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Abstract. Because of their robustness, efficiency and non-intrusiveness, Monte Carlo methods are probably the
most popular approach in uncertainty quantification to computing expected values of quantities of
interest (QoIs). Multilevel Monte Carlo (MLMC) methods significantly reduce the computational
cost by distributing the sampling across a hierarchy of discretizations and allocating most samples
to the coarser grids. For time dependent problems, spatial coarsening typically entails an increased
time-step. Geometric constraints, however, may impede uniform coarsening thereby forcing some
elements to remain small across all levels. If explicit time-stepping is used, the time-step will then
be dictated by the smallest element on each level for numerical stability. Hence, the increasingly
stringent CFL condition on the time-step on coarser levels significantly reduces the advantages of
the multilevel approach. By adapting the time-step to the locally refined elements on each level,
local time-stepping (LTS) methods permit to restore the efficiency of MLMC methods even in the
presence of complex geometry without sacrificing the explicitness and inherent parallelism.

Key words. Uncertainty quantification, Multilevel Monte Carlo, wave propagation, finite element methods,
local time-stepping, explicit time integration.
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1. Introduction. Mathematical models based on partial differential equations (PDE) are
widely used to describe complex phenomena and to make predictions in real-world applica-
tions. All such mathematical models, however, are affected by a certain degree of uncertainty
that may arise because of imperfect characterization or intrinsic variability of model param-
eters, constitutive laws, forcing terms, initial states, etc. Uncertainty is typically included in
PDE based models by replacing input parameters by stochastic variables or processes. That
uncertainty is then propagated across space (and possibly time) by the solution u of the cor-
responding stochastic PDE and thereby determines the uncertainty in any observed quantity
of interest (QoI) Q[u].

In mathematical models from acoustics, electromagnetics or elasticity, waves, as ubiqui-
tous information carriers, will also propagate uncertainty about input parameters over long
distances with little regularizing or smoothing effects. The inherent lack of regularity ham-
pers the use of computational uncertainty quantification methods, such as polynomial chaos
expansions or sparse quadratures, which rely on the smoothness of the so-called parameter-
to-solution map and/or on the low dimensionality of the input space [46, 36, 37].

In contrast, Monte Carlo (MC) methods [15], probably the most popular alternative to
quantifying the uncertainty in any QoI, are robust to the dimension of the input parameters
and the lack of regularity of the parameter-to-QoI map. By drawing independent realizations
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from the input probability distribution on a sample space Ω, they compute for each sample
ω ∈ Ω a solution u(ω, .) of the forward problem and thus permit to estimate the statistics of
the QoI Q[u(ω, .)]. Although MC methods are easy to implement, their convergence in the
number of samples is rather slow.

Multilevel Monte Carlo (MLMC) methods, first introduced for applications in paramet-
ric integration by Heinrich [26, 27] and later extended by Giles in his seminal paper [16] to
multi-level approximations of stochastic differential equations, significantly reduce the compu-
tational cost by distributing the sampling across a hierarchy of discretizations and computing
most samples on coarser grids. In recent years, MLMC methods thus have proved extremely
efficient, versatile and robust for uncertainty quantification (UQ) in a wide range of problems
governed by stochastic PDEs, including, to name just a few, elliptic equations with random
coefficients [9, 45, 6], parabolic PDEs [5], conservation laws and compressible aerodynam-
ics [32, 33, 40], acoustic and seismic wave propagation [34, 4], obstacle problems [7], and
multiscale problems [2].

For time dependent problems, spatial coarsening on higher levels usually entails a larger
time-step, thereby reducing even further the computational cost of individual sample solutions
u(t, x;ω). Geometric constraints or singularities, however, may impede uniform coarsening,
thus forcing some elements in the mesh to remain small across all levels. If explicit time-
stepping is used, the time-step will then be dictated by the smallest element on each level due
to the CFL stability condition. Hence, standard explicit time-stepping schemes will become
increasingly inefficient on coarser levels due to the ever more restrictive CFL condition.

To overcome the increasingly stringent bottleneck across all levels, we propose to use local
time-stepping (LTS) [12, 18] methods for the time integration on each level. By using a smaller
time-step only inside the locally refined region, LTS methods thus permit to greatly improve
the efficiency of MLMC methods even in the presence of complex geometry without sacrificing
the explicitness and inherent parallelism.

The rest of our paper is structured as follows. In Section 2, we recall the standard MLMC
Algorithm [16] to estimate a generic QoI in any (finite or infinite dimensional) Hilbert space;
for instance, the QoI may be a functional of u, or the solution itself. In Section 3, we
estimate the computational cost of the MLMC algorithm in the presence of locally refined
meshes, first with a standard explicit time-stepping method and then with a local time-
stepping method. Here, we differentiate between local refinement inside a small fixed region or
towards a reentrant corner. In the former case, we quantify the gain of using LTS over standard
time-stepping methods, whereas in the latter we prove that LTS even improves the asymptotic
complexity. Finally, in Section 4, we present a series of numerical experiments which illustrate
the significant gain over standard time-stepping obtained by using LTS methods for the time
integration at all levels.
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2. Multilevel Monte Carlo method for wave equations with random coefficients.

2.1. Model problem. We consider the wave equation with stochastic coefficient in a
bounded domain D ⊂ R

d,

(2.1)





∂2

∂t2
u(x, t, ω)−∇ ·

(
c2(x, ω) ∇u(x, t, ω)

)
= f(x, t) ∀ x ∈ D, t ∈ (0, T ], ω ∈ Ω,

u(x, 0, ω) = u0(x) ∀ x ∈ D, ω ∈ Ω,

∂

∂t
u(x, 0, ω) = v0(x) ∀ x ∈ D, ω ∈ Ω

with appropriate (deterministic) boundary conditions. Here, we model the uncertainty in the
wave speed c > 0 as a time independent random field c : D × Ω → R, where Ω is the sample
space of a complete probability space. We are interested in estimating the expected value
E[Q] of some quantity of interest (QoI) Q : ω 7→ Q(ω) = Q (u (·, ·, ω)) ∈ V related to the
solution u = u(x, t, ω).

We consider a generic case where V is a Hilbert space. For instance, if Q is the value of
some functional of u, we simply set V = R (cf. [35, 45]). On the other hand, if the QoI is the
(weak) solution itself at a fixed time T > 0, Q(ω) := u(·, T, ω) ∈ V = H1(D) ∀ω ∈ Ω, we let
V correspond to the solution space.

2.2. Construction of the MLMC method. To derive the MLMC approximation for (2.1),
let Qh denote a (numerical) finite element approximation to the QoI Q = Q(u), with h the
discrete mesh size. To estimate E[Q], one computes approximations or estimators Q̂h to E[Qh].
The accuracy of the approximations is quantified by the mean square error (MSE)

(2.2) e
(
Q̂h

)2
:= E

[∥∥∥Q̂h − E[Q]
∥∥∥
2

V

]
.

The main idea of the MLMC method is to sample the QoI Q from several approximations
Qℓ := QHℓ

on a sequence of discretizations ℓ = 0, 1, . . . , L. Then, each level uses its individual
mesh size Hℓ = H0/2

ℓ in space and time-step ∆tℓ in time, where the latter must satisfy a
standard CFL condition, ∆tℓ ≤ CHℓ, for numerical stability, if explicit time-stepping is used.

