and environment results huge amounts of data. Techniques for data storage and query in WSN can be based on either external storage or local storage. The external storage, called warehousing approach, is a centralized system on which the data gathered by the sensors are periodically sent to a central database server where user queries are processed. The local storage, in the other hand called distributed approach, exploits the capabilities of sensors calculation and the sensors act as local databases. The data is stored in a central database server and in the devices themselves, enabling one to query both. The WSNs are used in a wide variety of applications, which may perform certain operations on collected sensor data. However, for certain applications, such as real-time applications, the sensor data must closely reflect the current state of the targeted environment. However, the environment changes constantly and the data is collected in discreet moments of time. As such, the collected data has a temporal validity, and as time advances, it becomes less accurate, until it does not reflect the state of the environment any longer. Thus, these applications must query and analyze the data in a bounded time in order to make decisions and to react efficiently, such as industrial automation, aviation, sensors network, and so on. In this context, the design of efficient real-time data management solutions is necessary to deal with both time constraints and energy consumption. This thesis studies the real-time data management techniques for WSNs. It particularly it focuses on the study of the challenges in handling real-time data storage and query for WSNs and on the efficient real-time data management solutions for WSNs. First, the main specifications of real-time data management are identified and the available real-time data management solutions for WSNs in the literature are presented. Secondly, in order to provide an energy-efficient real-time data management solution, the techniques used to manage data and queries in WSNs based on the distributed paradigm are deeply studied. In fact, many research works argue that the distributed approach is the most energy-efficient way of managing data and queries in WSNs, instead of performing the warehousing. In addition, this approach can provide quasi real-time query processing because the most current data will be retrieved from the network. Thirdly, based on these two studies and considering the complexity of developing, testing, and debugging this kind of complex system, a model for a simulation framework of the real-time databases management on WSN that uses a distributed approach and its implementation are proposed. This will help to explore various solutions of real-time database techniques on WSNs before deployment for economizing money and time. Moreover, one may improve the proposed model by adding the simulation of protocols or place part of this simulator on another available simulator. For validating the model, a case study considering real-time constraints as well as energy constraints is discussed. Fourth, a new architecture that combines statistical modeling techniques with the distributed approach and a query processing algorithm to optimize the real-time user query processing are proposed. This combination allows performing a query processing algorithm based on admission control that uses the error tolerance and the probabilistic confidence interval as admission parameters. The experiments based on real world data sets as well as synthetic data sets demonstrate that the proposed solution optimizes the real-time query processing to save more energy while meeting low latency.Fundação para a Ciência e Tecnologi

    Super-resolution:A comprehensive survey

    Get PDF

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model

    Designing websites with eXtensible web (xWeb) methodology

    Get PDF
    Today, eXtensible Markup Language (XML) is fast emerging as the dominant standard for storing, describing, representing and interchanging data among various enterprises systems and databases in the context of complex web enterprises information systems (EIS). Conversely, for web EIS (such as e-commerce and portals) to be successful, it is important to apply a high level, model driven solutions and meta-data vocabularies to design and implementation techniques that are capable of handling heterogonous schemas and documents. For this, we need a methodology that provides a higher level of abstraction of the domain in question with rigorously defined standards that are to be more widely understood by all stakeholders of the system. To-date, UML has proven itself as the language of choice for modeling EIS using OO techniques. With the introduction of XML Schema, which provides rich facilities for constraining and defining enterprise XML content, the combination of UML and XML technologies provide a good platform (and the flexibility) for modeling, designing and representing complex enterprise contents for building successful EIS. In this paper, we show how a layered view model coupled with a proven user interface analysis framework (WUiAM) is utilized in providing architectural construct and abstract website model (called eXtensible Web, xWeb), to model, design and implement simple, user-centred, collaborative websites at varying levels of abstraction. The uniqueness xWeb is that the model data (web user interface definitions, website data descriptions and constraints) and the web content are captured and represented at the conceptual level using views (one model) and can be deployed (multiple platform specific models) using one or more implementation models

    Multimodal Content Delivery for Geo-services

    Get PDF
    This thesis describes a body of work carried out over several research projects in the area of multimodal interaction for location-based services. Research in this area has progressed from using simulated mobile environments to demonstrate the visual modality, to the ubiquitous delivery of rich media using multimodal interfaces (geo- services). To effectively deliver these services, research focused on innovative solutions to real-world problems in a number of disciplines including geo-location, mobile spatial interaction, location-based services, rich media interfaces and auditory user interfaces. My original contributions to knowledge are made in the areas of multimodal interaction underpinned by advances in geo-location technology and supported by the proliferation of mobile device technology into modern life. Accurate positioning is a known problem for location-based services, contributions in the area of mobile positioning demonstrate a hybrid positioning technology for mobile devices that uses terrestrial beacons to trilaterate position. Information overload is an active concern for location-based applications that struggle to manage large amounts of data, contributions in the area of egocentric visibility that filter data based on field-of-view demonstrate novel forms of multimodal input. One of the more pertinent characteristics of these applications is the delivery or output modality employed (auditory, visual or tactile). Further contributions in the area of multimodal content delivery are made, where multiple modalities are used to deliver information using graphical user interfaces, tactile interfaces and more notably auditory user interfaces. It is demonstrated how a combination of these interfaces can be used to synergistically deliver context sensitive rich media to users - in a responsive way - based on usage scenarios that consider the affordance of the device, the geographical position and bearing of the device and also the location of the device
    • …
    corecore