6 research outputs found

    Computer-network Solutions for Pervasive Computing

    Get PDF
    Lo scenario delle reti di comunicazione di tipo wireless sta rapidamente evolvendo verso i sistemi pervasivi in cui i dispositivi wireless, di diversi tipi e grandezze, costituiscono parte integrante dell’ambiente in cui sono immersi, ed interagiscono continuamente ed in maniera trasparente con gli utenti che vi vivono o che lo attraversano. Si parla a tal proposito anche di ambienti intelligenti. Seguendo l’evoluzione dai sistemi mobili a quelli pervasivi, questa tesi rivisita diversi tipi di ambienti wireless che si sono sviluppati e diffusi negli ultimi 20 anni: a partire dalle wireless LANs, proseguendo con le reti ad hoc, per finire con le reti opportunistiche. Sebbene molte problematiche delle reti wireless si ripropongano in quasi tutti gli scenari (ad esempio il risparmio energetico), a scenari wireless diversi corrispondono in genere utilizzi differenti e diversi fabbisogni degli utenti, come pure problemi specifici che richiedono soluzioni dedicate. Alcune soluzioni specifiche sono analizzate e proposte in questa tesi. Le reti WLANs basate su infrastruttura sono usate generalmente per fornire accesso alla rete Internet ed infatti lo scenario che le comprende è solitamente riferito come Wireless Internet. Nonostante la presenza dell’infrastruttuta fissa garantisca in generale una trasmissione di dati affidabile, l’utilizzo di questo tipo di reti per fornire esattamente gli stessi tipi di servizi delle reti fisse provoca un elevato consumo di risorse che all’interno delle WLANs sono invece limitate. Inoltre l’utilizzo dei protocolli dello stack TCP/IP sui link wireless è di solito fonte di inefficienze viste le profonde differenze esistenti fra i link wireless e quelli fissi. La progettazione di servizi in uno scenario di wireless Internet ha come primario obiettivo quello di garantire la fruizione da parte degli utenti mobili senza soluzione di continuità, mascherando così la presenza del link wireless che ha banda nominale inferiore rispetto ai link fissi ed è soggetto a maggiori perdite, e supportando la mobilità degli utenti all’interno delle zone di copertura (handoff). La gestione dei servizi di wireless Internet deve sempre essere integrata con soluzioni di risparmio energetico tese ad allungare il più possibile l’autonomia energetica dei dispositivi degli utenti (alimentati a batteria) garantendo così loro un servizio duraturo nel tempo. Abbiamo studiato una soluzione per servizi di streaming audio-video verso terminali mobili in un ambiente di wireless LAN. Oltre a garantire la continuità della riproduzione multimediale con buona qualità, questa soluzione ottimizza il consumo energetico del terminale wireless agendo sulla scheda di rete wireless. Durante lo streaming infatti, la scheda di rete viene periodicamente messa in uno stato a basso consumo energetico (sleep). I periodi di sleep della scheda vengono calcolati adattivamente in funzione dello stato di avanzamento della riproduzione multimediale e della banda disponibile istantaneamente sul canale wireless opportunamente monitorato. Il riposo della scheda di rete non incide sul processo di riproduzione e quindi sulla qualità del servizio percepita dall’utente mobile. A differenza delle WLANs, le reti MANETs sono prive di infrastruttura fissa ed i nodi che vi partecipano si autoconfigurano ed autoorganizzano tra di loro. Le MANETs si mostrano particolarmente adatte ad esigenze temporanee di gruppi di utenti che vogliano condividere dati, scambiarsi messaggi, o altro. Uno dei principali interessi di ricerca nell’ambito delle reti MANETs ha riguardato storicamente lo studio dei protocolli di routing per l’instradamento delle informazioni fra nodi sorgente e nodi destinatari. In una rete MANET infatti, vista l’assenza di infrastruttura, ogni nodo è coinvolto nella funzione di instradamento. Negli ultimi anni tuttavia, un nuovo aspetto di ricerca sta acquistando sempre maggiore attenzione e riguarda la sperimentazione su testbed reali. Le poche esperienze sperimentali eseguite su MANETs hanno dimostrato l’inadeguatezza degli studi di tipo analitico-simulativo nel giudicare l’efficacia delle soluzioni progettate per reti MANETs. Questo è principalmente dovuto al fatto che gli scenari wireless sono estremamente complessi e soggetti a fenomeni di diversa natura che influiscono sulle comunicazioni ma che sono difficilmente condensabili in un modello analitico completo. I modelli esistenti nei simulatori attualmente diffusi sono spesso causa di errori nel validare o al contrario bocciare le soluzioni ed i protocolli testati. Le attività di sperimentazione su testbed reali hanno dunque un duplice scopo: i) validare protocolli e soluzioni proposte attualmente, e ii) gettare le basi per la costruizione di nuovi modelli analitici e simulativi che siano maggiormente attendibili di quelli attuali. L’esperienza condotta su di un testbed reale per reti ad hoc comprendente portatili e palmari fino ad un totale di 12 nodi, ha dimostrato l’efficacia delle implementazioni di