For the approximate solution on the finest level with mesh size HL, it holds that

E[QL] = E[Q0] +
L∑

ℓ=1

E[Qℓ −Qℓ−1] =
L∑

ℓ=0

E [∆Qℓ]

with

∆Qℓ :=

{
Q0, ℓ = 0,
Qℓ −Qℓ−1, ℓ = 1, . . . , L.

This motivates the MLMC estimator of E[QL],

(2.3) Q̂ML
h :=

L∑

ℓ=0

1

Nℓ

Nℓ∑

i=1

(
∆Qℓ

(
ω(i,ℓ)

))
∈ V,
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where Nℓ denotes the number of random samples ω(i) ∈ Ω computed on each level ℓ. For
efficiency of the estimator, it is crucial to judiciously choose the parameter values Nℓ and L.
If we set µ = E[Q] ∈ V in (2.2), we obtain

e
(
Q̂ML

h

)2
= E

[〈
Q̂ML

h − µ, Q̂ML
h − µ

〉
V

]

= E

[〈
Q̂ML

h − E [QL] + E [QL]− µ, Q̂ML
h − E [QL] + E [QL]− µ

〉
V

]
,

= E

[∥∥∥Q̂ML
h − E [QL]

∥∥∥
2

V

]
+ ‖E[QL]− µ‖2V + 2E

[〈
Q̂ML

h − E [QL] ,E[QL]− µ
〉
V

]
,

where the last term equals to zero as E[Q̂ML
h ] = E[QL]. For the first term in the last equation,

we now insert the definition of the MLMC estimator (2.3), using the short notation Q(i,ℓ)

instead of Q(ω(i,ℓ)). Thus, we obtain

e
(
Q̂ML

h

)2
= E



∥∥∥∥∥

L∑

ℓ=0

N−1
ℓ

Nℓ∑

i=1

(
∆Q

(i,ℓ)
ℓ − E [∆Qℓ]

)∥∥∥∥∥

2

V


+ ‖E[QL −Q]‖2V

=

L∑

ℓ=0

N−1
ℓ E

[
‖∆Qℓ − E [∆Qℓ]‖

2
V

]
+ ‖E[QL −Q]‖2V .

Note that the last step is due to the fact that ∆Q
(i,ℓ)
ℓ are Nℓ independent, identically distrib-

uted (i. i. d.) random variables. Let

(2.4) Vℓ = E

[
‖∆Qℓ − E [∆Qℓ]‖

2
V

]
= E

[
‖∆Qℓ‖

2
V

]
− ‖E [∆Qℓ]‖

2
V

denote the variance on a level ℓ = 0, 1, . . . , L. Then, the mean square error can be split as

(2.5) e
(
Q̂ML

h

)2
=

L∑

ℓ=0

N−1
ℓ Vℓ + ‖E [QL −Q]‖2V ,

where the first term is interpreted as the stochastic error or total variance of the estimator
and the second term as the numerical error or bias term.

One may now want to equilibrate those two parts. This means that for any given root
MSE tolerance ε, we want to choose the number of refinement levels L and number of samples
Nℓ such that both error contributions are bounded by ε2/2. Note, however, that splitting the
error equally is neither necessary nor optimal [25] and is therefore only a simplification.

Let Cℓ denote the cost of computing a single sample ∆Q
(i,ℓ)
ℓ . As a consequence, the total

cost for computing the MLMC estimator is then given by the sum

(2.6) C
[
Q̂ML

h

]
=

L∑

ℓ=0

NℓCℓ.
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If we assume L and the overall cost to be fixed, the optimal number of samplesNℓ is determined
by minimizing the total variance

∑L
ℓ=0N

−1
ℓ Vℓ, which yields the lower bound

(2.7) Nℓ ≥
2

ε2

√
Vℓ
Cℓ

L∑

ℓ′=0

√
Vℓ′Cℓ′ .

When estimates for the numerical part of the error (2.5) are explicitly known a priori, it is
possible to derive theoretically optimal choices for L [6]. In general, however, those constants
are not known a priori. Therefore, we instead opt for the approach as in [9], which chooses L
“on-the-fly”.

Algorithm 2.1 Multilevel Monte-Carlo

1: Initialize L = 2 and set initial values for Nℓ on levels ℓ = 0, 1, 2.
2: while Nℓ was increased previously in Line 1, Line 5 or Line 7 for any ℓ do
3: Compute remaining Qℓ(w

(i,ℓ)) and Qℓ−1

(
ω(i,ℓ)

)
for i = 1, . . . , Nℓ on each level ℓ.

4: Compute Q̂ML
h according to (2.3) and update estimates for Vℓ, ℓ = 0, 1, . . . , L.

5: Update Nℓ for ℓ = 0, 1, . . . , L according to (2.7) using the new estimates for Vℓ.
6: if test for convergence of the bias term fails, then
7: set L := L + 1 and initialize NL.
8: end if

9: end while

In Line 4 in the above algorithm, the variances Vℓ are estimated according to (2.4) by
approximating,

(2.8) Vℓ = E

[
‖∆Qℓ‖

2
V

]
− ‖E [∆Qℓ]‖

2
V ≈

1

Nℓ − 1




Nℓ∑

i=1

∥∥∥∆Q(i,ℓ)
ℓ

∥∥∥
2

V
−

1

Nℓ

∥∥∥∥∥

Nℓ∑

i=1

∆Q
(i,ℓ)
ℓ

∥∥∥∥∥

2

V


 .

In Line 7, we test for convergence by verifying, if

‖E[QL −Q]‖2V < ε2/2

is satisfied for the root MSE tolerance ε. Since E[Q] depends on the (a priori unknown) exact
solution u, we approximate the remaining error from previous levels. Assuming ‖E[Qℓ −Qℓ−1]‖

2
V =

O(2−αℓ) for ℓ→ ∞ with α ≥ 1, we obtain

(2.9) E[Q−QL] =
∞∑

ℓ=L+1

E[Qℓ −Qℓ−1] ≃
E[QL −QL−1]

2α − 1
,

where we use the symbol “≃” in the following sense:

A ≃ B ⇐⇒ cB ≤ A ≤ ĉB, c, ĉ > 0.

The total cost for computing the MLMC estimate Q̂ML
h in a Hilbert space is characterized

by the following theorem, similar to [9, Theorem 1].
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Theorem 2.1. Suppose there exist constants α, β, γ > 0, such that α ≥ 1
2 min(β, γ),

• ‖E[Qh −Q]‖V ≤ O (hα) as h→ 0,

• Vℓ ≤ O
(
Hβ

ℓ

)
and

• Cℓ ≤ O
(
H−γ

ℓ

)
as ℓ→ ∞.

Then for any ε small enough there exist a total number of levels L and a number of samples
Nℓ, ℓ = 0, . . . , L, such that the root mean square error e(Q̂ML

h ) is bounded by ε and the total
cost behaves like

(2.10) C
[
Q̂ML

h

]
≤ O








ε−2, β > γ

ε−2(log ε)2, β = γ

ε−2− γ−β
α , β < γ


 .

Since the proof of the above theorem closely follows along the lines of [9, Appendix A],
it is omitted here. The main difference results from assuming that E[Q] is an element of a
generic Hilbert space and from the corresponding definitions of the estimator’s total variance
and numerical bias according to (2.4) and (2.5).

To interpret the above theorem, it is useful to have a look at the core idea of its proof.
Starting with the basic definition of the costs (2.6), we insert the optimal choice for the number
of samples (2.7) and the assumptions on Vℓ and Cℓ,

C
[
Q̂ML

h

]
=

L∑

l=0

NℓCℓ ≃
2

ǫ2

(
L∑

ℓ=0

√
VℓCℓ

)2

∝ ε−2

(
L∑

ℓ=0

H
β−γ
2

ℓ

)2

.

