8,943 research outputs found

    On Multilingual Training of Neural Dependency Parsers

    Full text link
    We show that a recently proposed neural dependency parser can be improved by joint training on multiple languages from the same family. The parser is implemented as a deep neural network whose only input is orthographic representations of words. In order to successfully parse, the network has to discover how linguistically relevant concepts can be inferred from word spellings. We analyze the representations of characters and words that are learned by the network to establish which properties of languages were accounted for. In particular we show that the parser has approximately learned to associate Latin characters with their Cyrillic counterparts and that it can group Polish and Russian words that have a similar grammatical function. Finally, we evaluate the parser on selected languages from the Universal Dependencies dataset and show that it is competitive with other recently proposed state-of-the art methods, while having a simple structure.Comment: preprint accepted into the TSD201

    Semantic Tagging with Deep Residual Networks

    Get PDF
    We propose a novel semantic tagging task, sem-tagging, tailored for the purpose of multilingual semantic parsing, and present the first tagger using deep residual networks (ResNets). Our tagger uses both word and character representations and includes a novel residual bypass architecture. We evaluate the tagset both intrinsically on the new task of semantic tagging, as well as on Part-of-Speech (POS) tagging. Our system, consisting of a ResNet and an auxiliary loss function predicting our semantic tags, significantly outperforms prior results on English Universal Dependencies POS tagging (95.71% accuracy on UD v1.2 and 95.67% accuracy on UD v1.3).Comment: COLING 2016, camera ready versio

    Few-Shot and Zero-Shot Learning for Historical Text Normalization

    Get PDF
    Historical text normalization often relies on small training datasets. Recent work has shown that multi-task learning can lead to significant improvements by exploiting synergies with related datasets, but there has been no systematic study of different multi-task learning architectures. This paper evaluates 63~multi-task learning configurations for sequence-to-sequence-based historical text normalization across ten datasets from eight languages, using autoencoding, grapheme-to-phoneme mapping, and lemmatization as auxiliary tasks. We observe consistent, significant improvements across languages when training data for the target task is limited, but minimal or no improvements when training data is abundant. We also show that zero-shot learning outperforms the simple, but relatively strong, identity baseline.Comment: Accepted at DeepLo-201

    Handling non-compositionality in multilingual CNLs

    Full text link
    In this paper, we describe methods for handling multilingual non-compositional constructions in the framework of GF. We specifically look at methods to detect and extract non-compositional phrases from parallel texts and propose methods to handle such constructions in GF grammars. We expect that the methods to handle non-compositional constructions will enrich CNLs by providing more flexibility in the design of controlled languages. We look at two specific use cases of non-compositional constructions: a general-purpose method to detect and extract multilingual multiword expressions and a procedure to identify nominal compounds in German. We evaluate our procedure for multiword expressions by performing a qualitative analysis of the results. For the experiments on nominal compounds, we incorporate the detected compounds in a full SMT pipeline and evaluate the impact of our method in machine translation process.Comment: CNL workshop in COLING 201
    corecore