12,507 research outputs found

    Guidance for the identification of polymers in multilayer films used in food contact materials: User guide of selected practices to determine the nature of layers

    Get PDF
    This guidance describes how to characterize the composition of a multilayer plastic film for food packaging, with respect to the consecutive order of the layers and their identity. It provides necessary background information on the general composition of multilayer plastic packaging and it illustrates in detail the separation of layers for some examples. It also provides in annexes additional information related to the use of a microtome and of optical microscopy using one common instrument for illustrative purposes.JRC.I.1-Chemical Assessment and Testin

    Applicability of biobased packaging materials for long shelf-life food products

    Get PDF
    AbstractThe research aim was to evaluate the applicability of biobased plastics for packing long shelf-life food products, both on laboratory and industrial scale. Therefore, the shelf-life (room temperature) of tortilla chips, dry biscuits and potato flakes packed under air or modified atmosphere (MAP) in xylan and cellulose-based packages was evaluated and compared with their shelf-life in reference (conventional) packaging materials. These tests were followed by packaging trials on industrial lines. Furthermore, overall migration studies and printability tests were performed. Most of the biobased packages showed sufficient barrier towards moisture and gasses to serve as a food packaging material and MAP packaging of long shelf-life food products is possible. But for very moisture-sensitive food products (e.g. dry biscuits), no suited packaging material was found. The quality of the tortilla chips and potato flakes could be guaranteed during their shelf-life, even if packaging materials with lower barrier properties were used. Still, brittleness and seal properties are critical for use on industrial scale (important for use on vertical flow packaging machines). Furthermore, the films were printable and migration tests showed compliance with legislation. This study shows promising results towards the industrial application of biobased packaging materials for long shelflife food products.</jats:p

    Integrated capacitors for conductive lithographic film circuits

    Get PDF
    This paper reports on fabrication of low-value embedded capacitors in conductive lithographic film (CLF) circuit boards. The CLF process is a low-cost and high speed manufacturing technique for flexible circuits and systems. We report on the construction and electrical characteristics of CLF capacitor structures printed onto flexible substrates. These components comprise a single polyester dielectric layer, which separates the printed electrode films. Multilayer circuit boards with printed components and interconnect can be fabricated using this technique

    Flexible and stretchable circuit technologies for space applications

    Get PDF
    Flexible and stretchable circuit technologies offer reduced volume and weight, increased electrical performance, larger design freedom and improved interconnect reliability. All of these advantages are appealing for space applications. In this paper, two example technologies, the ultra-thin chip package (UTCP) and stretchable moulded interconnect (SMI), are described. The UTCP technology results in a 60 µm thick chip package, including the embedding of a 20 µm thick chip, laser or protolithic via definition to the chip contacts and application of fan out metallization. Imec’s stretchable interconnect technology is inspired by conventional rigid and flexible printed circuit board (PCB) technology. Stretchable interconnects are realized by copper meanders supported by a flexible material e.g. polyimide. Elastic materials, predominantly silicone rubbers, are used to embed the conductors and the components, thus serving as circuit carrier. The possible advantages of these technologies with respect to space applications are discussed

    Developing the knowledge-based human resources that support the implementation of the National Dual Training System (NDTS): evaluation of TVET teacher's competency at MARA Training Institutions

    Get PDF
    Development in the world of technical and vocational education and training (TVET) on an ongoing basis is a challenge to the profession of the TVET-teachers to maintain their performance. The ability of teachers to identify the competencies required by their profession is very critical to enable them to make improvements in teaching and learning. For a broader perspective the competency needs of the labour market have to be matched by those developed within the vocational learning processes. Consequently, this study has focused on developing and validating the new empirical based TVET-teacher competency profile and evaluating teacher’s competency. This study combines both quantitative and qualitative research methodology that was designed to answer all the research questions. The new empirical based competency profile development and TVET-teacher evaluation was based upon an instructional design model. In addition, a modified Delphi technique has also been adopted throughout the process. Initially, 98 elements of competencies were listed by expert panel and rated by TVET institutions as important. Then, analysis using manual and statistical procedure found that 112 elements of competencies have emerged from seventeen (17) clusters of competencies. Prior to that, using the preliminary TVET-teacher competency profile, the level of TVETteacher competencies was found to be Proficient and the finding of 112 elements of competencies with 17 clusters was finally used to develop the new empirical based competency profile for MARA TVET-teacher. Mean score analysis of teacher competencies found that there were gaps in teacher competencies between MARA institutions (IKM) and other TVET institutions, where MARA-teacher was significantly better than other TVET teacher. ANOVA and t-test analysis showed that there were significant differences between teacher competencies among all TVET institutions in Malaysia. On the other hand, the study showed that teacher’s age, grade and year of experience are not significant predictors for TVET-teacher competency. In the context of mastering the competency, the study also found that three competencies are classified as most difficult or challenging, twelve competencies are classified as should be improved, and eight competencies are classified as needed to be trained. Lastly, to make NDTS implementation a reality for MARA the new empirical based competency profile and the framework for career development and training pathway were established. This Framework would serve as a significant tool to develop the knowledge based human resources needed. This will ensure that TVET-teachers at MARA are trained to be knowledgeable, competent, and professional and become a pedagogical leader on an ongoing basis towards a world class TVET-education system