A case-by-case analysis of the sum then leads to the estimate in (2.10). Note that the case
β > γ means that the total cost is dominated by the coarsest levels, whereas β < γ corresponds
to a case where most of the computational effort is found on the finest levels.

3. MLMC and local time-stepping for the wave equation. Here, we estimate the com-
putational cost of the MLMC algorithm in the presence of locally refined meshes, first with a
standard explicit time-stepping method and then with a local time-stepping method. In doing
so, we differentiate between local refinement inside a small fixed region or towards a reentrant
corner.

3.1. Standard discretizations on a (quasi-)uniform mesh. In Algorithm 2.1, the numer-
ical method to compute any approximation for a fixed sample ω ∈ Ω was not specified further.
In this section, we will take a closer look on the methods used to compute numerical solutions
to (2.1) for fixed ω ∈ Ω. We start by discretizing the wave equation (2.1) in space with either
standard continuous (H1-conforming) finite elements with mass-lumping or an appropriate
discontinuous Galerkin (DG) discretization, for example symmetric IP-DG [23] or HDG [44].
The standard continuous Galerkin formulation of the wave equation (2.1) starts from its weak
formulation [30]. We then wish to approximate the solution u(t, ·) in a suitable Finite Element
space VH and thus consider the semidiscrete Galerkin approximation: find uH : [0, T ] → VH
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such that
(
∂2

∂t2
uH , v

)
+ (c∇uH , c∇v) = (f, v) ∀ v ∈ VH , t ∈ (0, T ],

uH |t=0 = ΠHu0,

∂

∂t
uH |t=0 = ΠHv0,

where (·, ·) and ΠH denote the standard L2 scalar product and the L2-projection onto VH ,
respectively. Further let u denote the vector of coefficients of uH with respect to a basis
(ϕi)i=1,...,n of VH and let the mass and stiffness matrices, M and K, and load vector F be
defined by its entries

Mi,j = (ϕj , ϕi) , Ki,j = (c∇ϕj , c∇ϕi) , Fi(t) = (f(t, ·), ϕi) ,

respectively. This leads to a second-order system of ordinary differential equations

(3.1)





Mü(t) +Ku(t) = F(t),

u(0) = u0,

u̇(0) = v0,

where it is important to remember that both u and K depend on ω ∈ Ω through c. After
standard mass-lumping approximation [11, 10] and setting z = M1/2u, A = M−1/2KM−1/2

and F̃ = M−1/2F, we rewrite (3.1) as

(3.2) z̈(t) +Az(t) = F̃(t),

which can now be discretized in time by a standard explicit time-stepping scheme. Although
here we opt for the popular second-order leapfrog scheme [24], all the estimates derived below
in fact remain identical for any standard explicit time-stepping method, such as Runge-Kutta
or Adams-Bashforth multistep methods.

For F̃n = F̃(tn), the second-order leapfrog (LF) scheme with time step ∆t > 0 is then
given by

(3.3)





zn+1 − 2zn + zn−1 = ∆t2
(
F̃n −Azn

)
∀n ≥ 1,

z0 = M1/2u0,

z1 = z0 −∆tM1/2v0 +
∆t2

2

(
F̃0 −Az0

)
,

where zn ≃ z(tn, ω) for a fixed ω ∈ Ω.

Corollary 3.1. Let Q̂ML
h be the MLMC estimator to E[Q] ∈ V , where Q : C0

(
0, T ;L2 (D)

)
→

V is Lipschitz continuous, D ⊂ R
d. Assume u(·, ·, ω) to be sufficiently regular uniformly in

ω ∈ Ω and let Qℓ = Q (uHℓ
), where uHℓ

is computed using finite element space discretization
of order k and standard explicit time integration schemes of order m, i.e.

‖E [Qℓ −Q]‖V ≤ O
(
(Hℓ)

k+1 + (∆tℓ)
m
)
,
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with ∆tℓ satisfying a CFL condition ∆tℓ ≃ Hℓ/k
2. Further let β > 0 be a constant, such that

Vℓ ≤ O
(
(Hℓ)

β
)
and

2min{k + 1,m} ≥ min{β, d+ 1}.

Then for any ε small enough, there exist a total number of levels L and a number of
samples Nℓ, ℓ = 0, . . . , L, such that the root mean square error e(Q̂ML

h ) is bounded by ε and
the total cost behaves like

(3.4) C
[
Q̂ML

h

]
≤ O








ε−2, β > d+ 1

ε−2(log ε)2, β = d+ 1

ε
−2− d+1−β

min{m,k+1} , β < d+ 1


 .

Remark 3.2. The above result can be generalized to a broader class of quantities of interest
Q, with possibly modified convergence rates in (3.4).

Proof. The computational cost Cℓ of solving one wave equation with an explicit time-
stepping scheme on a (quasi-)uniform mesh of size Hℓ is computed as the number of time-steps
times the costs in each step, which are dominated by one or more matrix-vector multiplications
of type “Aun”. The cost of each such matrix-vector multiplication is approximately the
number of degrees of freedom per element squared, k2d, times the number of elements, which
is proportional to H−d

ℓ . Due to the CFL stability condition, the number of time-steps used
on each level is inversely proportional to ∆tℓ ≃ Hℓ/k

2. Hence, the total computational cost

for one wave equation on level ℓ is Cℓ = c3 k
2(d+1)H

−(d+1)
ℓ . Since α = min{k + 1,m} because

of the CFL restriction on ∆tℓ, the corollary directly follows from Theorem 2.1.

3.2. Effect of local mesh refinement. Due to geometric constraints or accuracy require-
ments, it may not be optimal or even possible to coarsen the entire mesh uniformly in the
presence of singularities or complex geometry, see Figure 3.1. This results in a splitting of the
computational domain, where small parts of the geometry Dfine might not allow for elements
larger than a given hf , and a coarse part Dcoarse, where the mesh size on the coarsest level
H0 ≫ hf can (in theory) be arbitrarily large. An example is illustrated in Figure 3.2 for the
domain D = (0, 6) ⊂ R.

One of the key ideas of the MLMC method is to evaluate most of the samples on the
coarsest levels and only a few on the finest. For explicit time-stepping schemes the maximal
time-step depends on the size of the smallest elements of the mesh. Hence, if parts of the mesh
consist of a few tiny elements across all levels, for every sampling the maximal time-step will
be constrained by those elements in Dfine. On coarser levels, standard explicit time-stepping
schemes then become increasingly inefficient due to the ever more restrictive CFL condition.

In order to quantify this effect, we want to estimate the computational cost of multilevel
Monte Carlo with finite elements and leapfrog for the wave equation in the presence of local
refinement on a fixed hierarchy of discretizations. Note that another type of local mesh refine-
ment will be adressed in section 3.5, which are graded meshes for domains with a reentrant
corner.

For the sake of simplicity, we consider (3.1) with right-hand side equal to zero and assume
that the (integer) coarse-to-fine mesh size ratio pℓ =

⌈
Hℓ/h

f
⌉
on any level ℓ = 0, 1, . . . , L is of
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Figure 3.1. 2D Example of a computational domain with a locally refined mesh.