due protocolli di routing: AODV (Ad hoc On demand Distance Vector) ed OLSR (Optimized Link State Routing). Tuttavia, benchè entrambi siano funzionalmente corretti, mostrano comportamenti differenti quando usati per supportare servizi di livello middleware ed applicativi (vedi ad esempio file sharing o trasferimenti ftp). In particolare, i ritardi causati dalla scoperta delle rotte in AODV sono spesso causa di inefficienze o addirittura di interruzione del servizio. OLSR invece, seppure responsabile di un overhead di traffico maggiore, si mostra maggiormente adatto alle interazioni con i servizi dei livelli superiori. Infine, l’esperienza ha dimostrato la necessità di ripensare molti dei servizi disponibili su rete fissa per adeguarli alle caratteristiche delle reti wireless e particolarmente di quelle ad hoc. Una nuova tipologia di reti wireless sta emergendo attualmente e si sta rivelando di particolare interesse: quella delle reti opportunistiche. Le reti opportunistiche non si appoggiano su alcuna infrastruttura fissa, né cercano di autoconfigurarsi in una infrastruttura wireless temporanea costituita da nodi vicini. Sfruttano le opportunità di contatto che si verificano fra i nodi (dispositivi wireless di piccola taglia) trasportati dagli utenti nelle loro attività quotidiane (ad esempio a lavoro, sugli autobus, a scuola o all’università, ecc.). I messaggi sono scambiati ogni qualvolta si renda possibile, ovunque sia possibile ed il successo della loro trasmissione è strettamente legato alle dinamiche sociali in cui sono coinvolti gli utenti che trasportano i dispositivi ed alla storia degli incontri tra individui. Data la mobilità estremamente elevata che caratterizza questo nuovo scenario di reti, e la nota rumorosità delle comunicazioni wireless, l’affidabilità delle trasmissioni emerge come uno dei fattori di principale interesse. Infatti, le comunicazioni possono aver luogo soltanto durante i periodi di contatto tra i nodi e devono essere estremamente veloci ed efficaci. Questo porta a dover fare uno sforzo di progettazione per nuovi protocolli di comunicazione che si diversifichino da quelli oggi più diffusi e basati sulla ritrasmissione dei dati mancanti. Le ritrasmissioni infatti, nella maggior parte dei casi potrebbero non poter essere eseguite per mancanza di tempo. Una strategia valida per gestire l’affidabilità delle comunicazioni opportunistiche in simili scenari estremi (caratterizzati cioè da scarse risorse e scarsa connettività) prevede l’utilizzo combinato di tecniche di codifica dei dati e strategie di instradamento di tipo epidemico. Questo approccio sfrutta la ridondanza sia delle informazioni, sia dei percorsi. La ridondanza delle informazioni dà robustezza a fronte della perdita dei dati in rete poiché è necessario che soltanto un sottoinsieme dei codici generati arrivi a destinazione per consentire al ricostruzione corretta delle informazioni. La ridondanza dei percorsi invece è necessaria poichè non è possibile predirre in anticipo la sequenza dei contatti che può portare i dati a destinazione e pertanto è necessario distribuire l’informazione in più direzioni. Le reti opportunistiche caratterizzate dalla presenza di dispositivi con limitata autonomia energetica e risorse limitate, offrono attualmente lo scenario che meglio traduce il concetto di sistemi pervasivi. Di particolare interesse è il caso delle reti di sensori sparse in cui i sensori sono disposti nell’ambiente con funzione di monitoraggio ed i dati che collezionano vengono raccolti da degli agenti mobili che passano nelle vicinanze e che sono noti come data MULEs. I data MULEs possono utilizzare le informazioni acquisite dai sensori per eseguire applicazioni dipendenti dal contesto o possono semplicemente inoltrarle fino a quando raggiungono l’infrastruttura dove vengono elaborati e memorizzati. Le interazioni fra i sensori immersi nell’ambiente ed i data MULEs sono soltanto un primo passo di un sistema di comunicazione globale completamente opportunistico in cui i data MULEs scambiano l’un l’altro le informazioni che trasportano fino a quando infine, i dati pervengono alle destinazioni più lontane. In questo scenario, le comunicazioni wireless completano naturalmente le interazioni fra gli utenti e si verificano ogni qualvolta gli utenti si incontrano oppure si avvicinano casualmente l’un l’altro, dovunque questa interazione avvenga. Per supportare un simile framework, è necessario sviluppare nuovi paradigmi di comunicazione che tengano in considerazione l’assenza di link stabili tra i nodi che comunicano (connettività intermittente) e che assumano quindi la disponibilità di brevi periodi di contatto per comunicare. Inoltre i nuovi paradigmi di comunicazione devono generalmente assumere l’assenza di un percorso completo fra i nodi sorgente e destinatario e sfruttare invece forme di instradamento delle informazioni che sono simili al modo in cui avvengono le interazioni sociali fra le persone. Strategie di instradamento basate su codifica dei dati offrono una valida soluzione per supportare il framework emergente dei sistemi pervasivi