    A novel approach for quality control system using sensor fusion of infrared and visual image processing for laser sealing of food containers

    Get PDF
    This paper presents a new mechatronic approach of using infrared thermography combined with image processing for the quality control of a laser sealing process for food containers. The suggested approach uses an on-line infrared system to assess the heat distribution within the container seal in order to guarantee the integrity of the process. Visual image processing is then used for quality assurance to guarantee optimum sealing. The results described in this paper show examples of the capability of the condition monitoring system to detect faults in the sealing process. The results found indicate that the suggested approach could form an effective quality control and assurance system

    Low-cost, precision, self-alignment technique for coupling laser and photodiode arrays to polymer waveguide arrays on multilayer PCBs

    Get PDF
    The first, to our knowledge, passive, precision, self-alignment technique for direct coupling of vertical cavity surface emitting laser (VCSEL) and photodiode (PD) arrays to an array of polymer buried channel waveguides on a rigid printed circuit board (PCB) is reported. It gives insertion losses as good as the best achieved previously, to within experimental measurement accuracy, but without the need for costly active alignment nor waveguide facet polishing and so is a major step towards a commercially realizable low cost connector. Such an optical connector with four duplex channels each operating at 10 Gb/s (80 Gb/s aggregate) was designed, constructed, and its alignment precision assessed. The alignment technique is applicable to polymer waveguide interconnections on both rigid and flexible multilayer printed circuit boards (PCBs). The dependence of optical coupling loss on mis-alignments in x, y and z of the VCSEL and PD arrays allows the precision of alignment to be assessed and its reproducibility on multiple mating cycles of the connector is reported. The first recorded measurements of crosstalk between waveguides when the connector is misaligned are reported. Lateral misalignments of the connector to within its tolerance are shown to have no effect on the signal to crosstalk ratio (SCR), to within experimental measurement accuracy. The insertion loss repeatability is similar to that of single mode fiber mechanically transferable (MT) connectors

    Design, processing and testing of LSI arrays hybrid microelectronics task

    Get PDF
    Those factors affecting the cost of electronic subsystems utilizing LSI microcircuits were determined and the most efficient methods for low cost packaging of LSI devices as a function of density and reliability were developed

    Bioengineered Textiles and Nonwovens – the convergence of bio-miniaturisation and electroactive conductive polymers for assistive healthcare, portable power and design-led wearable technology

    Get PDF
    Today, there is an opportunity to bring together creative design activities to exploit the responsive and adaptive ‘smart’ materials that are a result of rapid development in electro, photo active polymers or OFEDs (organic thin film electronic devices), bio-responsive hydrogels, integrated into MEMS/NEMS devices and systems respectively. Some of these integrated systems are summarised in this paper, highlighting their use to create enhanced functionality in textiles, fabrics and non-woven large area thin films. By understanding the characteristics and properties of OFEDs and bio polymers and how they can be transformed into implementable physical forms, innovative products and services can be developed, with wide implications. The paper outlines some of these opportunities and applications, in particular, an ambient living platform, dealing with human centred needs, of people at work, people at home and people at play. The innovative design affords the accelerated development of intelligent materials (interactive, responsive and adaptive) for a new product & service design landscape, encompassing assistive healthcare (smart bandages and digital theranostics), ambient living, renewable energy (organic PV and solar textiles), interactive consumer products, interactive personal & beauty care (e-Scent) and a more intelligent built environment

    Active and passive component embedding into low-cost plastic substrates aimed at smart system applications

    Get PDF
    The technology development for a low-cost, roll-to-roll compatible chip embedding process is described in this paper. Target applications are intelligent labels and disposable sensor patches. Two generations of the technology are depicted. In the first version of the embedding technology, the chips are embedded in an adhesive layer between a copper foil and a PET film. While this results in a very thin (< 200 µm) and flexible system, the single-layer routing and the incompatibility with passive components restricts the application of this first generation. The double-sided circuitry embedding technology is an extension of the single-sided, foil-based chip embedding, where the PET film is replaced by a second metal foil. To obtain sufficient mechanical strength and to further reduce cost, the adhesive film is replaced by a substrate material which is compatible with the chip embedding concept. Both versions of the foil-based embedding technology are very versatile, as they are compatible with a broad range of polymer materials, for which the specifications can be tuned to the final application
    corecore