0 1 2 3 4 5 6

x

0

1

2

3

re
fi
n

e
m

e
n

t 
le

v
e

l 
l

H
l
 = 2-(l+1)

h = 2-5

Figure 3.2. Locally refined sequence of meshes on [0, 6] for levels ℓ = 0, 1, 2, 3. In the coarse part the mesh
width is halved on each level, hc

ℓ = 1/2ℓ+1. In the fine part the width hf stays constant at 1/32.

the form pℓ = p0/2
ℓ = 2L−ℓpL, where we assume that pL ≥ 1 and, thus, HL ≥ hmin, i.e. the

mesh in Dcoarse with mesh size Hℓ = H0/2
ℓ remains coarser than the mesh in Dfine through all

levels (except possibly the finest). In the following, let ∆tℓ ≃ Hℓ/k
2 be the “optimal” time-

step on a uniform mesh, where k denotes the polynomial degree of the FEM basis functions.
Then, the number of FEM degrees of freedom in the coarse and fine parts are respectively
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given by

(3.5) ncℓ ≃ (1− r)kd
1

(Hℓ)
d
, nf ≃ rkd

1

(hf)
d
= rkd

(
pℓ
Hℓ

)d

∀ℓ,

where r denotes the relative volume of the locally refined part Dfine with respect to the
whole domain D. As the computational cost of the leapfrog method (3.3) is dominated by
matrix-vector multiplications Aun, we will focus on these. With (3.5), each of these require
approximately

kd
(
ncℓ + nf

)
≃
k2d

Hd
ℓ

(
(1− r) + rpdℓ

)

operations. Due to CFL restriction, in order to proceed the simulation from 0 to T , standard
LF needs approximately

T

∆tℓ/pℓ
≃ T

k2pℓ
Hℓ

time-steps of size ∆tℓ/pℓ ≃ hmin/k
2 ∀ℓ. Hence, ignoring constants, the cost of solving one

wave equation on any level ℓ for a particular ω ∈ Ω approximately equals

(3.6) CLF [uℓ(ω)] ≃

(
T
k2pℓ
Hℓ

)
·

(
k2d

Hd
ℓ

(
(1− r) + rpdℓ

))
= Tk2(d+1) pℓ

Hd+1
ℓ

(
(1− r) + rpdℓ

)
.

Thus, we can estimate the cost of computing one sample ∆Q
(i,ℓ)
ℓ using standard LF, where

we assume that the cost of computing any Q
(i,ℓ)
ℓ is dominated by computing u

(i,ℓ)
ℓ . For ℓ = 0,

we have

CLF
0 = CLF

[
u0

(
ω(i,ℓ)

)]
≃
Tk2(d+1)

Hd+1
0

(
(1− r) p0 + r pd+1

0

)

and for ℓ ≥ 1, where we use that Hℓ = H0/2
ℓ and pℓ = 2−ℓp0,

CLF
ℓ = CLF

[
uℓ

(
ω(i,ℓ)

)]
+ CLF

[
uℓ−1

(
ω(i,ℓ)

)]

≃ Tk2(d+1)

(
pℓ

Hd+1
ℓ

(
(1− r) + rpdℓ

)
+

pℓ−1

Hd+1
ℓ−1

(
(1− r) + rpdℓ−1

))

≃
Tk2(d+1)

Hd+1
0

(
(1− r)

2d + 1

2d
2dℓp0 + r · 2pd+1

0

)
.(3.7)
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By using (2.7), we obtain for the estimate of the total computational cost:

CLF =
L∑

ℓ=0

NℓC
LF
ℓ ≃

2

ε2

(
L∑

ℓ=0

√
VℓC

LF
ℓ

)2

≃
2Tk2(d+1)

ε2Hd+1
0

(√(
(1− r) p0 + r pd+1

0

)
V0

+
L∑

ℓ=1

√(
(1− r)

2d + 1

2d
2dℓp0 + r · 2pd+1

0

)
Vℓ

)2

.(3.8)

3.3. Local time-stepping. To overcome the bottleneck due to local mesh refinement on
explicit time-stepping methods, we now consider explicit local time-stepping (LTS) methods
[12] for the numerical solution of (3.2). First, we split the vector of unknowns z into coarse
and fine parts as

z = (I−P)z+Pz,

where P is a diagonal matrix with all entries equal to zero or one, identifying the degrees
of freedom in the refined part of the mesh Dfine and all elements adjacent to it. Hence, Pz

contains those degrees of freedom associated with the locally refined part of the mesh.
The original leapfrog-based local time-stepping (LF-LTS) methods for solving second-

order wave equations (3.2) with arbitrarily high accuracy was proposed in [12, 21]. Inside
the “coarse” part of the mesh, it uses the standard LF method with a global time-step ∆t.
Inside the “fine” part, however, the method loops over p local LF steps of size ∆t/p, where
p ≥ H/hf is a positive integer. When combined with a mass-lumped conforming [11, 10] or
discontinuous Galerkin FE discretization [23] in space, the resulting method is truly explicit
and inherently parallel; it was successfully applied to 3D seismic wave propagation [31]. A
multilevel version was later proposed [13] and achieved high parallel efficiency on an HPC
architecture [41].

Optimal convergence rates for the LF-LTS method from [12] were derived for a conforming
FEM discretization, albeit under a CFL condition where ∆t in fact depends on the smallest
elements in the mesh [19]. To prove optimal L2 convergence rates under a CFL condition
independent of p, a stabilized version of LF-LTS was devised recently in [20]. The same
algorithm was also proposed independently by the group of Hochbruck [8]. For this method,
we consider stabilized Chebyshev polynomials [29], based on Chebyshev polynomials of the
first kind [42], denoted by Tp, and a stabilization parameter 0 ≤ ν ≤ 1. Let us further define
the constants

δp,ν := 1 +
ν

p2
, ωp,ν := 2

T ′
p (δp,ν)

Tp (δp,ν)

and

βk :=
Tk−1 (δp,ν)

Tk+1 (δp,ν)
, βk+1/2 :=

Tk (δp,ν)

Tk+1 (δp,ν)
∀ 1 ≤ k ≤ p− 1.
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For example, for p = 2, ν = 0.01, we have δp,ν = 1.005 and

ωp,ν = 2
T ′
2 (δp,ν)

T2 (δp,ν)
= 2

4δp,ν
2δ2p,ν − 1

≈ 7.882,

β1 =
T0 (δp,ν)

T2 (δp,ν)
=

1

2δ2p,ν − 1
≈ 0.981,

β3/2 =
T1 (δp,ν)

T2 (δp,ν)
=

δp,ν
2δ2p,ν − 1

≈ 0.985.

Then, the stabilized LF-LTS algorithm to compute zn+1 ≃ z(tn+1) for given zn, zn−1 for the
wave equation, here with zero forcing for simplicity, is given as follows.

Algorithm 3.1 Stabilized LF-LTS

1: Set qn
0 := zn and wn = A (I−P)qn

0 .
2: Compute

qn
1/p = qn

0 −
1

2

(
∆t

p

)2 2p2

ωp,νδp,ν
(wn +APqn

0 ) .

3: for m = 1, . . . , p− 1 do

4: Compute

qn
(m+1)/p = (1 + βk) q

n
m/p − βk q

n
(m−1)/p −

(
∆t

p

)2 2p2

ωp,ν
βk+1/2

(
wn +APqn

m/p

)
.

5: end for

6: Compute zn+1 = −zn−1 + 2qn
1 .