    On the Design of Future Communication Systems with Coded Transport, Storage, and Computing

    Get PDF
    Communication systems are experiencing a fundamental change. There are novel applications that require an increased performance not only of throughput but also latency, reliability, security, and heterogeneity support from these systems. To fulfil the requirements, future systems understand communication not only as the transport of bits but also as their storage, processing, and relation. In these systems, every network node has transport storage and computing resources that the network operator and its users can exploit through virtualisation and softwarisation of the resources. It is within this context that this work presents its results. We proposed distributed coded approaches to improve communication systems. Our results improve the reliability and latency performance of the transport of information. They also increase the reliability, flexibility, and throughput of storage applications. Furthermore, based on the lessons that coded approaches improve the transport and storage performance of communication systems, we propose a distributed coded approach for the computing of novel in-network applications such as the steering and control of cyber-physical systems. Our proposed approach can increase the reliability and latency performance of distributed in-network computing in the presence of errors, erasures, and attackers

    Viivesietoisten verkkojen nykytila ja tulevaisuuden haasteet

    Get PDF
    Delay and disruption tolerant networks (DTNs) are computer networks where round trip delays and error rates are high and disconnections frequent. Examples of these extreme networks are space communications, sensor networks, connecting rural villages to the Internet and even interconnecting commodity portable wireless devices and mobile phones. Basic elements of delay tolerant networks are a store-and-forward message transfer resembling traditional mail delivery, an opportunistic and intermittent routing, and an extensible cross-region resource naming service. Individual nodes of the network take an active part in routing the traffic and provide in-network data storage for application data that flows through the network. Application architecture for delay tolerant networks differs also from those used in traditional networks. It has become feasible to design applications that are network-aware and opportunistic, taking an advantage of different network connection speeds and capabilities. This might change some of the basic paradigms of network application design. DTN protocols will also support in designing applications which depend on processes to be persistent over reboots and power failures. DTN protocols could also be applicable to traditional networks in cases where high tolerance to delays or errors would be desired. It is apparent that challenged networks also challenge the traditional strictly layered model of network application design. This thesis provides an extensive introduction to delay tolerant networking concepts and applications. Most attention is given to challenging problems of routing and application architecture. Finally, future prospects of DTN applications and implementations are envisioned through recent research results and an interview with an active researcher of DTN networks.Viive- ja häiriösietoiset verkot (Delay/Disruption Tolerant Networks, DTN) ovat tietoliikenneverkkoja, joissa siirtoviiveet ja virhetiheydet ovat suuria sekä yhteyskatkot tavallisia. DTN-verkoissa toimivat sovellukset ovat mukautuneet yhteyskatkoihin sekä päästä päähän -yhteyden puuttumiseen. Näille sovelluksille riittää, että viesti toimitetaan perille esimerkiksi tiettyyn aikaan mennessä. DTN-verkkojen virheiden sietokyky perustuu viestien siirtämiseen verkossa yksi solmuväli kerrallaan ja viestien tallettamiseen verkkosolmuissa haihtumattomalle tallennusvälineelle. Näin verkon viestinvälitys voi toimia pitkistäkin yhteyskatkoista ja solmujen uudelleenkäynnistyksistä huolimatta. Viivesietoisten verkkojen sovelluksia ovat esimerkiksi yhteydet avaruusluotaimiin toisilla planeetoilla tai viestinvälitys seuduilla, joilla ei ole tarjolla kiinteää tietoliikenneinfrastruktuuria. Muita sovellusalueita ovat pelastus- ja sotilasyhteydet, sensoriverkot sekä liikkuvien käyttäjien ja ajoneuvojen verkot. Tässä tutkielmassa esitellään viivesietoisten verkkojen arkkitehtuurin perusratkaisuja sekä joitakin sovellusalueita. Erityisesti käsitellään reititystä sekä sen resurssinkulutuksen pienentämiseen kehitettyjä ratkaisuja. Lisäksi tutkielmassa esitellään viivesietoisten verkkojen ja niiden sovellusalueiden tulevaisuudennäkymiä sekä alan uusimpien tutkimustulosten että aktiivitutkijan haastattelun avulla

    Information-centric communication in mobile and wireless networks

    Get PDF
