13 research outputs found

    Multilevel Monte Carlo methods for stochastic elliptic multiscale PDEs

    Get PDF
    In this paper Monte Carlo finite element approximations for elliptic homogenization problems with random coefficients, which oscillate on n is an element of N a priori known, separated microscopic length scales, are considered. The convergence of multilevel Monte Carlo finite element discretizations is analyzed. In particular, it is considered that the multilevel finite element discretization resolves the finest physical length scale, but the coarsest finite element mesh does not, so that the so-called resonance case occurs at intermediate multilevel Monte Carlo sampling levels. It is shown that for first order finite elements in two space dimensions, the multilevel Monte Carlo finite element method converges at the same rate as the corresponding single-level Monte Carlo finite element method, despite the majority of samples being underresolved in the multilevel Monte Carlo finite element estimator. It is proved that switching to a hierarchic multiscale finite element method such as the finite element heterogeneous multiscale method to compute the multilevel Monte Carlo finite element estimator, when only meshes are used which underresolve all physical length scales, implies optimal convergence. Specifically, both methods proposed here allow one to obtain estimates of the expectation of the random solution, with accuracy versus work that is identical to the solution of a single deterministic problem. In the case of the finite element heterogeneous multiscale method the estimate is, moreover, robust with respect to the physical length scales. Numerical experiments corroborate our analytical findings

    Multilevel Monte Carlo methods for stochastic elliptic multiscale PDEs

    Get PDF
    In this paper Monte Carlo finite element approximations for elliptic homogenization problems with random coefficients, which oscillate on n is an element of N a priori known, separated microscopic length scales, are considered. The convergence of multilevel Monte Carlo finite element discretizations is analyzed. In particular, it is considered that the multilevel finite element discretization resolves the finest physical length scale, but the coarsest finite element mesh does not, so that the so-called resonance case occurs at intermediate multilevel Monte Carlo sampling levels. It is shown that for first order finite elements in two space dimensions, the multilevel Monte Carlo finite element method converges at the same rate as the corresponding single-level Monte Carlo finite element method, despite the majority of samples being underresolved in the multilevel Monte Carlo finite element estimator. It is proved that switching to a hierarchic multiscale finite element method such as the finite element heterogeneous multiscale method to compute the multilevel Monte Carlo finite element estimator, when only meshes are used which underresolve all physical length scales, implies optimal convergence. Specifically, both methods proposed here allow one to obtain estimates of the expectation of the random solution, with accuracy versus work that is identical to the solution of a single deterministic problem. In the case of the finite element heterogeneous multiscale method the estimate is, moreover, robust with respect to the physical length scales. Numerical experiments corroborate our analytical findings

    An Equation-Free Approach for Second Order Multiscale Hyperbolic Problems in Non-Divergence Form

    Full text link
    The present study concerns the numerical homogenization of second order hyperbolic equations in non-divergence form, where the model problem includes a rapidly oscillating coefficient function. These small scales influence the large scale behavior, hence their effects should be accurately modelled in a numerical simulation. A direct numerical simulation is prohibitively expensive since a minimum of two points per wavelength are needed to resolve the small scales. A multiscale method, under the equation free methodology, is proposed to approximate the coarse scale behaviour of the exact solution at a cost independent of the small scales in the problem. We prove convergence rates for the upscaled quantities in one as well as in multi-dimensional periodic settings. Moreover, numerical results in one and two dimensions are provided to support the theory

    Adaptive Multilevel Monte Carlo Methods for Stochastic Variational Inequalities

    Get PDF
    While multilevel Monte Carlo (MLMC) methods for the numerical approximation of partial differential equations with random coefficients enjoy great popularity, combinations with spatial adaptivity seem to be rare. We present an adaptive MLMC finite element approach based on deterministic adaptive mesh refinement for the arising “pathwise” problems and outline a convergence theory in terms of desired accuracy and required computational cost. Our theoretical and heuristic reasoning together with the efficiency of our new approach are confirmed by numerical experiments

    MATHICSE Technical Report : A quasi-optimal sparse grids procedure for groundwater flows

    Get PDF
    In this work we explore the extension of the quasi-optimal sparse grids method proposed in our previous work \On the optimal polynomial ap- proximation of stochastic PDEs by Galerkin and Collocation methods" to a Darcy problem where the permeability is modeled as a lognormal random field. We propose an explicit a-priori/a-posteriori procedure for the construc- tion of such quasi-optimal grid and show its effectivenenss on a numerical ex- ample. In this approach, the two main ingredients are an estimate of the decay of the Hermite coefficients of the solution an

    Uncertainty Quantification by MLMC and Local Time-stepping For Wave Propagation

    Get PDF
    Because of their robustness, efficiency and non-intrusiveness, Monte Carlo methods are probably the most popular approach in uncertainty quantification to computing expected values of quantities of interest (QoIs). Multilevel Monte Carlo (MLMC) methods significantly reduce the computational cost by distributing the sampling across a hierarchy of discretizations and allocating most samples to the coarser grids. For time dependent problems, spatial coarsening typically entails an increased time-step. Geometric constraints, however, may impede uniform coarsening thereby forcing some elements to remain small across all levels. If explicit time-stepping is used, the time-step will then be dictated by the smallest element on each level for numerical stability. Hence, the increasingly stringent CFL condition on the time-step on coarser levels significantly reduces the advantages of the multilevel approach. By adapting the time-step to the locally refined elements on each level, local time-stepping (LTS) methods permit to restore the efficiency of MLMC methods even in the presence of complex geometry without sacrificing the explicitness and inherent parallelism
    corecore