If the fraction of nonzero entries in P is small, the overall cost will be dominated by
the computation of wn, which requires a single multiplication with A(I − P) per time-step
∆t. All further matrix-vector multiplications with AP only involve those unknowns inside, or
immediately next to, the refined region. InsideDcoarse, away from the coarse/fine interface, the
algorithm reduces to the standard LF method with time-step ∆t, regardless of p or ν. This is
especially the case for P = 0, that is without any local time-stepping. For ν = 0, Algorithm 3.1
coincides with the original one from [12], since δp,ν = 1, and therefore βk = βk+1/2 = 1 and
ωp,ν = 2p2.

In the following, we wish to repeat the computational cost analysis for MLMC combined
with standard LF on locally refined meshes from the previous section, but this time for the
(stabilized) LF-LTS method. On any level ℓ, solving a single wave equation will require
approximately

T

∆tℓ
≃
Tk2

Hℓ

time-steps of size ∆tℓ. For each of these time-steps, the computational cost is dominated by
pℓ ≃ Hℓ/h

f operations of the type “APv” and one operation “A(I−P)v”, which only affect
the nf or ncℓ unknowns in the fine or coarse part of the domain, respectively. While again
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ignoring constants, it follows from (3.5) that the cost of solving one wave equation on level ℓ
for a particular ω ∈ Ω with LF-LTS approximately equals

(3.9) CLF-LTS [uℓ(ω)] ≃
Tk2

Hℓ
·

(
k2d

Hd
ℓ

(
(1− r) + rpd+1

ℓ

))
=
Tk2(d+1)

Hd+1
ℓ

(
(1− r) + rpd+1

ℓ

)
.

As before, this allows us to estimate the cost of computing one sample ∆Q
(i,ℓ)
ℓ using LF based

LTS for any ℓ. For ℓ = 0, this results simply from inserting ℓ = 0 in (3.9). For ℓ ≥ 1, we
receive by similar arguments as before,

CLF-LTS
ℓ = CLF-LTS

[
uℓ

(
ω(i,ℓ)

)]
+ CLF-LTS

[
uℓ−1

(
ω(i,ℓ)

)]

≃
Tk2(d+1)

Hd+1
0

(
(1− r)

2d+1 + 1

2d+1
2(d+1)ℓ + r · 2pd+1

0

)
.(3.10)

With (2.7), this leads to a total computational cost estimate of

CLF-LTS =
L∑

ℓ=0

NℓC
LF-LTS
ℓ ≃

2

ε2

(
L∑

ℓ=0

√
VℓC

LF-LTS
ℓ

)2

,

≃
2Tk2(d+1)

ε2Hd+1
0

[√(
(1− r) + rpd+1

0

)
V0

+

L∑

ℓ=1

√(
(1− r)

2d+1 + 1

2d+1
2(d+1)ℓ + r · 2pd+1

0

)
Vℓ

]2
.(3.11)

3.4. Standard vs. local time-stepping: a cost comparison. Here, we estimate the in-
crease in computational cost for MLMC with standard LF time-stepping over the (stabilized)
LF-LTS. For this, we compute the theoretical speed-up S,

(3.12) S (d, r, p0, L, {Vℓ}) =
CLF

[
Q̂ML

h

]

CLF-LTS

[
Q̂ML

h

] ,

where CLF denotes the total computational cost for computing the MLMC estimate to the
solution of (2.1) with the second-order LF method (3.3) and CLF-LTS the cost for computing
it with the LF-LTS scheme (Algorithm 3.1). In particular, we study the effects of various
parameters on S, such as the relative volume r of the locally refined region, Dfine, with
respect to the entire computational domain D. The quotient of (3.11) over (3.8) yields the
following proposition.

Proposition 3.3. The theoretical speed-up S in (3.12) of MLMC combined with LF-LTS,
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Table 3.1
Fixed parameter values used in Figures 3.3 to 3.5 with r the relative volume of the refined part, p0 the local

refinement factor on the coarsest level and β the variance convergence rate, i.e. Vℓ = V0/2
βℓ.

d r p0 β

1 10−2 13 4
2 10−4 19 6
3 10−6 27 8

CLF-LTS, over MLMC with standard LF, CLF, is given by

S (d, r, p0, L, {Vℓ}) =
CLF

CLF-LTS

≃




√(
(1− r) p0 + r pd+1

0

)
V0 +

L∑
ℓ=1

√
Vℓ

(
r · 2pd+1

0 + (1− r) 2(d+1)ℓ · 2d+1
2d+ℓ p0

)

√(
(1− r) + rpd+1

0

)
V0 +

L∑
ℓ=1

√
Vℓ

(
r · 2pd+1

0 + (1− r) 2(d+1)ℓ · 2d+1+1
2d+1

)




2

.(3.13)

Remark 3.4. Proposition 3.3 also holds for LTS schemes based on other explicit methods,
such as the fourth-order modified equation approach [12], Runge Kutta schemes [18] or Adams-
Bashforth methods [22]. Here, for simplicity, we have assumed the variances {Vℓ}ℓ=0,1,...,L to
be equal for both time integration methods, with or without LTS; in practice, this may not
be true – see also Section 4.3.

The speed-up S derived in Proposition 3.3 calls for a more detailed interpretation. In doing
so, we restrict ourselves to the case where the mesh on the finest level L is (quasi-)uniform.
More precisely, we assume that HL−1/h

f ∈ (1, 2) and refine the mesh in both Dcoarse and Dfine

such that the resulting mesh on level L is (quasi-)uniform with pL = 1. Then, the number
of MLMC levels is simply given by L = ⌈log2 p0⌉, so that S in (3.13) only depends on the
four parameters d, r, p0 and β, where Vℓ = V0/2

βℓ. Hence, local time-stepping only occurs on
the coarser levels 0, 1, . . . , L− 1. Clearly, an even greater speed-up might result from a mesh
locally refined even on the finest level L.

In Figures 3.3 to 3.5, the speed-up S is shown as a function of the single parameters r or
p0, while keeping all other parameters fixed, as in Table 3.1. We observe that the speed-up
rapidly increases with decreasing relative volume of the refined part r, until it reaches the
maximal speed-up of LTS over standard LF on the coarsest level ℓ = 0. For fixed r, the
maximal speed-up occurs for 10 ≤ p0 ≤ 30, but decreases again for larger p0. At first glance,
it might seem counterintuitive that S decreases for higher values of p0. However, as the ratio
of degrees of freedom in the “fine” part over those in the “coarse” part further increases with
p0, the cost for every local time-step relative to the overall cost of one global time-step also
increases, which results in LTS being less efficient. In fact, even for a single (deterministic)
forward solve, the speed-up of LTS with p local time-steps over standard time integration,
given by the ratio of (3.6) over (3.9), is also maximal for the same range of p, as shown on
the left of Figure 3.6.
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Figure 3.3. Theoretical speed-up S in 1D vs. relative volume r of refined part (left) and local refinement
factor p0 = H0/h

f on the coarsest level (right) with other parameters fixed as in Table 3.1.
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Figure 3.4. Theoretical speed-up S in 2D vs. relative volume r of refined part (left) and local refinement
factor p0 = H0/h

f on the coarsest level (right) with other parameters fixed as in Table 3.1.
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Figure 3.5. Theoretical speed-up S in 3D vs. relative volume r of refined part (left) and local refinement
factor p0 = H0/h

f on the coarsest level (right) with other parameters fixed as in Table 3.1.
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Figure 3.6. Left: Theoretical speed-up for a single (deterministic) solve given by the ratio of (3.6) over
(3.9) relative to the number of local time-steps p with relative volume of the refined region r = 1/100d. Right:
Theoretical speed-up S for MLMC vs. variance convergence rate β for Vℓ = V0/2

βℓ with local refinement factor
p0 and relative volume r fixed as in Table 3.1.