    Information-centric networking (ICN) is a new communication paradigm that has been proposed to cope with drawbacks of host-based communication protocols, namely scalability and security. In this thesis, we base our work on Named Data Networking (NDN), which is a popular ICN architecture, and investigate NDN in the context of wireless and mobile ad hoc networks. In a first part, we focus on NDN efficiency (and potential improvements) in wireless environments by investigating NDN in wireless one-hop communication, i.e., without any routing protocols. A basic requirement to initiate informationcentric communication is the knowledge of existing and available content names. Therefore, we develop three opportunistic content discovery algorithms and evaluate them in diverse scenarios for different node densities and content distributions. After content names are known, requesters can retrieve content opportunistically from any neighbor node that provides the content. However, in case of short contact times to content sources, content retrieval may be disrupted. Therefore, we develop a requester application that keeps meta information of disrupted content retrievals and enables resume operations when a new content source has been found. Besides message efficiency, we also evaluate power consumption of information-centric broadcast and unicast communication. Based on our findings, we develop two mechanisms to increase efficiency of information-centric wireless one-hop communication. The first approach called Dynamic Unicast (DU) avoids broadcast communication whenever possible since broadcast transmissions result in more duplicate Data transmissions, lower data rates and higher energy consumption on mobile nodes, which are not interested in overheard Data, compared to unicast communication. Hence, DU uses broadcast communication only until a content source has been found and then retrieves content directly via unicast from the same source. The second approach called RC-NDN targets efficiency of wireless broadcast communication by reducing the number of duplicate Data transmissions. In particular, RC-NDN is a Data encoding scheme for content sources that increases diversity in wireless broadcast transmissions such that multiple concurrent requesters can profit from each others’ (overheard) message transmissions. If requesters and content sources are not in one-hop distance to each other, requests need to be forwarded via multi-hop routing. Therefore, in a second part of this thesis, we investigate information-centric wireless multi-hop communication. First, we consider multi-hop broadcast communication in the context of rather static community networks. We introduce the concept of preferred forwarders, which relay Interest messages slightly faster than non-preferred forwarders to reduce redundant duplicate message transmissions. While this approach works well in static networks, the performance may degrade in mobile networks if preferred forwarders may regularly move away. Thus, to enable routing in mobile ad hoc networks, we extend DU for multi-hop communication. Compared to one-hop communication, multi-hop DU requires efficient path update mechanisms (since multi-hop paths may expire quickly) and new forwarding strategies to maintain NDN benefits (request aggregation and caching) such that only a few messages need to be transmitted over the entire end-to-end path even in case of multiple concurrent requesters. To perform quick retransmission in case of collisions or other transmission errors, we implement and evaluate retransmission timers from related work and compare them to CCNTimer, which is a new algorithm that enables shorter content retrieval times in information-centric wireless multi-hop communication. Yet, in case of intermittent connectivity between requesters and content sources, multi-hop routing protocols may not work because they require continuous end-to-end paths. Therefore, we present agent-based content retrieval (ACR) for delay-tolerant networks. In ACR, requester nodes can delegate content retrieval to mobile agent nodes, which move closer to content sources, can retrieve content and return it to requesters. Thus, ACR exploits the mobility of agent nodes to retrieve content from remote locations. To enable delay-tolerant communication via agents, retrieved content needs to be stored persistently such that requesters can verify its authenticity via original publisher signatures. To achieve this, we develop a persistent caching concept that maintains received popular content in repositories and deletes unpopular content if free space is required. Since our persistent caching concept can complement regular short-term caching in the content store, it can also be used for network caching to store popular delay-tolerant content at edge routers (to reduce network traffic and improve network performance) while real-time traffic can still be maintained and served from the content store

