141 research outputs found

    From Word to Sense Embeddings: A Survey on Vector Representations of Meaning

    Get PDF
    Over the past years, distributed semantic representations have proved to be effective and flexible keepers of prior knowledge to be integrated into downstream applications. This survey focuses on the representation of meaning. We start from the theoretical background behind word vector space models and highlight one of their major limitations: the meaning conflation deficiency, which arises from representing a word with all its possible meanings as a single vector. Then, we explain how this deficiency can be addressed through a transition from the word level to the more fine-grained level of word senses (in its broader acceptation) as a method for modelling unambiguous lexical meaning. We present a comprehensive overview of the wide range of techniques in the two main branches of sense representation, i.e., unsupervised and knowledge-based. Finally, this survey covers the main evaluation procedures and applications for this type of representation, and provides an analysis of four of its important aspects: interpretability, sense granularity, adaptability to different domains and compositionality.Comment: 46 pages, 8 figures. Published in Journal of Artificial Intelligence Researc

    SenseDefs : a multilingual corpus of semantically annotated textual definitions

    Get PDF
    Definitional knowledge has proved to be essential in various Natural Language Processing tasks and applications, especially when information at the level of word senses is exploited. However, the few sense-annotated corpora of textual definitions available to date are of limited size: this is mainly due to the expensive and time-consuming process of annotating a wide variety of word senses and entity mentions at a reasonably high scale. In this paper we present SenseDefs, a large-scale high-quality corpus of disambiguated definitions (or glosses) in multiple languages, comprising sense annotations of both concepts and named entities from a wide-coverage unified sense inventory. Our approach for the construction and disambiguation of this corpus builds upon the structure of a large multilingual semantic network and a state-of-the-art disambiguation system: first, we gather complementary information of equivalent definitions across different languages to provide context for disambiguation; then we refine the disambiguation output with a distributional approach based on semantic similarity. As a result, we obtain a multilingual corpus of textual definitions featuring over 38 million definitions in 263 languages, and we publicly release it to the research community. We assess the quality of SenseDefs’s sense annotations both intrinsically and extrinsically on Open Information Extraction and Sense Clustering tasks.Peer reviewe

    Evaluation of taxonomic and neural embedding methods for calculating semantic similarity

    Full text link
    Modelling semantic similarity plays a fundamental role in lexical semantic applications. A natural way of calculating semantic similarity is to access handcrafted semantic networks, but similarity prediction can also be anticipated in a distributional vector space. Similarity calculation continues to be a challenging task, even with the latest breakthroughs in deep neural language models. We first examined popular methodologies in measuring taxonomic similarity, including edge-counting that solely employs semantic relations in a taxonomy, as well as the complex methods that estimate concept specificity. We further extrapolated three weighting factors in modelling taxonomic similarity. To study the distinct mechanisms between taxonomic and distributional similarity measures, we ran head-to-head comparisons of each measure with human similarity judgements from the perspectives of word frequency, polysemy degree and similarity intensity. Our findings suggest that without fine-tuning the uniform distance, taxonomic similarity measures can depend on the shortest path length as a prime factor to predict semantic similarity; in contrast to distributional semantics, edge-counting is free from sense distribution bias in use and can measure word similarity both literally and metaphorically; the synergy of retrofitting neural embeddings with concept relations in similarity prediction may indicate a new trend to leverage knowledge bases on transfer learning. It appears that a large gap still exists on computing semantic similarity among different ranges of word frequency, polysemous degree and similarity intensity

    A Logic-based Approach for Recognizing Textual Entailment Supported by Ontological Background Knowledge

    Full text link
    We present the architecture and the evaluation of a new system for recognizing textual entailment (RTE). In RTE we want to identify automatically the type of a logical relation between two input texts. In particular, we are interested in proving the existence of an entailment between them. We conceive our system as a modular environment allowing for a high-coverage syntactic and semantic text analysis combined with logical inference. For the syntactic and semantic analysis we combine a deep semantic analysis with a shallow one supported by statistical models in order to increase the quality and the accuracy of results. For RTE we use logical inference of first-order employing model-theoretic techniques and automated reasoning tools. The inference is supported with problem-relevant background knowledge extracted automatically and on demand from external sources like, e.g., WordNet, YAGO, and OpenCyc, or other, more experimental sources with, e.g., manually defined presupposition resolutions, or with axiomatized general and common sense knowledge. The results show that fine-grained and consistent knowledge coming from diverse sources is a necessary condition determining the correctness and traceability of results.Comment: 25 pages, 10 figure

    European Language Grid

    Get PDF
    This open access book provides an in-depth description of the EU project European Language Grid (ELG). Its motivation lies in the fact that Europe is a multilingual society with 24 official European Union Member State languages and dozens of additional languages including regional and minority languages. The only meaningful way to enable multilingualism and to benefit from this rich linguistic heritage is through Language Technologies (LT) including Natural Language Processing (NLP), Natural Language Understanding (NLU), Speech Technologies and language-centric Artificial Intelligence (AI) applications. The European Language Grid provides a single umbrella platform for the European LT community, including research and industry, effectively functioning as a virtual home, marketplace, showroom, and deployment centre for all services, tools, resources, products and organisations active in the field. Today the ELG cloud platform already offers access to more than 13,000 language processing tools and language resources. It enables all stakeholders to deposit, upload and deploy their technologies and datasets. The platform also supports the long-term objective of establishing digital language equality in Europe by 2030 – to create a situation in which all European languages enjoy equal technological support. This is the very first book dedicated to Language Technology and NLP platforms. Cloud technology has only recently matured enough to make the development of a platform like ELG feasible on a larger scale. The book comprehensively describes the results of the ELG project. Following an introduction, the content is divided into four main parts: (I) ELG Cloud Platform; (II) ELG Inventory of Technologies and Resources; (III) ELG Community and Initiative; and (IV) ELG Open Calls and Pilot Projects
    • …
    corecore