In the right frame of Figure 3.6, we see that the performance of MLMC is improved most
by LTS at higher convergence rates β for the variance Vℓ = V0/2

βℓ. Indeed, the larger β,
the more samples are computed on the coarsest levels, where the benefit of using LTS is the
greatest.

3.5. Graded mesh refinement towards a reentrant corner. Here, we consider a different
type of local mesh refinement due to a graded mesh toward a reentrant corner. Let D be
an L-shaped domain in R

2 with a reentrant corner at (0.5, 0.5), shown in Figure 3.7. Due to
characteristic singularities of the solution at reentrant corners, uniform meshes generally do
not yield optimal convergence rates [39]. In the elliptic case, a common remedy to restore the
accuracy and achieve optimal convergence rates is to use (a-priori) graded meshes toward the
reentrant corner with appropriate weighted Sobolev spaces [3], see, e.g. [43, Chapt. 3.3.7].
Optimal convergence rates were also recently proved for a semi-discrete Galerkin formulation
of the wave equation [38] on graded meshes.

Hence, we first partition D into six triangles of equal size with a common vertex at the
center (0.5, 0.5). Then, on every edge e connected to the center, we allocate m+ 1 points at
distance

|e|

(
k

m

)s

, k = 0, 1, . . . ,m,

from it, where s ≥ 1 is a fixed grading parameter; the larger s, the more strongly the triangles
will cluster near the reentrant corner, whereas for s = 1 the mesh is uniform throughout D.
All other vertices within the same k-th layer are distributed uniformly, as shown in Figure 3.7
for a graded mesh with s = 2 and m = 10. For more details on the construction of these
graded meshes, we refer to [38] and the references therein. Furthermore, this strategy can be
extended to general dimensions d = 1, 2, 3.
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Figure 3.7. Graded mesh on the L-shaped domain D with m = 10, s = 2.

By construction, the elements in a graded mesh Tm,s are distributed among m different
tiers or layers with equally sized triangles with

hk ≈
ks − (k − 1)s

2ms
, k = 1, . . . ,m.

Hence, the smallest and largest elements of the mesh are approximately of size h1 ≈ 1/(2ms)
and hm ≈ (1 − (m − 1)s/ms)/2, respectively. The number of elements in the inner k layers
scales like kd.

Thus, we can estimate the computational cost for solving the wave equation for one par-
ticular sample ω ∈ Ω with any standard explicit time-stepping method by multiplying the
number of time-steps with the number of elements. Since the time-step must be proportional
to h1 for stability, the cost for solving the wave equation on level ℓ in the MLMC algorithm
with the standard LF method scales as

(3.14) CLF [uℓ(ω)] ≃
no. of elements in D

h1
≃
md

ℓ

h1
≃ ms+d

ℓ ,

where mℓ denotes the number of layers on level ℓ, e.g. mℓ = m0 2
ℓ.

To estimate the computational cost for local time-stepping, we first choose the subdomain
Df , where a smaller time-step is used, as the union of the smaller first q layers with q still
to be determined. In Df , the time-step is then again proportional to the smallest mesh size
h1, whereas in Dc = Ω \ Df it is proportional to the smallest element in the outer tiers
q + 1, . . . ,mℓ of mesh size hq+1. Hence, the computational cost for solving the wave equation
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for one particular ω ∈ Ω with an explicit LTS method scales as

CLF-LTS [uℓ(ω)] ≃
no. of elements in Df

h1
+

no. of elements in Dc

hq+1

≃ qdms
ℓ +

(
md

ℓ − qd
) ms

ℓ

(q + 1)s − qs

=
ms+d

ℓ +ms
ℓq

d ((q + 1)s − qs − 1)

(q + 1)s − qs
,(3.15)

The ratio of (3.14) to (3.15) yields the expected relative speed-up

(3.16)
CLF [uℓ(ω)]

CLF-LTS [uℓ(ω)]
≃

md
ℓ ((q + 1)s − qs)

md
ℓ + qd ((q + 1)s − qs − 1)

.

To determine the optimal value for q ∈ [1,mℓ], which minimizes CLF-LTS, or equivalently
maximizes the relative speed-up, we now set the derivative of (3.16) with respect to q to zero:

s
(
(q + 1)s−1 − qs−1

)(
md

ℓ + qd ((q + 1)s − qs − 1)
)

− ((q + 1)s − qs) qd−1
(
d ((q + 1)s − qs − 1) + sq

(
(q + 1)s−1 − qs−1

))
= 0.(3.17)

Since the left-hand side is positive for small q and negative for larger values such as q = mℓ,
there exists an optimal value qoptℓ , 1 < qoptℓ < mℓ, for mℓ ≥ 2 and s ≥ 1. Since we do not seek

the precise value of qoptℓ but only wish to determine its asymptotic behavior as mℓ → ∞, we
consider (3.17) for large q. By using that, for any α > −1,

(3.18) (q + 1)α − qα = αqα−1 +O
(
qα−2

)
, q → ∞,

the equation (3.17) for qoptℓ reduces to

(s− 1)md
ℓ − s d qd+s−1 +O

(
md

ℓ

q
+ qd + qd+s−2

)
= 0.

For mℓ, q → ∞, the first two terms clearly dominate the other ones, which yields

(3.19) qoptℓ = O
(
m

d/(d+s−1)
ℓ

)
, mℓ → ∞.

Applying (3.18) to (3.15) and inserting (3.19) leads to

(3.20) CLF-LTS [uℓ(ω)] ≃
md+s

ℓ

s qs−1
+ms

ℓq
d

(
1−

1

s qs−1

)
= O

(
m

s+d2/(d+s−1)
ℓ

)
.

Corollary 3.5. Let Q̂ML
h be the MLMC estimator to E[Q] ∈ V , where Q is a Lipschitz

map C0
(
0, T ;L2 (D)

)
→ V , D ∈ R

d. Assume u(·, ·, ω) in a sufficiently regular weighted
Sobolev space, uniformly in ω, and let Qℓ = Q (uHℓ

), where uHℓ
is computed using FE space
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discretization on s-graded meshes, s ≥ 1, as above and explicit time integration schemes of
the same order k, i.e.

‖E [QHℓ
−Q]‖L2(D) ≤ O

(
(Hℓ)

k+1 + (∆tℓ)
k+1
)
,

where Hℓ is the largest element of the mesh and the time-step ∆tℓ fulfills the CFL condition

∆tℓ ≃ Hℓ/k
2. Further let β > 0 be a constant, such that Vℓ ≤ O

(
(Hℓ)

β
)

and 2(k + 1) ≥

min{β, s+ d2/(d+ s− 1)}.
Then for any ε small enough, there exist a total number of levels L and a number of

samples Nℓ, ℓ = 0, . . . , L, such that the root mean square error e(Q̂ML
h ) is bounded by ε.

If standard time-stepping is used, the total cost for ε→ 0 behaves like

(3.21) C
[
Q̂ML

h

]
≤ O








ε−2, β > s+ d

ε−2(log ε)2, β = s+ d

ε−2− s+d−β
k+1 , β < s+ d


 ,

whereas if LTS is used, the total cost behaves like

(3.22) C
[
Q̂ML

h

]
≤ O








ε−2, β > s+ d2/(d+ s− 1)

ε−2(log ε)2, β = s+ d2/(d+ s− 1)

ε−2−
s+d2/(d+s−1)−β

k+1 , β < s+ d2/(d+ s− 1)


 .

