5 research outputs found

    Dynamic iteration and model order reduction for magneto-quasistatic systems

    Get PDF
    Our world today is becoming increasingly complex, and technical devices are getting ever smaller and more powerful. The high density of electronic components together with high clock frequencies leads to unwanted side-effects like crosstalk, delayed signals and substrate noise, which are no longer negligible in chip design and can only insufficiently be represented by simple lumped circuit models. As a result, different physical phenomena have to be taken into consideration since they have an increasing influence on the signal propagation in integrated circuits. Computer-based simulation methods play thereby a key role. The modelling and analysis of complex multi-physics problems typically leads to coupled systems of partial differential equations and differential-algebraic equations (DAEs). Dynamic iteration and model order reduction are two numerical tools for efficient and fast simulation of coupled systems. Formodelling of low frequency electromagnetic field, we use magneto-quasistatic (MQS) systems which can be considered as an approximation to Maxwells equations. A spatial discretization by using the finite element method leads to a DAE system. We analyze the structural and physical properties of this system and develop passivity-preserving model reduction methods. A special block structure of the MQS model is exploited to to improve the performance of the model reduction algorithms

    Structure-Preserving Model Reduction of Physical Network Systems

    Get PDF
    This paper considers physical network systems where the energy storage is naturally associated to the nodes of the graph, while the edges of the graph correspond to static couplings. The first sections deal with the linear case, covering examples such as mass-damper and hydraulic systems, which have a structure that is similar to symmetric consensus dynamics. The last section is concerned with a specific class of nonlinear physical network systems; namely detailed-balanced chemical reaction networks governed by mass action kinetics. In both cases, linear and nonlinear, the structure of the dynamics is similar, and is based on a weighted Laplacian matrix, together with an energy function capturing the energy storage at the nodes. We discuss two methods for structure-preserving model reduction. The first one is clustering; aggregating the nodes of the underlying graph to obtain a reduced graph. The second approach is based on neglecting the energy storage at some of the nodes, and subsequently eliminating those nodes (called Kron reduction).</p

    Modellierung und Numerik zeitharmonischer Wirbelstromprobleme in 3D

    Get PDF
    Diese Arbeit beschäftigt sich mit der numerischen Lösung zeitharmonischer Wirbelstromprobleme in 3D und Aspekten der mathematischen Modellierung. Ziel ist sowohl die Entwicklung eines effizienten Finite-Element-Codes unter Verwendung adaptiver Mehrgitterverfahren als auch die Entwicklung einer Randelementmethode für Impedanzrandbedingungen. Das zugrundeliegende Wirbelstrommodell ist eine Näherung der Maxwellschen Gleichungen und beschreibt niederfrequente elektromagnetische Phänomene, bei denen die magnetische Energie dominiert. Innerhalb der Arbeit wird eine Schranke für den Modellierungsfehler des Wirbelstrommodells hergeleitet. Aus der Fehlerbetrachtung folgt, daß die in der Ingenieurliteratur anerkannten Bedingungen (charakteristische Größe 0 konvergiert, falls ausschliesslich induzierte Wirbelströme existieren, ansonsten konvergiert der Fehler nur mit O(f). Weiterhin wird eine systematische Studie durchgeführt, wie externe Strom- und Spannungsquellen im Wirbelstrommodell berücksichtigt werden können. Dabei wird zwischen lokalen Anregungen an Kontakten, vorgegebenen Generatorstromverteilungen und nicht-lokalen Varianten unterschieden. Es wird gezeigt, daß letztere das Faradaysche Gesetz entlang von sogenannten Seifert-Flächen verletzen und keine Lösung für das elektrische Feld in H(rot) zulassen. Eine physikalische Interpretation wird gegeben. Der Schwerpunkt der Arbeit liegt in der Entwicklung einer adaptiven Finite-Element-Software, die auf der Simulationsumgebung UG aufbaut. Als Grundlage dient eine auf dem elektrischen Feld basierende, sogenannte "ungeeichte" Variationsformulierung. Die Lösung ist bei Anwesenheit nichtleitender Gebietsteile nicht eindeutig und repräsentiert für diesen Fall eine Äquivalenzklasse von elektrischen Feldern, die alle auf dasselbe Magnetfeld führen, wobei letzteres die im Wirbelstrommodell relevante Größe darstellt. Zur Diskretisierung werden Whitney-Elemente verwendet. Die Berechnung erfolgt adaptiv mit Hilfe eines "Rot/Grün-Verfeinerungsalgorithmus" und eines residuenbasierten Fehlerschätzers. Zur Lösung der entstehenden Gleichungssysteme kommen Mehrgitterverfahren zum Einsatz. Diese besitzen eine optimale Komplexität und sind die derzeit schnellsten Lösungsverfahren. Dabei wird ein von R. Hiptmair entwickeltes Glättungsverfahren verwendet. Obwohl der (komplexe) zeitharmonische Fall bisher nicht von der Mehrgittertheorie abgedeckt wird, belegen die in der Arbeit durchgeführten numerischen Experimente, daß die Konvergenzraten des Mehrgitterverfahrens unabhängig von der Gitterweite gleichmäßig von Eins weg beschränkt sind. Aufgrund der Adaptivität wurde das Mehrgitterverfahren als lokales Mehrgitterverfahren implementiert, bei dem die Glättung sich auf verfeinerte Bereiche beschränkt. Dies ist notwendig, um auch im adaptiven Fall optimale Komplexität des Verfahrens zu gewährleisten. Implementiert wird das lokale Mehrgitterverfahren mit Hilfe von lokalen Gittern, die i.a. nicht das ganze Gebiet überdecken. Es wird gezeigt, daß das verwendete Glättungsverfahren gegenüber dem Standardfall erweiterte lokale Gitter erfordert. Die Lösbarkeit des singulären Gleichungssystems wird durch eine angemessene Berechnung der Stromquellen sichergestellt. Um die Kernanteile während des Lösungsprozesses zu kontrollieren, wird eine angenäherte Projektion auf die diskret divergenzfreien Felder eingesetzt. Das Gesamtverfahren wird auf realistische Problemstellungen angewendet. Für Wirbelstromprobleme, die auf sehr geringe Eindringtiefen führen, wird eine Randelementmethode realisiert. Hier wird der Einfluß des leitfähigen Gebietes durch Impedanzrandbedingungen repräsentiert. Daraus resultiert die Lösung einer Außenraumaufgabe statt eines Transmissionsproblems. Es wird eine auf dem Magnetfeld basierende Formulierung des Wirbelstrommodells verwendet und gezeigt, wie sich das Problem als eine skalare Integrodifferentialgleichung auf dem Rand des Leiters umformulieren läßt. Existenz und Eindeutigkeit werden bewiesen; ein Galerkin-Verfahren mit stetigen, stückweise linearen Randelementen wird zur Diskretisierung verwendet. Eine Fehlerabschätzung führt auf eine O(h^(5/2))-Konvergenz der Ohmschen Verluste. Das Ergebnis wird anhand eines numerischen Beispiels bestätigt. Anschließend werden die Grenzfälle unendlicher Leitfähigkeit und unendlicher Permeabilität betrachtet
    corecore