    Network coding for delay challenged environments

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 191-196).Delay is a fundamental problem of data communication and networks, a problem that is not usually addressed in classical coding, information or networking theory. We focus on the general problem of delay challenged networks. This delay challenge may be related to different reasons, for example, 1) large latency, which can affect the performance of the system in delay, throughput or energy efficiency, 2) half-duplex constraints on the nodes, which precludes a node to receive and transmit at the same time, and/or 3) application-level requirements for reliable, fast and efficient dissemination of information. We consider three main problems of study and the role of network coding on solving these problems. The first is related to the problem of reliable communication in time-division duplexing channels, also known as half-duplex channels, in the presence of large latency. In large latency channels, feedback about received packets may lag considerably the transmission of the original packets, limiting the feedback's usefulness. Moreover, the time duplex constraints may entail that receiving feedback may be costly. In this work, we consider tailoring feedback and (network) coding jointly in such settings to reduce the mean delay for successful in order reception of packets. We find that, in certain applications, judicious choices provide results that are close to those that would be obtained with a full-duplex system. The second part of this thesis studies the problem of data dissemination in arbitrary networks. In particular, we study the problem of minimizing the delay incurred in disseminating a finite number of data packets. We show that the optimal solution to the problem can be thought of as a scheduling problem, which is hard to solve. Thus, we consider the use of a greedy linear network coding algorithm that only takes into account the current state of the system to make a decision. The proposed algorithm tries to maximize the impact on the network at each slot, i.e., maximize the number of nodes that will benefit from the coded packet sent by each active transmitter. We show that our scheme is considerably better, in terms of the number of slots to complete transmission, than schemes that choose the node with more information as the transmitter The third part of this work studies the case of underwater acoustic networks as an example of delay challenged networks. We consider the use of network coding under two different lights. First, as a means to obtain a lower bound on the transmission power of multicast connections in underwater networks. Second, to develop practical schemes useful in such networks. Finally, we study upper bounds on the transport capacity of underwater acoustic networks under unicast connections. We show that the amount of information that can be exchanged by each source-destination pair in underwater acoustic networks goes to zero as the number of nodes n goes to infinity. This occurs at least at a rate n-1/Qe-Wo(O(n-k)) where Wo represents the branch zero of the Lambert W function, and a path loss exponent of a. Note that typical values of the path loss exponent are a E [1, 2] for underwater acoustic networks. This is significantly different to the a > 2 of radio wireless applications.by Daniel Enrique Lucani.Ph.D
    corecore