7 research outputs found

    Uncertainty Estimation in Classification of MGNT Using Radiogenomics for Glioblastoma Patients

    Get PDF
    Glioblastoma Multiforme (GBM) is one of the most malignant brain tumors among all high-grade brain cancers. Temozolomide (TMZ) is the first-line chemotherapeutic regimen for glioblastoma patients. The methylation status of the O6-methylguanine-DNA-methyltransferase (MGMT) gene is a prognostic biomarker for tumor sensitivity to TMZ chemotherapy. However, the standardized procedure for assessing the methylation status of MGMT is an invasive surgical biopsy, and accuracy is susceptible to resection sample and heterogeneity of the tumor. Recently, radio-genomics which associates radiological image phenotype with genetic or molecular mutations has shown promise in the non-invasive assessment of radiotherapeutic treatment. This study proposes a machine-learning framework for MGMT classification with uncertainty analysis utilizing imaging features extracted from multimodal magnetic resonance imaging (mMRI). The imaging features include conventional texture, volumetric, and sophisticated fractal, and multi-resolution fractal texture features. The proposed method is evaluated with publicly available BraTS-TCIA-GBM pre-operative scans and TCGA datasets with 114 patients. The experiment with 10-fold cross-validation suggests that the fractal and multi-resolution fractal texture features offer an improved prediction of MGMT status. The uncertainty analysis using an ensemble of Stochastic Gradient Langevin Boosting models along with multi-resolution fractal features offers an accuracy of 71.74% and area under the curve of 0.76. Finally, analysis shows that our proposed method with uncertainty analysis offers improved predictive performance when compared with different well-known methods in the literature

    Efficacy of Radiomics and Genomics in Predicting TP53 Mutations in Diffuse Lower Grade Glioma

    Get PDF
    An updated classification of diffuse lower-grade gliomas is established in the 2016 World Health Organization Classification of Tumors of the Central Nervous System based on their molecular mutations such as TP53 mutation. This study investigates machine learning methods for TP53 mutation status prediction and classification using radiomics and genomics features, respectively. Radiomics features represent patients\u27 age and imaging features that are extracted from conventional MRI. Genomics feature is represented by patients’ gene expression using RNA sequencing. This study uses a total of 105 LGG patients, where the patient dataset is divided into a training set (80 patients) and testing set (25 patients). Three TP53 mutation prediction models are constructed based on the source of the training features; TP53-radiomics model, TP53-genomics model, and TP53-radiogenomics model, respectively. Radiomics feature selection is performed using recursive feature selection method. For genomics data, EdgeR method is utilized to select the differentially expressed genes between the mutated TP53 versus the non-mutated TP53 cases in the training set. The training classification model is constructed using Random Forest and cross-validated using repeated 10-fold cross validation. Finally, the predictive performance of the three models is assessed using the testing set. The three models, TP53-Radiomics, TP53-RadioGenomics, and TP53-Genomics, achieve a predictive accuracy of 0.84±0.04, 0.92±0.04, and 0.89±0.07, respectively. These results show promise of non-invasive MRI radiomics features and fusion of radiomics with genomics features for prediction of TP53

    Prediction of Molecular Mutations in Diffuse Low-Grade Gliomas Using MR Imaging Features

    Get PDF
    Diffuse low-grade gliomas (LGG) have been reclassified based on molecular mutations, which require invasive tumor tissue sampling. Tissue sampling by biopsy may be limited by sampling error, whereas non-invasive imaging can evaluate the entirety of a tumor. This study presents a non-invasive analysis of low-grade gliomas using imaging features based on the updated classification. We introduce molecular (MGMT methylation, IDH mutation, 1p/19q co-deletion, ATRX mutation, and TERT mutations) prediction methods of low-grade gliomas with imaging. Imaging features are extracted from magnetic resonance imaging data and include texture features, fractal and multi-resolution fractal texture features, and volumetric features. Training models include nested leave-one-out cross-validation to select features, train the model, and estimate model performance. The prediction models of MGMT methylation, IDH mutations, 1p/19q co-deletion, ATRX mutation, and TERT mutations achieve a test performance AUC of 0.83 ± 0.04, 0.84 ± 0.03, 0.80 ± 0.04, 0.70 ± 0.09, and 0.82 ±0.04, respectively. Furthermore, our analysis shows that the fractal features have a significant effect on the predictive performance of MGMT methylation IDH mutations, 1p/19q co-deletion, and ATRX mutations. The performance of our prediction methods indicates the potential of correlating computed imaging features with LGG molecular mutations types and identifies candidates that may be considered potential predictive biomarkers of LGG molecular classification