Proof. The result follows from similar arguments as for Corollary 3.1 by applying Theo-
rem 2.1 with γ = s+ d for standard time-stepping (3.14) and γ = s+ d2/ (d+ s− 1) for LTS
(3.20).

Remark 3.6. The ratio of (3.21) to (3.22) yields the theoretical speed-up (3.12) for ε→ 0:

(3.23) S ≤





O (1) , β > s+ d,

O
(
ε−

s+d−β
k+1

)
, s+ d2/(d+ s− 1) < β < s+ d,

O

(
ε
−

d(s−1)
(k+1)(s+d−1)

)
, β < s+ d2/(d+ s− 1).

For β > s + d, the total cost is dominated by the computational effort on the coarsest levels
for both time-stepping methods; hence, the total cost has the same asymptotic behavior up
to a constant factor. In the two other cases with β < s + d, however, the speed-up of using
LF-LTS over standard LF actually grows as the error tolerance ε decreases. In other words,
the smaller the desired error level ε, the larger the gain in using local time-stepping in MLMC.
For P1-elements in d = 2 space dimensions with grading parameter s = 2, for instance, the
speed-up grows like S = O

(
ε−1/3

)
if β < 10/3.

For the above cost estimation, the computational mesh is divided into a ”coarse” and a
”fine” region, each associated with a distinct time-step. Since the region of local refinement
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Figure 4.1. Continuous random wave speed. Realizations of the random wave speed c(x, ω(i,ℓ)) on levels
ℓ = 2, 3, 4.

itself contains sub-regions of further refinement, those “very fine” elements yet again will dic-
tate the time-step, albeit local, to the entire “fine” region. Then, it would be more efficient
to let the time-marching strategy mimic the multilevel hierarchy of the mesh organized into
tiers of “coarse”, “fine”, “very fine”, etc. elements by introducing a corresponding hierarchy
into the time-stepping method. By using within each tier of equally sized elements the cor-
responding optimal time-step, the resulting multi-level local time-stepping (MLTS) method
[13] would achieve an even greater speed-up.

4. Numerical results. To illustrate the efficiency of the combined LF-LTS-MLMC algo-
rithm, we now apply it in three distinct situations with random wave speed.

4.1. Continuous random wave speed. First, we consider (2.1) in D = (0, 6) with f ≡ 0,
u0(x) = e−(x−3)2/0.09, v0(x) ≡ 0 and homogeneous Neumann boundary conditions. The
random wave speed c2 is given by the Karhunen-Loève expansion,

c2(x, ω) = 1 +
100∑

k=1

1

4π2k2

(
cos

(
kπx

6

)
ξ
(1)
k (ω) + sin

(
kπx

6

)
ξ
(2)
k (ω)

)
,

where ξ
(1)
k , ξ

(2)
k ∼ U(−1, 1) are i.i.d. uniform random variables. In Figure 4.1, we display

different realizations of c2 for different random samples on different levels.
For discretization in space, we choose continuous, piecewise linear P1 finite elements on

meshes of size Hℓ = 2−(ℓ+4) for ℓ = 0, 1, 2, . . .. For time discretization, we use the (stabilized)
LF-LTS scheme listed in Algorithm 3.1. Here, we arbitrarily set the locally refined part of
the mesh to Dfine = [5 −H0, 5] with elements of size hf = 2−8. In Figure 4.2, the respective
FE-solutions uℓ(x, T, ω

(i)) of (2.1) at T = 11 on level ℓ = 2 are shown for 10 particular samples
c(x, ω(i)).

Next, we apply the MLMC Algorithm 2.1 to estimate the expected value of the mean
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Figure 4.2. Continuous random wave speed. Overlay of solutions u(x, t, ω) at time T = 11 for different
random samples of smooth wave speed c2(ω).
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Figure 4.3. Continuous random wave speed. Work to error ratio for the MLMC-FE leapfrog method with,
or without, LTS. Left: pre-estimated costs, right: measured CPU times.

solution at a fixed time T > 0, E[u(·, T, ·)] ∈ V = L2(D). In Figure 4.3, we compare the
computational cost of MLMC with LF-LTS or with standard LF relative to the root mean
square error ε according to (2.5), where the total variance and bias term are estimated using
(2.8) and (2.9) with α = 2, respectively. Here, the computational cost is either measured via
CPU time or estimated using

C
[
Q̂ML

h

]
=

L∑

ℓ=0

NℓCℓ,

where Nℓ is determined on the fly by the MLMC algorithm and Cℓ is estimated from (3.6) for
standard LF or (3.9) for LF-LTS. As expected from Theorem 2.1, the costs of both algorithms
behave inversely proportional to ε2. Nonetheless, the MLMC algorithm using LTS is about
one order of magnitude cheaper than that using standard LF.
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Figure 4.4. Discontinuous random wave speed. Left: Overlay of realizations of the wave speed c(x, ω(i,0))
(top) and FE solutions u0(x, T, ω

(i,0)) at T = 6 (bottom). Right: Computational work vs. root MSE tolerance
ε with, or without, LTS.

4.2. Discontinuous random wave speed. Next, we again consider (2.1) as in the previous
example, yet with a discontinuous, piecewise constant wave speed,

c (x, ω) =

{
1, 0 ≤ x < ξ (ω) ,

2, ξ (ω) ≤ x ≤ 6.

Here, the exact jump position is not known precisely and thus modelled as a uniform random
variable ξ ∼ U(4−H0, 4) centered about x = 4, with the mesh size on the coarsest level H0 =
1/16. Inside [4−H0, 4], the mesh is locally refined with hf = 2−9. For spatial discretization,
we choose continuous P1 finite elements. For the time discretization, we use the leap-frog
method (3.3), either with or without LTS, as in Algorithm 3.1.

Again, we apply the MLMC Algorithm 2.1, either with or without LTS, to estimate the
expected value of the mean solution at a fixed time T > 0, E[u(·, T, ·)] ∈ V = L2(D). On the
left, Figure 4.4 shows an overlay of six particular samples c(x, ω(i)) and the respective FE-
solutions uℓ(x, T, ω

(i)) of (2.1) at T = 6 on the coarsest level. On the right, we compare the
performance of MLMC using either LF-LTS or the standard LF method with respect to the
root mean square error ε according to (2.5), where again the total variance and bias term are
estimated using (2.8) and (2.9) with α = 2, respectively. Although the total computational
cost behaves inversely proportional to ε2 in both cases, the LF-LTS based MLMC method
achieves a significant reduction in overall computational cost.

4.3. Two-dimensional narrow channel. Finally, we consider wave propagation with con-
stant unit speed c ≡ 1, vanishing source f ≡ 0 and homogeneous Neumann boundary condi-
tions in the two-dimensional domain Db(ω), shown in Figure 3.1, with varying random width
b(ω) of the narrow channel connecting the two rectangular regions. This leads to the weak
formulation: Find u : [0, T ]× Ω → H1

(
Db(ω)

)
such that

(4.1)
∂2

∂t2
(u (t, ω) , v) + (∇u (t, ω) ,∇v) = 0 ∀v ∈ H1

(
Db(ω)

)
.
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Here, Db(ω) consists of two 0.95 × 1 rectangles connected by a narrow channel 0.1 × b(ω) of
varying random width b(ω) ∈ [0.001, 0.007], where the origin of the coordinate axes is located
at the center of the narrow channel. Next, we reformulate (4.1) as in (2.1) on a (deterministic)
reference domain D̄ of fixed channel width b̄ = 0.004, yet with inhomogeneous random velocity
c(x, ω). To do so, we introduce the geometric transformation

(4.2)

{
Ψ(ω) : D̄ → Db(ω),

(x, y) 7→ (x, y + ϕ (x)ψ (y, ω)) ,

which maps the reference domain D̄ to the actual computational domain Db(ω). Here, ϕ is
smooth and ψ piecewise linear and continuous:

ϕ(x) =

{
1, |x| ≤ 0.05,
0, |x| ≥ 0.1,

ψ(y, ω) =

{
0, y = 0,±0.5,

±
(
b(ω)
2 − b̄

2

)
, y = ± b̄

2 .

Then, (4.1) is equivalent to

∂2

∂t2
(|J (ω)|u, v) +

(
|J (ω)| J (ω)−⊤∇u, J (ω)−⊤∇v

)
= 0 ∀v ∈ H1

(
D̄
)

with J (ω) the Jacobian of Ψ(ω). As initial conditions we choose the Gaussian pulse

u0(x) =

{
exp

(
1− R2

R2−||x−x0||2

)
, ||x− x0|| < R,

0, else,

v0(x) = 0

centered about x0 = (0.5, 0) and R = 0.2.
For the spatial discretization inside D̄, we use continuous, piecewise linear, finite elements

and generate a sequence of triangular meshes of mesh size Hℓ = 1/60 · 2−ℓ, ℓ = 0, 1, 2, . . .,
outside the channel. Inside the channel we use a mesh size hf ≈ 7.6 · 10−4 to resolve the
narrow gap geometry. For simplicity, we simulate the varying channel width by applying
the transformation (4.2) directly to the vertices for each realization of the uniform random
variable b ∼ U(0.001, 0.007). For time discretization, we use the (stabilized) LF-LTS method
listed in Algorithm 3.1.

We now apply the MLMC Algorithm 2.1 to estimate as QoI the expected value of the
mean solution along the vertical line x = −0.4 at time T = 1,

E[Q(u)](y) := E

[
u (x, T, ·)|

x=(−0.4,y)

]
∈ V := L2 ([−0.5, 0.5]) .

In Figure 4.5, the FE-LF-LTS solution is shown at time t = 1 for a particular sample b ≈
0.00589. We observe how the wave initiated on the right crosses the channel whose exit acts
as a point source in the left rectangle. Figure 4.6 shows an overlay of all realizations of the
quantity of interest Qℓ

(
ω(i,ℓ)

)
on levels ℓ = 1, 2 and the MLMC estimate Q̂ML

h generated by
Algorithm 2.1 for a RMS error tolerance ε = 5 · 10−5, which corresponds to a 2% relative L2

error.
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Figure 4.5. Two-dimensional narrow channel. FE solution of the wave equation on Db for b ≈ 0.00589
at time t = 1 with a dashed line at x = −0.4. On the right: The same solution restricted to the left rectangle
(x < 0) with an adjusted color map.

Figure 4.6. Two-dimensional narrow channel. Overlay of solutions Q
(i,ℓ)
ℓ = uℓ

(
x, y, T, ω(i,ℓ)

)
along the

vertical line x = −0.4 at fixed time T = 1 computed by the MLMC Algorithm 2.1 with LF-LTS on levels ℓ = 1, 2
(grey) together with the final estimate Q̂ML

h of E[Q] (blue).

Next, we compare the cost of computing the same QoI either with or without LTS on
each level. As shown in Table 4.1, the variances Vℓ with LTS are smaller than with standard
LF, which results in a smaller number of samples Nℓ on each level. Moreover, the speed-
up per sample CLF

ℓ /CLF-LTS
ℓ is maximal on the coarsest levels ℓ = 0, 1, where the difference

between Hℓ and h
f is greatest. Here, the optimal values Nℓ are determined by Algorithm 2.1

according to (2.7) while Vℓ is estimated from (2.8). To estimate Cℓ, we use the cost models
(3.7) and (3.10) from Sections 3.2 and 3.3, respectively. For the total cost C =

∑
ℓNℓCℓ, the

MLMC method with LTS is about 6.8 times faster than MLMC without LTS for the same
error tolerance.
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Table 4.1
Two-dimensional narrow channel. Comparison of using LF-LTS or standard LF to compute MLMC esti-

mate Q̂ML
h for RMS error tolerance ε = 5 · 10−5 ≈ 0.020 · ‖Q̂ML

h ‖L2(−0.5,0.5)

variance Vℓ number of samples Nℓ costs per sample
Level LF-LTS standard LF LF-LTS standard LF CLF

ℓ /CLF-LTS
ℓ

ℓ = 0 1.21 · 10−6 1.22 · 10−6 1266 1455 5.89
ℓ = 1 6.98 · 10−9 2.04 · 10−8 51 86 7.82
ℓ = 2 3.21 · 10−10 8.87 · 10−10 10 11 4.54
ℓ = 3 7.96 · 10−11 2.66 · 10−10 2 3 2.51

5. Concluding remarks. To overcome the increasingly stringent bottleneck in MLMC on
coarser levels due to locally refined meshes when using explicit time integration, we have in-
troduced on each level local time-stepping (LTS), which adapts the time-step to the local CFL
stability constraint. The combined LTS-MLMC algorithm thus extends the well-known robust
and efficient classical MLMC algorithm for uncertainty quantification to wave propagation in
complex geometry without sacrificing explicitness or inherent parallelism.

In our cost comparison of the MLMC algorithm using either standard or local time-
stepping, we distinguish between two typical situations where mesh coarsening cannot occur
uniformly across all levels. First, when local refinement occurs inside a small fixed region of
the computational domain, we have proved in Proposition 4 that the asymptotic complexity
of the computational effort as ε−2 remains unchanged up to a constant factor as the desired
accuracy ε → 0. Depending on parameter values, however, the combined LTS-MLMC easily
achieves a significant (but constant) speed-up both in theory and in our numerical examples,
in fact even more so in higher dimensions. In our one-dimensional computations, for instance,
we observe a 30-fold speed-up over MLMC with standard time-stepping. Second, we have
considered graded meshes towards a reentrant corner, which restore the optimal convergence
rates of FEM in the presence of singularity. In particular, for the L-shaped domain in two space
dimensions, we have proved in Corollary 6 that LTS can even improve the overall asymptotic
complexity of MLMC as ε→ 0. In other words, the smaller the desired error ε, the larger the
speed-up of the LTS-MLMC algorithm over standard time integration – see also Remark 7.

In our analysis and numerical experiments, we have concentrated on standard continuous
piecewise polynomial finite elements (with mass lumping) for the spatial discretization and
on the popular leapfrog method for time discreitzation. Our cost estimates nonetheless hold
for other spatial discretizations such as finite difference or discontinuous Galerkin methods,
too. Thus, we expect a similar speed-up when replacing other explicit time integrators, such
as Adams-Bashforth or Runge-Kutta methods, by their explicit LTS counterparts [21, 22, 18].

Although we have only considered pre-defined sequences of meshes featuring local refine-
ment, the methodology and analysis presented here is also relevant for MLMC combined with
adaptive mesh refinement based on a posteriori error estimators [28, 14, 17]. The combined
LTS-MLMC approach will also prove useful for parabolic problems, if the LTS counterpart of
explicit RK-Chebyshev methods [1] is used for time integration.
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