    Feature-Guided Deep Radiomics for Glioblastoma Patient Survival Prediction

    Get PDF
    Glioblastoma is recognized as World Health Organization (WHO) grade IV glioma with an aggressive growth pattern. The current clinical practice in diagnosis and prognosis of Glioblastoma using MRI involves multiple steps including manual tumor sizing. Accurate identification and segmentation of multiple abnormal tissues within tumor volume in MRI is essential for precise survival prediction. Manual tumor and abnormal tissue detection and sizing are tedious, and subject to inter-observer variability. Consequently, this work proposes a fully automated MRI-based glioblastoma and abnormal tissue segmentation, and survival prediction framework. The framework includes radiomics feature-guided deep neural network methods for tumor tissue segmentation; followed by survival regression and classification using these abnormal tumor tissue segments and other relevant clinical features. The proposed multiple abnormal tumor tissue segmentation step effectively fuses feature-based and feature-guided deep radiomics information in structural MRI. The survival prediction step includes two representative survival prediction pipelines that combine different feature selection and regression approaches. The framework is evaluated using two recent widely used benchmark datasets from Brain Tumor Segmentation (BraTS) global challenges in 2017 and 2018. The best overall survival pipeline in the proposed framework achieves leave-one-out cross-validation (LOOCV) accuracy of 0.73 for training datasets and 0.68 for validation datasets, respectively. These training and validation accuracies for tumor patient survival prediction are among the highest reported in literature. Finally, a critical analysis of radiomics features and efficacy of these features in segmentation and survival prediction performance is presented as lessons learned

    Model-Based Approach for Diffuse Glioma Classification, Grading, and Patient Survival Prediction

    Get PDF
    The work in this dissertation proposes model-based approaches for molecular mutations classification of gliomas, grading based on radiomics features and genomics, and prediction of diffuse gliomas clinical outcome in overall patient survival. Diffuse gliomas are types of Central Nervous System (CNS) brain tumors that account for 25.5% of primary brain and CNS tumors and originate from the supportive glial cells. In the 2016 World Health Organization’s (WHO) criteria for CNS brain tumor, a major reclassification of the diffuse gliomas is presented based on gliomas molecular mutations and the growth behavior. Currently, the status of molecular mutations is determined by obtaining viable regions of tumor tissue samples. However, an increasing need to non-invasively analyze the clinical outcome of tumors requires careful modeling and co-analysis of radiomics (i.e., imaging features) and genomics (molecular and proteomics features). The variances in diffuse Lower-grade gliomas (LGG), which are demonstrated by their heterogeneity, can be exemplified by radiographic imaging features (i.e., radiomics). Therefore, radiomics may be suggested as a crucial non-invasive marker in the tumor diagnosis and prognosis. Consequently, we examine radiomics extracted from the multi-resolution fractal representations of the tumor in classifying the molecular mutations of diffuse LGG non-invasively. The proposed radiomics in the decision-tree-based ensemble machine learning molecular prediction model confirm the efficacy of these fractal features in glioma prediction. Furthermore, this dissertation proposes a novel non-invasive statistical model to classify and predict LGG molecular mutations based on radiomics and count-based genomics data. The performance results of the proposed statistical model indicate that fusing radiomics to count-based genomics improves the performance of mutations prediction. Furthermore, the radiomics-based glioblastoma survival prediction framework is proposed in this work. The survival prediction framework includes two survival prediction pipelines that combine different feature selection and regression approaches. The framework is evaluated using two recent widely used benchmark datasets from Brain Tumor Segmentation (BraTS) challenges in 2017 and 2018. The first survival prediction pipeline offered the best overall performance in the 2017 Challenge, and the second survival prediction pipeline offered the best performance using the validation dataset. In summary, in this work, we develop non-invasive computational and statistical models based on radiomics and genomics to investigate overall survival, tumor progression, and the molecular classification in diffuse gliomas. The methods discussed in our study are important steps towards a non-invasive approach to diffuse brain tumor classification, grading, and patient survival prediction that may be recommended prior to invasive tissue sampling in a clinical setting
    corecore